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Abstract

This thesis addresses the application of stereo cameras in the context of maritime vessel
localization and environmental perception. The focus is on developing an independent
vision-based system for localization and perception, applicable to various maritime and
ground vehicles. The research is conducted in collaboration with Universitat Jaume I
(UJI), Norwegian University of Science and Technology (NTNU), and Zeabuz, a startup
specializing in autonomous ferries.

The project centers around the MilliAmpere-2, an electric research vessel equipped
with LiDARs, cameras, radar, and a dynamic positioning system. Despite its specific ap-
plication, this thesis aims to create a vision-based solution adaptable to diverse maritime
and ground vehicles. Challenges such as the dynamic sea surface and limited visibility
of distant structures motivate the need for a specialized vision-based system.

The proposed perception system, named Ferry-SLAM, integrates visual odometry and
environmental representation. Key contributions include masking strategies for keypoint
generation, predictive keypoint matching, novel techniques for rotational estimation from
distant regions, the fusion of semantic segmentation and 3D plane fitting, and a unique
approach to distinguishing upright and horizontal structures. The system employs bird’s-
eye views for navigation, enhancing efficiency without sacrificing information.

Ferry-SLAM is designed to address the complex maritime environment’s challenges,
including the dynamic sea surface and limited visibility. Semantic segmentation and 3D
plane fitting provide a robust understanding of the environment, aiding in navigation
and obstacle avoidance. The innovative rotational estimation methods enhance accuracy,
and predictive keypoint matching ensures reliable correspondence estimation.

The developed perception system is evaluated using datasets, including the KITTI
dataset and locally recorded sequences. Results indicate promising accuracy in trajectory
estimation, even when facing maritime-specific challenges. This work contributes to the
field of maritime and ground vehicle autonomy by offering a vision-based solution tailored
to the unique demands of open-water navigation.
Keywords— ego-motion estimation, scene analysis, object detection, keypoints, correspondence
matching, semantic segmentation, bird’s eye view.
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1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

This project is about the usage of stereo cameras in the context of the localization of the
maritime vessel and the perception of the surrounding environment. This work applies the prin-
ciples of the Visual Odometry (VO) to estimate the ego-motion of the maritime vessel called
MilliAmpere-2 ([8]). The MilliAmpere-2 (see Fig. 1.1) is a research vessel developed by the
Norwegian University of Science and Technology (NTNU). It is an electric boat in general but
equipped with Light Detection and Range (LiDAR)s, cameras, one RADAR, etc. for the per-
ception of the environment and the dynamic positioning system for the control of the boat. The
working principles of the MilliAmpere-2 are outside the scope of this work because this project
is intended to develop an independent vision-based system that can be integrated into any mar-
itime vessel irrespective of the other sensors. The focus of this project is not limited to only the
maritime vessels but also extended to the ground vehicles as the problem statement remains the
same.

The work was done between Feb., 2023 and July, 2023 in collaboration with the Universitat
Jaume I (UJI), NTNU, and Zeabuz. Zeabuz is a startup based on autonomous ferries and it
is the industrial partner of this project. As two of the three partners are based in Trondheim,
Norway, the work has also been carried out in Trondheim. In the following sections, I will talk
about the context and my contribution to this project and finally give an outline of the thesis.

1.1 Context of this work and Motivation

Localization and navigation have been one of the biggest challenges in the development of au-
tonomous cars by the automotive industries. On top of that, the perception of the environment

3



4 Introduction

Figure 1.1: MilliAmpere 2. Taken from [23].

makes this problem even more complicated. Over the decade, multiple attempts have been made
in this domain by different research and industrial institutions. When we talk about localization
in autonomous systems, one word usually comes in the context and that is called Simultaneous
Localization and Mapping (SLAM). The SLAM is a framework that allows the user to build the
map of the environment and localize itself in it simultaneously. The SLAM is a concept that
can be implemented in different ways. The initial proposal of the SLAM was based on the use
of the LiDARs to scan the environment with precise range measurements and then identify the
landmarks in the environment such that they can be tracked over time and can be used to build
the map. With the advancements in the Computer Vision (CV), the use of the cameras in the
SLAM became an active research topic as the images carry more information than the LiDARs
and they are cheap to equip the robot with. Also, they can be very helpful in the perception of
the environment which was not completely possible by the LiDARs only.

The Visual SLAM (V-SLAM) has matured over the years, particularly in the automotive
industry. The V-SLAM system has been favored in the automotive sector because of the need
for high precision in the localization in the narrow streets but the question "Do we need SLAM
for the maritime vessels?" needs to be answered as the vessels operate mostly in the open water
and the approximate position from the GPS is enough to localize and navigate. The answer to
this question is Yes as we need such a system because when the vessel arrives at the harbor or
passes under the bridge, the need for the exact increases because the position from the GPS is
not reliable in such scenarios. Now, the second question is "Can we use the already developed
SLAM systems on the vessels?". The most common SLAM approaches can not be applied to
maritime vessels directly because of the following challenges.

• The dynamic sea surface is one of the biggest challenges. The ego-vessel always stays
in motion because of this non-rigid water surface and makes the problem from the con-
strained planar surface problem to the open 3D space problem. Also, in the keypoint
based V-SLAM system, the keypoints identified on the sea can’t be considered landmarks
or unique keypoints because of the water dynamics.

• The limited visibility of the far-located structures presents the next challenge. When
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the ego-vessel is far from the harbor, the sky, and the sea dominate the image, and the
buildings, harbor, etc. have a very small coverage in the image view. The identification
and tracking of the keypoints become more complicated because of the limited resolution
of the camera.

The above challenges are the tip of the iceberg that the maritime vessel has to overcome.
Apart from the mentioned challenges, the identification and the tracking of other boats are also
equally important because they are not only potential obstacles that the ego-vehicle can collide
with but they can also bias the ego-motion estimation.

1.2 Contributions

I developed a perception system for maritime vehicles, called Ferry-SLAM that does not only
include a VO subsystem, but also a subsystem for creating representations of the environment
from single stereo image pairs. In this system, I proposed and developed multiple innovative
methods and techniques related to scene representation, object detection, and motion estimation,
and a few of them are listed below.

• Motion estimation:

– Masking of the image: I introduced a masking strategy that can be used to
highlight the areas of the images that should be avoided for the generation of the
keypoints.

– Predictive Keypoint Matching: Instead of using the conventional way of finding
the correspondences of the keypoints in one step, I used predictive keypoint matching
to reduce the chances of the occurrences of the outliers.

– Rotation from far areas: I proved that the 2D motion of the distant far regions
in the image happens only due to the rotation and then I derived the expressions
to compute the rotation from the distant far regions and proposed three different
techniques to benefit from this principle.

– Profile-based rotation estimation: It is one of the novel techniques I developed
to estimate the rotation from far areas. It uses depth information to prepare the
image signal and then estimates the change of the yaw angle between two camera
frames.

• Scene representation and object detection:

– Fusion of semantic segmentation and 3D plane fitting: I developed a method
to extract the ground plane using an adaptive 3D plane fitting algorithm and fused the
3D plane information with the semantic labels generated from two different semantic
segmentation networks to perceive the maritime environment.

– Detection of upright and horizontal structures: I also proposed an algorithm
that distinguishes the upright and horizontal structures using the disparity data only.
It is another method to perceive the environment and to find the corridor in which
the maritime vessel can freely operate.

– Bird’s Eye View (BEV)s for the navigation: Instead of using the 3D point
clouds, I used the BEVs to represent the 3D scene in 2D without losing the most
important information that is required for the navigation.
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• Interactive sequencer: I built an interactive sequencer (dataset handler) that is very
useful for the debugging of any CV based application. It handles multiple types of datasets
in the background and provides a Graphical User Interface (GUI) for the interaction with
the sequencer and the application.

1.3 Outline of the thesis

The work done in this project is split into 6 parts of the thesis. Part I introduces the objective
and motivation of this project as well as gives an overview of my contributions to it.

Part II deals with the revision of the fundamentals required for the project and discusses
the requirements to develop the Ferry-SLAM system such as the dataset to test the system. In
chapter 2, I have explained the geometrical concepts for the Computer Vision (CV). It includes
the pinhole camera model, an introduction to the camera calibration matrices, the stereo camera,
etc. In chapter 3, the fundamental concepts required for motion estimation such as scene flow,
Visual Odometry (VO), keypoint matching algorithms, etc. are presented. Finally, in chapter 4,
I am talking about the KITTI dataset and my own dataset that I recorded for the development
of the Ferry-SLAM system.

In Part III, I gave an overview of the Ferry-SLAM followed by its modules required for
maritime scene perception. In chapter 5, I have presented the whole architecture of the Ferry-

SLAM system. It includes the modules responsible for scene perception, scene representation,
and ego-motion estimation. In chapter 6, I presented the features of the tool that I developed
for the smooth development of the system. It includes a sequencer that handles the dataset and
a GUI. In chapter 7, two different semantic segmentation-based networks have been discussed
along with the geometry-based ground plane identifier such that their information can be fused
together to perceive the scene. In chapter 8, another method to perceive the scene has been
presented that distinguishes different structures based on their disparity profiles. In chapter
9, I have explained the BEV and its importance in representing the scene and highlighted its
suitability for navigation.

Part IV explains the ego-motion estimation sub-system and its components in detail. In
chapter 10, I provided an overview of its modules. In chapter 11, an overview of different
methods to predict the pose is given and its importance and implementation in my project
have been highlighted. In chapter 12, I explained the strategy to generate the keypoints in the
image followed by the algorithm to find the correspondences of the keypoints in chapter 13.
In chapter 14, I explained the principle behind the estimation of the rotation from far-away
regions and the derivations involved. I also presented three different techniques to estimate the
2D motion of distant far regions followed by the estimation of the rotation. In chapter 15, I
talked about the strategy to initialize the system and the optimizer used to estimate the motion
from the correspondences. In chapter 16, I proposed an idea for future work that can make the
ego-motion estimation sub-system more robust and stable with respect to the outliers in the
correspondences.

Part V deals with the experiments and the results. In chapter 17, I analyzed the ego-motion
estimator and checked if some reconfigurations are required in the system or not, and in chapter
18, I plotted the trajectory generated using the ego-motion estimator and commented on the
results.

In part VI, I will conclude the thesis with the conclusion (see chapter 19, p.163) and present
the work that needs be to done to continue the project in the future (see chapter 20, p.165).
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Theoretical Background on
Geometric Computer Vision

Contents

2.1 Pose definition and notation . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Perspective camera model . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Stereo Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

The Geometric Computer Vision (CV) is a sub-domain of CV that deals with the intricate
spatial characteristics embedded within the visual data. This chapter revises the fundamental
concepts required to understand the core modules of the Ferry-SLAM system. It includes the
definition and notation of the pose, the camera model, the calibration parameters of a monocular
camera followed by the introduction to the stereo camera, and the stereo-matching algorithm.

2.1 Pose definition and notation

The main objective of any Visual Odometry (VO) is to recover the path incrementally, pose
after pose, therefore, it is imperative to talk about the definition of the pose, and the notations
used for the pose in this project before going any further. The pose represents the position and
orientation of any object or any body (usually in 3 dimensions). The pose is always measured
with respect to (w.r.t.) some reference frame and therefore, the pose of any object can also be
referred to as the relative pose (pose relative to some reference frame). In CV and robotics,
the absolute pose term is also used to see the pose of the camera attached to a body w.r.t some
static or World Coordinate Frame (WCF). The WCF is static and doesn’t change over time.
In most of the applications, the initial pose of the camera (the pose of the camera before the
algorithm runs) is treated as the static/WCF and the objective of the algorithm becomes to

9
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estimate the absolute pose of the camera at any instant w.r.t the initial/WCF. I followed the
same terminology and assumed that the initial reference frame of the camera is the WCF.

As I stated before, the pose is composed of the position and the orientation. I used the
Cartesian coordinates to represent the position and the Euler angles to represent the orientation.
Euler angles represent the orientation of a body using three angles only. The use of the rotation
matrix during the computations is more convenient than the Euler angles because of their unique
properties such as rotation matrices can be used as operators to perform the transformations.
In the project, I defined the pose as a homogenous transformation matrix (T) of size 4× 4. It is
composed of the rotation matrix R of size 3× 3 and the translation vector t⃗ of size 3× 1.

T =

[

R t⃗
03×1 11×1

]

(2.1)

Let p⃗k = [xk, yk, zk]T be a 3D point w.r.t some frame reference frame k, Ti
k be the transformation

matrix that transforms from reference frame k to another reference frame i then the same point
p⃗k w.r.t the reference frame i (p⃗i) can be computed using the transformation matrix Ti

k.

[

p⃗i
1

]

= Ti
k

[

p⃗k
1

]

p⃗i = Ri
kp⃗k + t⃗ik

(2.2)

2.1.1 Conversion of the relative pose to the absolute pose

The relative poses are very helpful but we are mostly interested in the absolute pose of the ego-
vehicle with respect to the initial reference frame to generate the trajectory. Therefore, these
relative poses may need to be mapped into the absolute poses. As I mentioned in the previous
section, I regarded the initial coordinate frame as the WCF which implies that the absolute pose
of the initial coordinate frame w.r.t. the WCF is Identity.

Tw
0 = identity(4)

=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(2.3)

The Tw
0 also represents the absolute pose of the Camera Coordinate Frame (CCF) when the first

frame (t = 0) arrives. If the relative pose Tt
t−1 is transforming the CCF from timestep t − 1

to timestep t, then the inverse of the homogenous transformation matrix need be computed to
compute the absolute pose.

Tt−1
t = inv(Tt

t−1)

=

[

Rt
t−1 t⃗ t

t−1

01×3 11×1

]−1

=

[

Rt T
t−1 −Rt T

t−1 × t⃗ t
t−1

01×3 11×1

]

(2.4)

Finally, the relative pose Tt−1
t is multiplied with the previous absolute pose Tw

t−1 to get the
absolute pose Tw

t at timestep t. This operation can be done recursively.

Tw
t = Tw

0 T0
1T1

2...T
t−2
t−1Tt−1

t (2.5)
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2.2 Perspective camera model

The most common generic model of an intensity camera is the perspective or pinhole model [44].

From Fig. 2.1, let f be the focal length of the camera, P⃗
def
= [Xc, Yc, Zc]

T be the coordinates

of the 3D point w.r.t the CCF, and p⃗
def
= [x, y, z] be the image coordinates of the 3D point P⃗

on the image plane then according to the pinhole model then the 3D point P⃗ can be mapped to
the image coordinate p⃗ using the focal length f only.





x
y
z



 =















f
Xc

Zc

f
Yc
Zc

f















(2.6)

The above equation is non-linear because of the 1/Zc and does not preserve distances between
points (not even up to a common scaling factor) or angles between lines. However, it maps lines
into lines (see section 2.2.4 of [46]). Oftenly, the z coordinate of the image point p⃗ is equal to
the focal length f , therefore, the image point p⃗ can be written as

p⃗ =

[

x
y

]

=









f
Xc

Zc

f
Yc
Zc









(2.7)

Projection Using Homogenous Coordinates: If the world point P⃗ and the image point p⃗
are represented by homogenous vectors then eq. 2.6 can be written in matrix form (see section
6.1 of [22]).









Xc

Yc
Zc
1









−→





fXc

fYc
Zc



 =





f
f

1













Xc

Yc
Zc
1









(2.8)

Let X⃗c
def
= [Xc, Yc, Zc, 1]T and x⃗

def
= [x, y, 1]T be the homogeneous representation of the 3D

point P⃗ and image point p⃗ w.r.t the CCF respectively, and P be the projection matrix then eq.
2.8 can be re-written as

x⃗ =
1

Zc
PX⃗c (2.9)

X

Y

Z

o

p P
O {CCF}

Image Plane

Principal 

point

f

Figure 2.1: The perspective camera model.
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where, P
def
= diag(f, f, 1)[I♣0].

2.3 Camera Parameters

In Structure From Motion or computing the position of objects in space, we need equations
that can link the 3D points from the point to the corresponding pixel coordinates of the object
in the image. If the 3D point is not in the CCF, then it has to be first mapped to the CCF
using the extrinsic parameters and then the 3D point in the CCF can be mapped to the pixel
coordinates using the intrinsic parameters. In the following section, I will discuss these two types
of camera calibration parameters in detail followed by the conversion of the pixel coordinates to
the normalized coordinates.

2.3.1 Intrinsic Parameters

These parameters link the pixel coordinates of an image point with the corresponding 3D coor-
dinates in the CCF or vice-versa. There are three sets of parameters needed to characterize the
optics of the camera (see section 2.4.3 of [46]).

• For perspective projection, it is focal length f ,

• The transformation between camera frame coordinates and pixel coordinates.

• Geometric distortion parameters such as radial distortion.

Principal Point Effect:
Let (px, py) be the coordinates of the principle point o w.r.t the image coordinate system (see

Fig. 2.2), then the point P⃗ can be mapped to the image coordinates.





Xc

Yc
Zc



 −→









f
Xc

Zc
+ px

f
Yc
Zc

+ py









(2.10)

In homogenous coordinates, the above equation is written as









Xc

Yc
Zc
1









−→





fXc + Zcpx
fYc + Zcpy

Zc



 =





f px 0
f py 0

1 0













Xc

Yc
Zc
1









(2.11)

If I assume, there is no geometric distortion and skewness in the image then the intrinsic
parameters can be expressed in the form of a camera calibration matrix called K (see section 6.1
of [22]).

K =





f 0 px
0 f py
0 0 1



 (2.12)

x⃗ =
1

Zc
K

[

I ♣ 0
]

X⃗c (2.13)

Further, there is a possibility of having non-square pixels in most Charged-Couple Device (CCD)
cameras. If image coordinates are measured in pixels, then this has the extra effect of introducing
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o X

Xim

Yim

Y

xo

yo

Figure 2.2: Image (xim, yim) and camera (x, y) coordinate system.

unequal scale factors in each direction. Let mx and my be the number of pixels per unit distance
in the x−axis and y−axis of the image coordinate system, and (xo, yo) be the pixel coordinates
of the principle point o then the camera calibration matrix K also depends on the scaling factors
mx and my.

K =





mx 0 0
0 my 0
0 0 1









f 0 px
0 f py
0 0 1





=





fmx 0 mxpx
0 fmy mypy
0 0 1





=





fx 0 xo
0 fy yo
0 0 1





(2.14)

2.3.2 Extrinsic Parameters

The extrinsic parameters define the pose (position and orientation) of the camera w.r.t some
know frame such as world frame (see section 2.4.2 of [46]).

Let X⃗w
def
= [Xw, Yw, Zw, 1]T be the homogenous coordinates of the 3D point P⃗ w.r.t the

WCF, R be the rotation matrix representing the orientation of the CCF, and c⃗ be the translation
vector that represents the coordinates of the camera center in the WCF, then the point X⃗w w.r.t
WCF can be mapped to the point X⃗c w.r.t the CCF using the rotation matrix R and the
translation vector c⃗ (ref section 6.1 of [22]),

X⃗c =

[

R −Rc⃗
0 1

]









Xw

Yw
Zw
1









(2.15)

The above equation can be reduced to

X⃗c = R

[

I −c⃗
0 1

]

X⃗w (2.16)
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It is often convenient not to make the camera center explicit and instead to represent the world
to image transformation as t⃗.

X⃗c =

[

R t⃗
0 1

]

X⃗w (2.17)

2.3.3 Normalized Image Coordinates

The normalized image coordinates are very useful to refer to the coordinates in CCF as they
make the calculations less confusing and improve the readability. Let x⃗n be the normalized image

coordinates, then the 3D point P⃗
def
= [Xc, Yc, Zc]

T w.r.t the CCF can be converted into the
normalized camera coordinate x⃗n by diving each coordinate with the depth Zc.

x⃗n =









Xc

Zc
Yc
Zc









(2.18)

Let (xo, yo) be the coordinates of the principal point in pixels, fx and fy be the focal length of
the camera in pixels in the x and y direction respectively, then the pixel coordinates (xim, yim)
can also be converted into the normalized coordinate x⃗n.

x⃗n =









xim − xo
fx

yim − yo
fy









(2.19)

2.4 Stereo Camera

In the previous section, I talked about the image formation of a pinhole model-based camera. In
this section, I will be focusing on a stereo camera setup. A stereo camera is a camera system that
consists of two monocular cameras separated by a fixed distance called baseline and generates
an image pair at any given instant of time. The pixel coordinate can not be remapped back to
the world coordinate given only a monocular camera as the depth information is lost during the
projection but in a stereo camera, the world point can be accurately measured using triangulation
or any other method.

b

f

P

Ol Or

cl crxl xr
pl pr

D

Figure 2.3: A stereo camera system.
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2.4.1 Stereo matching for the depth estimation

The stereo cameras are mostly used because of the availability of depth from the stereo images.
The conventional way of generating the depth map from the stereo image is to first rectify
the stereo images such that if an object point can be observed in both images then the pixel
coordinate of the object in the vertical axis of the image remains the same for both images and
only the pixel coordinate in the horizontal axis differs. If the stereo images are not rectified
then their Epipolar geometry ([46]) between the two monocular cameras should be known. The
purpose of performing the image rectification or estimating the Epipolar geometry is to simplify
the process of stereo matching.

Stereo matching is an algorithm to find the correspondence of the pixels from the left image
to the right image of the stereo pair. In the case of the rectified images, the correspondences shall
lie on the same horizontal axis. The stereo-matching algorithm proposed in [24] is one of the
most used and efficient stereo-matching algorithms. In this project, I have used the Semi Global
Block Matching (SGBM) method from the OpenCV based on [25] to estimate the disparity image
from the stereo images for the KITTI data. This algorithm is different from the original as it
matches the blocks and not individual pixels and it doesn’t implement the mutual information
cost function.

In the case of the rectified images, the 2D displacement information for the pixels in the left
and right images can be encoded into 1D (as the pixel coordinate of the correspondence on the
vertical axis of the image is the same), therefore, 1D displacement can be represented by another
array of the same size as the original image. This array is called a disparity map. The value
(also called disparity) at any index in the disparity map tells us the horizontal shift of the pixel
in the left image at the same coordinate.

Let b be the baseline of the stereo setup, f be the focal length, (x, y) be the coordinates
of the regarded pixel in the image, d(x, y) be the disparity of the pixel (x, y), and D(x, y) be
the depth of the pixel (x, y), then the depth D(x, y) can be estimated using the triangulation
method.

D(x, y) =
bf

d(x, y)
(2.20)
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In the preceding section, I primarily discussed the fundamental principles encompassing pose,
monocular cameras, and stereo cameras, all of which constitute the essential groundwork for 3D
Geometry-based Computer Vision (CV). This chapter shifts the focus towards delving into the
theoretical underpinnings of motion estimation. This encompasses motion estimation within
images (referred to as 2D motion estimation) as well as the estimation of 3D motion. The
latter encompasses two facets: the estimation of camera motion and the estimation of motion
pertaining to 3D objects within the scene. These 3D objects could range from individual points
within the 3D space to collections of such points, or even complex 3D structures that can be
defined by such constituent 3D points (take, for instance, a 3D cube). For the scope of this
project, the concentration remains steadfast on the estimation of 2D motion within images and
the 3D motion of the camera itself.

The subsequent sections will introduce an array of concepts inherent to the Ferry-SLAM sys-
tem. These concepts will subsequently be expounded upon in forthcoming chapters, as required.
Among the topics to be covered are Visual Odometry (VO), Optical Flow, Scene Flow, fea-
tures and keypoints, methods for estimating correspondence, and the ultimate pursuit of pose
estimation.

17
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3.1 Image patches, Features, and Keypoints

It is important to talk about the image patches first before the features and the keypoints because
only in rare cases, some 2D points in an image are identifiable by themselves. An example of such
a point is the crossing point of two thin lines in an image, or the corner point of a rectangular
object in an image. Since lines and objects are only rarely represented in perfect sharpness
in an image, such mathematical points which are clear concepts in geometry are rarely directly
identifiable in images. Therefore, it makes more sense to speak of image patches first, for instance,
rectangular sets of pixels.

Image patches, similarity, and dissimilarity metrics: The most important property
of an image patch that is useful for motion estimation is that this patch is well-recognizable
and unique in some sense. In order to make the notion of some image patches being ’well
recognizable’ into an operation concept, we need some metric, some measure that expresses
how well two image patches match to each other. The Sum of Squared Differences (SSD) is
one such metric. A well-recognizable image patch is therefore a patch that is very different
from all others in a given image, given a dissimilarity metric such as the SSD.

Keypoints: Keypoints are well-identifiable mathematical points that are associated with
an image. They are always associated with an image patch. Keypoints always have a pair
of 2D image coordinates, but whether these coordinates are integer-valued or real-valued is
a design option. Very often (but not always) keypoints are simply defined as the center of
a sufficiently prominent image patch. As they are mathematical points, keypoints live in
the domain of geometrical entities and allow for geometric CV algorithms, whereas patches
live in the domain of image signals, most often in sampled, thus discrete (non-continuous)
images.

Features: According to usual dictionary definitions, a feature is a distinctive attribute or
aspect of something. In the context of CV, this term is very often (mis)used to express a
distinctive part of an image that is often used for establishing point-to-point (most often:
2D-point-to-2D-point) correspondences in motion analysis or used to characterize an object
by a set of such distinctive visual parts. In the CV literature, the term ’feature’ is very
often used for the combination of a descriptor computed from some image patch and a
keypoint associated with this patch.

Often used feature operators (detectors, keypoints, and descriptors)

A review of different features and keypoints is given in [15] which I have summarised here. The
most common types of features and the keypoints used in the V-SLAM are listed below.

• SIFT: [31] proposed a Scale Invariant Feature Transform (SIFT) algorithm that can ex-
tract the unique keypoints and their descriptors from the image. These features are scale,
rotation, and the affine invariant. This feature extractor is relatively slower than other
methods because it computes the difference of Gaussians at different pyramid levels of the
image.

• SURF: The Speeded Up Robust Features (SURF) detector ([3]) is similar to the SIFT
feature detector but it uses the Hessian matrix to find the features. It is computationally
faster than the SIFT feature detector.

• ORB: The Oriented Fast and Rotated Brief (ORB) algorithm ([39] combines the speed of
the Fast (Features from Accelerated Segment Test) features ([38]) and robustness of the
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BRIEF (Binary Robust Independent Elementary Features) descriptors ([9]). The features
are rotation invariant but they can be turned into scale invariant with the help of image
pyramids.

• Harris Corners: The Harris corners ([21]) are the keypoints or the detected corners in
the image that have gradient variations in different directions around the regarded pixel.

• Good Features to Track (GFTT): The GFTT keypoints ([43]) is the improved version
of the Harris corners in terms of the simplicity and robustness. The algorithm computes
the minimum Eigenvalue of the structure tensor around the pixel and checks the candidacy
of the pixel to be a keypoint. Pixels with high Eignevalues correspond to areas with strong
intensity variations and hence, indicate potential keypoints.

3.2 Matching and Correspondences

As mentioned before, the correspondence estimation or the keypoint-to-keypoint matching is
one of the steps in the geometry-based VO approach. To estimate the motion between two or
more images, we need to find the correspondences of the keypoints between two images. The
correspondence problem can be split into two sub-problems. First, we need a search technique
that can search for the keypoint or patch from one image in the second image ([16]). Also, we
need an error metric that can provide a measure to check if the keypoint in the second image
is the correspondence of the keypoint in the first image. For example, if we have a patch in
the first image and we want to find where this patch is located in the second image, we try to
translate the first patch on the second patch and calculate the error for each translation. The
translation with the minimum error may be the potential correspondence. This scenario is an
example of translation alignment. Before diving into different corresponding algorithms, let us
look at the error metrics that are most common in the literature and used very frequently by
the corresponding estimation algorithms.

3.2.1 Error Metrics

Let i be an index of the pixel coordinate xi, Io(xi) and I1(xi) be the template image and the
reference image containing the pixel coordinate xi respectively, u = (∂u, ∂v) be the shift of the
template image Io(xi) w.r.t the reference image I1(xi), ei be the residual error for the pixel
coordinate xi, then the residual error ei can be computed by taking the difference between the
shifted template image Io(xi + u) and the reference image I1(xi).

ei = Io(xi + u)− It(xi) (3.1)

Let E be an error metric and ρ(xi) be a function of residual error ei, then the error metric E
can be computed using the following equation.

E =
∑

i

ρ(Io(xi + u)− Ii(xi))

=
∑

i

ρ(ei)
(3.2)
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Sum of Squared Differences (SSD)

It is the summation of the square of the residual error for each corresponding pixel of the two
patches.

ESSD(u) =
∑

i

ρSSD(ei) =
∑

i

e2
i =

∑

i

[I1(xi + u)− Io(xi)]2 (3.3)

Sum of Absolute Differences (SAD) or L1 norm

It is fast to compute but not differentiable at the origin so not well suited for gradient descent.

ESAD(u) =
∑

i

ρSAD(ei) =
∑

i

♣ei♣ =
∑

i

♣I1(xi + u)− Io(xi)♣ (3.4)

Weighted (Windowed) SSD

This metric associates a spatially varying per-pixel weight with each of the two images being
matched. It partially or completely down-weight the contributions of certain pixels such as we can
ignore pixels that may lie outside the original image boundaries. Let wo and w1 be the weighted
windows for the template and reference image, then the error metric E can be computed using
the weights and the residual error ei.

EWSSD(u) =
∑

i

wo(xi)w1(xi + u)[I1(xi + u)− Io(xi)]2 =
∑

i

wo(xi)w1(xi + u)e2
i (3.5)

Root Mean Square

If a large range of potential motions is allowed, WSSD (Weighted SSD) can have a bias towards
smaller overlap solutions. To counteract this, the WSSD score can be divided by overlap area to
compute per-pixel (mean) squared pixel error.

ERMS =
√

EWSSD/A (3.6)

where area A is

A =
∑

i

wo(xi)w1(xi + u) (3.7)

3.2.2 Matching algorithms

There are different algorithms that can be used to find the correspondences of the keypoints
from one image to another. These algorithms can be categorized into three categories: (1) Block
Matching (BM), (2) phase correlation (PhC) based matching, and (3) Differential matching.

Block matching

In Block Matching (BM), the basic idea is to compare a region (or block) of pixels in one image
(called the reference image) with corresponding regions in another image (called the target image)
to find the best match ([16]). The "best match" is typically determined by minimizing an error
metric, such as the SSD, between the reference block and candidate blocks in the target image.
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Phase correlation-based matching

The phase correlation (PhC)-based correspondence estimation is a powerful technique that lever-
ages frequency domain information to accurately estimate motion or displacement between im-
ages ([34]). It relies on the Fourier Transform and exploits the phase information of the frequency
domain representation of images. It is less sensitive to changes in lighting, contrast, and noise
compared to direct pixel-based methods.

Differential matching

The most popular differential matcher is the Lukas-Kanade (LK) based differential tracker pro-
posed in [32]. The principle of the LK matcher is to select a rectangular window (usually around
a keypoint) from an image (say image A) and find the corresponding window in another image
(say image B). Instead of searching the reference window from image A in the whole of image
B as in template matching, it restricts the search to a predefined search area. The search area
is defined by its center which is the initial best guess of the correspondence window and the
bounds of the search area (length and width in case of rectangular search area). Both methods
BM and LK use a loss function and compute the gradient of this loss function to determine the
direction in which the corresponding window can slide but unlike the BM method that slides
the corresponding window in integer pixel increments, the LK matcher moves the corresponding
window in fractional pixel increments and because of this reason, it is put in the category of
differential matching algorithms. The search stops when the stopping criterion satisfied which is
minimizing a given loss function, for example, SSD, or the maximum number of iterations. In the
LK, the search window size is much smaller than the BM but it is able to provide a resolution of
fractions of a pixel. It is reasonable to assume that LK matcher provides a resolution of 1/10th

of a pixel.

3.3 Optical flow and scene flow

Optical flow [4] is another CV technique that represents the pixel-level motion of the objects
between consecutive image frames from the camera. In simple words, it determines the 2D
motion of pixels from one frame to another. The optical flow is based on the Brightness Constancy
Constraint which implies that the intensity of the corresponding pixel values remains the same
in the two images. Optical flow provides a lot of information about the scene and the camera and
this technique can be used in ego-motion analysis, object tracking, and structure from motion.

Scene flow is similar to the optical flow but it measures the 3D motion of the pixels. In the
presence of the depth map, the pixel coordinates can be converted into 3D Cartesian coordinates,
and the estimation of the change of the 3D coordinates of the pixel from one frame to another is
called scene flow. The scene flow can be computed from the 3D point clouds directly as in [36].
They constrained the scene flow using graph Laplacian such that the points in a local region
moved rigidly and all the points in the source point cloud moved "as-rigid-as-possible".

3.4 Perspective-n-Point (PnP) based motion estimation

PnP1 is a technique used to measure the motion between two frames using the correspondences
of the keypoints. It first projects the keypoint from the image space to the 3D space and

1OpenCV library implements the PnP problem in different ways and the link to the tutorial is here.
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then reprojects the 3D on the other image. Finally, it optimizes the motion by minimizing the
reprojection error ([17]).

3.5 Ego-motion Estimation and Visual Odometry

Ego-motion estimation, or self-motion estimation, refers to the self-motion of the camera or
vehicle, as opposed to the motion of other objects in the scene. The VO is a technique in the
CV and robotics to estimate the motion of the camera by analyzing the images from the camera
as it moves in the scene. The objective of the VO is to estimate the pose of the camera build
a trajectory and create a 3D scene using the pose information if needed. The main principle
behind the VO is to measure the 2D displacement of the pixels (also referred to as Optical Flow)
in the image and then compute the pose change using the optical flow. The VO used to be only
geometry based but since the last decade, the learning-based VO has also emerged.

3.5.1 Geometry-based Visual Odometry

In the geometry-based VO, we extract unique features or keypoints (see section 3.1 for the differ-
ence between the keypoints and the features) and establish the correspondences between them.
Based on these correspondences the relative camera motion is estimated. Two main categories of
the geometry-based VO are: (a) feature-based or indirect methods and (b) appearance-based or
direct methods. In the features-based approach, a few features from the whole image are selected
and matched between the images, and in the appearance-based approach, the pixel intensities
of the image are considered. Both of these methods can be further categorized into dense and
sparse methods. In the dense method, all the pixels in the image are used, whereas, in the sparse
method, only a smaller set of pixels are used. The keypoints-based method comes under the
category of the sparse-indirect method as it uses selected pixels from the images and matches
them by minimizing some error metric.

3.5.2 Learning-based Visual Odometry

Learning-based VO is an emerging technique that uses deep neural networks to learn the patterns
from the visual data to estimate the camera motion and doesn’t rely on geometric calculations
as in the geometry-based methods ([30]).

3.6 Keyframing

Keyframing refers to the process of selecting specific frames or time instances from a sequence of
sensor data (such as images or sensor readings) that are used as reference points for estimating
the motion or movement of a camera or vehicle (ego-motion). These selected frames are called
keyframes. Keyframing is used to simplify and optimize the computation of ego-motion. Instead
of processing every single frame in a sequence, which could be computationally expensive and
unnecessary, keyframes are strategically chosen frames that represent significant changes in the
environment or camera motion.
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3.7 Independent Moving Objects (IMOs)

Any kind of VO or V-SLAM system is always designed for a mobile platform that can move in
a constrained or in open space environment. Irrespective of the operating environment, there
are always some scenarios in which there could be another potential object that the ego-vehicle
should avoid at all costs. If these objects are moving then they are referred as IMOs. It is
important to identify the moving objects before the estimation of the ego-motion to avoid the
computation of the relative motion between camera and the moving objects. If the keypoints fall
on such moving objects, then the optical/scene flow generated from these keypoints will create
a bias in the ego-motion estimation.
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It is very important to validate the ego-motion system by comparing the results with the
ground truth. This is where datasets come in handy as they provide the data from real scenarios
with ground truth information. On these data, I can run my system and check how much the
results deviate from reality or the ground truth. The ground truth available from these data sets
comes from very precise calibration and testing. It is quite possible that this ground truth is not
the actual truth ([6]) but it is not far from it either.

4.1 KITTI Dataset

KITTI is one of the most popular datasets for 3D scene flow estimation ([19]) with an application
for mobile robotics and autonomous driving. I have used the KITTI dataset and tested the
system on different KITTI sequences. There are 22 sequences available in the KITTI dataset;
the following information is provided for each sequence.

• Images: The dataset provides the color and grayscale rectified stereo images.

• Timestamps: The relative timestamps are also provided for each corresponding frame in
the sequence. The timestamp for the first stereo frame is 0.0.

• Camera Params: The projection matrix for all the cameras with respect to the left
camera.

Apart from the above information, the absolute pose for each timestamp is also given for
11 sequences out of the 22 sequences. This pose is relative with respect to the first frame and
measured in the left Camera Coordinate Frame (CCF).
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Table 4.1: Special cases from the KITTI dataset

Seq. Start frame End frame Feature

00 0 86 straight line motion with moving objects
00 87 130 turning around the corner
00 220 400 straight line motion without moving objects
00 530 560 stationary camera
00 4000 4350 curve with trees on right side
01 220 860 highway with moving cars and distant buildings
02 1060 1290 vehicle following on street
05 2330 2390 waiting while cars are crossing
06 0 900 loop closure
12 500 560 highway without vehicles and only trees
14 110 510 square loop closure

4.1.1 Case Scenarios

The robustness of any system can be tested by checking its performance in the edge cases of
its applications. These edge cases are those scenarios in which the system is very vulnerable to
failures and therefore, these cases should be more focused. The potential edge cases from the
KITTI dataset are highlighted in table 4.1. It is important for the system to handle all these
cases without running into a state of failure.

4.2 Dataset Generation using ZED Camera

The KITTI dataset has a huge diversity in the sequences but they are not recorded from the
maritime context. There are no water and fellow boats in any of the KITTI sequences at all
which are very crucial for the testing of the proposed system, therefore, I also created some
sequences using the ZED camera (see chapter D, p.183). These sequences are recorded in the
canal of Trondheim, Norway. These sequences are generated using three different setups recorded
on two different days1. Unlike the KITTI dataset, the ground truth is not available for these
sequences. These setups are discussed in the following sections.

1The description of the recorded dataset can be obtained using this link.

Table 4.2: Setup settings for different sequences

Sequence
Setup Settings

Date Resolution FPS Compression Type

Z1-FT-MB-SEQ-1 14-03-2023 2208x1242 15 H264-LOSSY
Z1-FT-MB-SEQ-2 14-03-2023 2208x1242 15 H264-LOSSY
Z1-HH-MB-SEQ-1 14-03-2023 2208x1242 15 H264-LOSSY
Z1-HH-MB-SEQ-2 14-03-2023 2208x1242 15 H264-LOSSY
Z2-FM-EB-SEQ-1 10-05-2023 1920x1080 15 LOSELESS
Z2-FM-EB-SEQ-2 10-05-2023 1920x1080 15 LOSELESS
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4.2.1 Setup Z1-FT-MB

In this setup, a single ZED camera model is taped to the top of a small motor boat and the
sequences were recorded using the ZED Explorer at an FPS of 15 with a resolution of 2208x1242
using H264-LOSSY compression. In this setup, different kinds of sequences were recorded. In
sequence Z1-FT-MB-SEQ-1, the boat drove towards the bridge, took a 180-degree turn, and
crossed from where it started. In the other sequence Z1-FT-MB-SEQ-2, the boat was moving
slowly and the camera was facing the sun directly so the exposure was reduced for the recording.

4.2.2 Setup Z1-HH-MB

In this setup, a single ZED camera model was hand-held and faced toward the back of the boat.
The sequences recorded in this setup were Z1-HH-MB-SEQ-1, Z1-HH-MB-SEQ-2, etc. In Z1-
HH-MB-SEQ-1, the boat was moving away from the shore at high speed. Because of the high
waves and high speed of the motorboat, the camera was very unstable and there were a lot of
jerks in the sequence. However, in Z1-HH-MB-SEQ-2, the boat was entering the Fjord from the
open waters calmly.

4.2.3 Setup: Z2-FM-EB

Unlike the previous two setups, two ZED cameras were used to record the sequences. One ZED
1 camera was mounted on the port-bow side of the Milliampere-2. and the other ZED camera
(ZED 2) was mounted on the starboard bow of the boat. Both of the cameras were front looking
with a lateral displacement of approximately 1.89 meters (see fig. 4.1). In one of the sequences
Z2-FM-EB-SEQ-1, the milliampere-2 is docking, and in the other sequence Z2-FM-EB-SEQ-2,
the milliampere-2 is docked and maintaining its position with the help of the dynamic positioning
system. In sequence Z2-FM-EB-SEQ-2, the cameras are looking towards the opposite side of the
dock and another motorboat comes into the view of the camera and performed some maneuvers.

~1.89 m

Figure 4.1: Z2-FM-EB setup on MilliAmpere-2. Graphics are overlaid on images taken
from [7].
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(a) Seq. Z1-FT-MB-SEQ-1 (b) Seq. Z1-FT-MB-SEQ-2 (c) Seq. Z1-HH-MB-SEQ-1

(d) Seq. Z1-HH-MB-SEQ-2 (e) Seq. Z2-FM-EB-SEQ-1 (f) Seq. Z2-FM-EB-SEQ-2

Figure 4.2: The images taken from the left camera of the ZED from the different se-
quences.



Part III

The Ferry-SLAM System and its
Modules and Components
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The architecture of the Ferry-SLAM

System
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Ferry-SLAM is a system designed to address three major problems related to the Computer
Vision (CV) for maritime applications: (1) 3D Scene Analysis, (2) Object Detection, and (3)
Ego-motion Estimation.

Figure 5.1: The overall architecture of the Ferry-SLAM system.
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Figure 5.1 shows the main modules of the Ferry-SLAM and shows how the input stereo data
flows from the sequencer through the Ferry-SLAM and finally visualized by the Graphical User
Interface (GUI). The sequencer and the GUI are the helping tools that are separated from the
main Ferry-SLAM system.

As mentioned before, the Ferry-SLAM system consists of 3 sub-systems that can run together
or independently. Each sub-system will be explained in detail in the later chapters but a brief
review is given in the following sections.

5.1 3D scene analysis

This module consists of building a 3D representation of the scene, which is a combination of both
geometry and semantics such that the 3D representation can be used for situation awareness. In
the present work, this 3D scene analysis is done on the basis of a single stereo pair but in the
future, it can be extended to explicitly use the temporal continuity of the scene, i.e., exploitation
of the temporal correlations.

The 3D scene analysis consists of transforming the point cloud into a set of surfaces using
Machine Learning based semantic segmentation networks and the plane fitting using geometry-
based methods (see chapter 7, p.39). One of the semantic networks is Aquanet which can segment
the water plane and also the other objects such as boats, buildings, etc., and the other network is
YOLO which is used to segment the objects (boats, persons, etc.) from the environment. From
different surfaces, the navigable area (the water surface in the case of maritime applications) can
be detected which is of the most interest for the navigation of the maritime vehicle.

Besides the above-mentioned methods to find the surfaces, there is another approach that
can be used to find the horizontal and upright surfaces using the disparity data only (see chapter

Figure 5.2: Input color image

Figure 5.3: Semantic labeling of the pix-
els

Figure 5.4: Depth’s BEV
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8, p.55). The visualization of the scene is done by the projection of the selected 3D data on a
horizontal plane also referred to as the Bird’s Eye View (BEV). In BEV, the 3D scene is looked
at from the top such that only the horizontal surfaces and the boundaries of the object appear
(see chapter 9, p.63). BEV is an important element of the 3D Scene Analysis sub-system as it
provides both an intuitively understandable visual representation as well as provides a map-like
structure that can be evolved into a real local map. For the BEV, it is possible to base it on
the semantic labels, as well as on the upright/horizontal pixel classification. For instance, in a
semantic-colored BEV map (see figure 5.4), all the holes can be filled and the uncertain areas can
be correctly flagged, but I did not work on this due to the lack of time but it can be addressed
in future work.

5.2 Object Detection

There are different kinds of obstacles that a maritime vessel has to avoid during the operation.
These obstacles can either be static (walls, docks, etc) or dynamic/moving (boats, persons, etc).
I will use the term ’obstacle detection for the static obstacles and the term ’object detection’
for the potentially moving obstacles. As the methods used in this project work on single stereo
pairs, decisions on whether an object actually moves cannot be made, and I defer such research
to future work.

This module also uses the results from the semantic networks (Aquanet and YOLO) for
the identification of all the potential moving obstacles and fuses the semantic labels with the
geometric indicators (whether the surface is upright or horizontal) to detect the static obstacles.
This module is lesser developed than the previous module (3D scene analysis) due to the limited
time.

The module uses Machine Learning and geometry-based techniques to solve this problem. It
accepts a color image and the corresponding depth data and creates a labeled mask that labels
the water (free zone) and the fellow boats (see chapter 7, p.39). Every point in the mask that is
not labeled as water is a potential object and shall be avoided.

5.3 Ego-motion estimation

This sub-system is responsible for the estimation of the ego-motion using the keypoints-based
pose estimation approach (see section 3.5.1, p.22). In this approach, the keypoints are detected
in one image and their correspondences are found in the other image, and using these correspon-
dences, the ego-motion is estimated. The architecture of this sub-system has been discussed in
chapter 10.
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Experimental Framework used in the

Ferry-SLAM project
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The handling of the data coming from the camera or the dataset and the visualization of
the intermediate results is as important as developing the system as it simplifies the debugging
process and can help to identify the edge cases where the system fails. The intermediate results
could be images, graphs, or hyperparameter values. The system for Visual Odometry (VO) or
Visual SLAM (V-SLAM) is always tested against some dataset and it becomes necessary to have
direct control over the dataset while processing it instead of directly feeding the data to the
pipeline. In this chapter, I will talk about a framework that handles the dataset as well as the
visualization of the intermediate results. It consists of two modules: (1) a sequencer and (2) a
Graphical User Interface (GUI). The former handles the dataset while the latter is responsible
for the interactive communication between the sequencer and the Ferry-SLAM system and also
handles the visualization. Figure 5.1 shows how the sequencer reads the images from the stereo
camera or the stereo images dataset and passes it to the Ferry-SLAM and the GUI interacts with
the sequencer and visualizes the intermediate results.

6.1 Sequencer: A dataset handling tool

Sequencer is a concept developed at NTNU under the supervision of Professor Rudolf Mester
to handle the dataset more efficiently w.r.t the debugging of the system and to overcome the
limitations of the traditional way of dataset handling. In this section, I will first talk about
the classical way to handle the dataset followed by the original idea of the sequencer and my
contributions to it.
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6.1.1 The traditional way of dataset handling

In an image-based dataset, the traditional approach is to provide the file path in the code, load
the images one by one, or load all the images in the buffer, and process them sequentially. The
intermediate results are visualized using some independent libraries only. This approach is really
fast and simple to implement but it becomes useless when the system breaks in the middle of the
dataset while handling some edge cases. The only way to reproduce the outcome of the system
is to run it again until it reaches that point again or change the code directly, to begin with the
problematic frame in the dataset. Both of these solutions are very inefficient and consume a lot
of time while debugging. Also, the need to jump between the frames arises during the tuning of
the hyperparameters of the system which can not be done dynamically.

6.1.2 Sequencer 1.0: Command-based dataset handler

The original sequencer (a tool to handle the dataset and visualize the results) was developed
by one of the previous students supervised by Prof. Rudolf Mester. This tool was a command-
based application. The user can enter the path to the dataset in the terminal and can jump to
the next frame, previous frame, or any arbitrary frame using the terminal. It also provides the
functionality to convert datasets in video format to images. This sequencer is very fast because
of low-level data handling and visualization using the core libraries, however, it was restricted to
the terminal only. The functionalities were also limited to jumping between frames only. In this
project, I needed more control over the dataset for faster debugging and a user-friendly interface.
This motivation led me to develop the next version of the sequencer called Sequencer 2.0.

6.1.3 Sequencer 2.0

Sequencer 2.0 (also referred to as sequencer in this project) offers more features than sequencer
1.0 in terms of the types of the dataset as well as the control over the frames which are mentioned
below.

Acceptance of the ZED dataset

The data recorded using the ZED camera is always saved in its own dataset format and to access
the frames, their functions from their SDK have to be used. The sequencer provides a wrapper
for the SDK such that the user can access the ZED dataset without looking at the SDK API.

Accessing frames by filename and frame number

As with any standard image dataset, it is expected that the file names of the image should have a
certain pattern. For example, the images in the KITTI dataset have the "00XXXX.png" pattern
in their names, where the "XXXX" is the frame number. The sequencer expects the same or
similar pattern in the file names where the maximum characters are constant (6 in the case of the
KITTI dataset) such that the sequencer can run the files in arbitrary frame jumps (see section
6.1.3), including in reverse order.

Handling more than the image frames

The images are not sufficient for the Ferry-SLAM system as it also needs the intrinsic and the
extrinsic calibration parameters of the camera (see section 2.3, p.12), the timestamps of the
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frames, the pose data for the VO if available. The sequencer accepts this data and store it in
the buffer and returns it as the meta-data corresponding to the particular frame.

Accept control files to jump between frames

As mentioned before, the sequencer needs the filenames to have a certain pattern. This feature
is also used by the control files. The control files are the json files that contain the interested
subsequences in the dataset. These subsequences contain the start frame number and the ending
frame number. When the sequencer reads the control file, it parses the first subsequence jumps
to the starting frame number of the subsequence, and provides the images until the ending frame
number. Once, it reaches the end, it jumps to the second subsequence if available and keeps
repeating the steps until the whole file is parsed.

6.2 Graphical User Interface (GUI)

The motivation to develop a GUI similar to the ZED Explorer (see Fig. 6.1a) that can provide
multiple image windows simultaneously and a controller to jump between the frames easily. The
ZED Explorer is a proprietary application from the Stereo-Labs and can not be interfaced with
the Computer Vision (CV) application. It is limited to only visualization of the dataset generated
using the ZED camera. The GUI is similar to the ZED Explorer but it can be interfaced with the
CV applications for the visualization. it also provides an interactive interface for the sequencer
and other helpful tools to save the intermediate results and much more. The features and the
usage of the GUI are given in appendix E.

(a) GUI for the ZED Explorer. (b) GUI for the sequencer

Figure 6.1: Comparison between the GUI of the ZED Explorer and the sequencer.





C
h

a
p

t
e

r

7
Semantic Segmentation and Water

Surface Recognition

Contents

7.1 Sea segmentation using Aquanet . . . . . . . . . . . . . . . . . . . . . 40
7.2 RANSAC based water segmentation . . . . . . . . . . . . . . . . . . . 42
7.3 Limitations of the proposed plane segmentation algorithms . . . . . . 50
7.4 Object detection using YOLO-v8 . . . . . . . . . . . . . . . . . . . . 50
7.5 Computation of a Semantic Image by Fusion of Different Algorithms 51

In the keypoints-based computer vision pipeline, avoiding the keypoints on the sea surface
and the sky is always preferred for the ego-motion of a maritime vessel. The sea is very dynamic
and keypoints detected on the sea can not be tracked in the next image. Therefore, all kinds
of temporal appearance-based tracking cannot work with such keypoints, and the sky, it is a
textureless region without any depth estimates. In some scenarios, the presence of clouds can be
very useful for estimating the rotation as the clouds come under the category of the far region,
however, they are textureless as well, and detecting and tracking the keypoints accurately could
be another problem. Therefore, the sky can be neglected but neglecting the sea completely is
not a wise solution as it still can be useful to extract other information.

We want to find the orientation of the camera and if we have the water plane, we can also
estimate the orientation of the ego-vehicle relative to this water surface and track this orientation
while the ego-ship is moving. As the water surface is characterized by waves, this orientation
is not exactly constant over a period of time. Furthermore, we need to know the orientation
w.r.t. the water surface since the water surface is the reference plane for producing different
kinds of 2D maps such as the Bird’s Eye View (BEV). Also, if the sea surface is known then the
objects (potentially obstacles) floating on it can be extracted. Therefore, the sea surface should
be handled differently.

Taking these advantages into consideration, I decided to develop strategies that can identify
the water plane. I explored two different types of approaches to solving this problem. My
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first approach is based on the current advancements in the field of Artificial Intelligence (AI).
Machine learning, a sub-field of the AI, has emerged as a potential solution to solve problems
more human likely. Machine learning algorithms are usually trained on huge data and designed
to solve a particular problem. They are mostly considered black boxes because of their lack of
explainability. In the Computer Vision (CV) applications, these machine learning algorithms
usually use the Convolutional Neural Network (NN) ([35]) or the vision-transformers ([12]). The
transformers were mostly have been used in Natural Language Processing related tasks, but in
2020, they were introduced to solve the vision problems, however, the Convolutional NN is still
dominating in the Computer Vision (CV) applications. In maritime applications, the usage of
machine learning is still limited because of the limited dataset, therefore, my second approach is
based on the conventional geometry-based methods to compensate for the lack of advancements
in this domain.

In this chapter, I will first talk about the sea segmentation using Convolution NN and then
I will discuss the Random sample consensus (RANSAC) based plane segmentation algorithm.
The identification of the potential objects on the water is very crucial for collision avoidance and
object tracking, therefore, I will also use another Convolution NN called YOLO-v8 to detect the
boats on the water. Finally, I will discuss the fusion of the results from the different proposed
segmentation algorithms.

7.1 Sea segmentation using Aquanet

In the automotive industry, segmenting the surface on which the vehicle can move is usually
referred to as free space detection problem. For the maritime vessels, this free surface will be the
sea, and segmenting it from the rest of the image is one of the requirements of this project. [40]
proposed a self-supervision-based Fully Convolutional Network (FCN) to segment out the free
space i.e. the roads. For the sea-segmentation, a lot of work already has been done in sea-land
segmentation using the remote sensing images [29], [42], and [11], however, from the V-SLAM’s
application point of view, the network should be able to differentiate the sea based on the frontal
images rather than the top images. I found one Convolution NN called Aquanet ([14]) that was
able to fulfill the requirements of this project which are the ability to segment the sea using the
frontal images as well as the public availability of the network.

7.1.1 Implementation of the Aquanet

[14] proposed a Convolutional NN based network called Aquanet to label each pixel into num_classes
different classes in which num_water_classes belong to the waterbodies and num_other_classes
classes belong to the general bodies such as a person, car, sky etc. This network is trained on the
Atlantis dataset released by the authors in the same paper. I decided to go with this network
because of two reasons.

• Open-source: The network architecture is already provided by the authors along with
the trained weights.

• Focused on Maritime: The labels of the dataset are focused on maritime applications.
The main labels that I was looking for (sea, sky, and boat) were already present in the
dataset and the network can identify them as well.

The implementation of the Aquanet is shown in Fig. 7.1 and represented in algorithm 1. The
Aquanet’s NN takes a network_size size of the color image as an input and outputs a probability
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Figure 7.1: Implementation of Aquanet. The input image is a color image with dimension
H ×W and the output is a single channel label image with the same dimensions.

map corresponding to each label. To use this network in the algorithm, the image was first padded
with zeros (step 3) on the border until the width and height of the image reaches padding_size
pixels. Then, the padded image is downsampled (step 4) to the network’s input size that is
network_size using Pytorch’s implementation of the interpolation function. The interpolation
uses the bi-linear interpolation method with aligned corners. The processed image is passed to
the network (step 5) and the probability map was stored. In the source code of Aquanet, the
authors were using the Upsample function of Pytorch to upsample the probability map to the
same size as the input padded image. This function is deprecated now and it is replaced with
the same interpolate function (step 6) with the same settings. This upsampled probability map
is then reduced to a label image by considering the label with the maximum probability (step
7). It results in a padded label image which was cropped to match the original input size (step
8).

7.1.2 Results and discussion on Aquanet

The processing time to get the label image from the input image is noted to be ≈ 1.8 seconds
when an input_size image is used on an NVIDIA GeForce RTX 3050 Laptop GPU. Figure 7.2
shows the input and the output of the segmentation pipeline mentioned above. The labeled
image (see Fig. 7.2b) is post-processed. The water-bodies labels are replaced with a single label

Algorithm 1 Integration of Aquanet in the pipeline

1 procedure get_semantic_labels(img)

2 model← load_model()

3 padded_img ← pad(img, padding_size)

4 downsampled_img ← interpolate(img, network_size)

5 predictions←model(downsampled_img)

6 upsampled_img ← interpolate(predictions, padding_size)

7 label_img ← argmax(upsampled_img)

8 label_img ← remove_pad(label_img)

9 label_img ←merge_labels(label_img)

10 return label_img
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Table 7.1: Parameters for the Aquanet

Parameter code name Value

Total number of classes num_classes 56
Number of water classes num_water_classes 35
Number of other classes num_other_classes 21

Padding size padding_size 2400
Input image size input_size 1080× 1920

Network’s input size network_size 640× 640

(step 9) and colored in teel, the sky is colored in blue, boats/ships are colored in yellow and the
rest of the labels are colored in gray. It was observed that the Aquanet manages to label water
bodies correctly most of the time but it fails when little or no water is present. Also, the labeling
of boats and ships is not accurate as seen in Fig. 7.2b. The network doesn’t give pixel-level
accuracy but it can give a rough estimate of the different types of objects present.

In conclusion, Aquanet is relevant but not a reliable semantic segmentation network for this
application. Any good and stable network that has the ability to segment the water surface and
the bodies floating on it such as ships, boats, etc., can be used instead.

7.2 RANSAC based water segmentation

The ferries are mostly operated in those water bodies where high waves are very uncommon and
the water surface is mostly stable. This prior knowledge of the environment can be exploited to
test geometry-based methods. The geometry-based methods can fit a plane to the water surface
if a sufficient amount of 3D points that lie on the water surface are given. These 3D points
usually come from the LiDARs or the stereo camera.

[28] uses a RANSAC method (like I also do): In this paper, the authors select three points
randomly from the point cloud and calculate the plane parameters and subsequently try to
enlarge the plane given some thresholds. This method requires about 10 times more computation
time than the constrained Randomised Hough Transform (RHT) method ([27]) that can find the

(a) Input to the segmentation pipeline. (b) Colored label image

Figure 7.2: Input and output of the Aquanet segmentation pipeline. Image taken from
Z2-FM-EB-SEQ-2 sequence is used as an input and the output label image is colored
according to the color coding defined in table 7.2.
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Table 7.2: Color coding of the labels

label name label color color code (BGR)

definitely sea Teal (128, 128, 0)
maybe sea Dark teal (64, 64, 0)

boat Yellow (0, 255, 255)
sky Blue (235, 206, 135)

Other identified objects Gray (127, 127, 127)
Unidentified objects Black (0, 0, 0)

ground plane by applying a coarse prior assumption on the ground plane. In their approach,
they first computed the local surfaces from the 3D point cloud such that each local surface fits
a central point as well as K nearest neighbors to that central point. The large the number
of neighboring points, the larger will be the local surface. Finally, they computed the normal
distance of these local surfaces w.r.t the Camera Coordinate Frame (CCF) and compared them
with the nominal or known ground plane parameters.

The only limitation of their work in my application was the prior knowledge of the plane
parameters. In this project, I didn’t measure the orientation and height of the camera with
respect to the water plane while recording the dataset and therefore, I can not use the constrained
RHT-based approach directly which requires approximate plane parameters. I decided to use
the RANSAC based approach that can find the water plane with minimal prior knowledge i.e.
the approximate location of the water in the 3D point cloud or in the image. I could have used
the RANSAC to find the plane parameters first and then use them with the RHT approach but
I didn’t do that to keep the plane estimation algorithm simple.

In this section, I will talk about the classical RANSAC based plane segmentation and its
shortcomings, and in the next section, I will propose my implementation for the plane segmen-
tation that will be more suitable for maritime applications.

7.2.1 Plane segmentation using RANSAC

The RANSAC based algorithms are very robust to the outliers and able to find the geometry
given the number of inliers is greater than the number of outliers. To fit a water plane in an
open water environment using a raw 3D point cloud. only is not sufficient because of the poor
depth estimates of the far points. To overcome such problems, a large number of iterations or
the predefined boundary of the water plane will be required. The former will consume a lot of
computational time and the latter will require the knowledge of the water plane which we don’t
have. Instead of fitting the whole point cloud, reducing the number of points in the point cloud
by cropping it beforehand can reduce the number of outliers. Therefore, the RANSAC should
be able to find the ground/water plane within a few iterations. The three main steps (see Fig.
7.3) to identify the water plane parameters and to label the pixels in the image that belongs to
the water plane are discussed in detail in the following sections.

7.2.2 Identification of the plane horizon and cropping of the point
cloud

I decided to use the prior knowledge of the horizon of the water plane to crop the raw point
cloud. The horizon of the water plane can be seen as a line in the image such that the water
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Figure 7.3: Flow chart for the RANSAC based water plane fitting.

Table 7.3: Parameters for the plane segmentor

Parameter code name Value

Number of samples ransac_n 3
Maximum number of iterations max_itr 5

Distance threshold dist_th 0.1 meters
Distance rejection threshold height_th 0.1 meters

Angle rejection threshold angle_th 5 degrees

plane can not exist above this horizon line, also referred to as the vanishing line in 3D geometry
([22], p.216). It should be noted that the accuracy of the horizon line is not very important as
the whole purpose of cropping the raw point cloud is to reduce the number of outliers for the
RANSAC. If I do not know the orientation of the camera w.r.t. the water plane which is also
happened to be in this project and required to estimate the horizon line, I can assume the pitch
to be so that the resulting horizon line is safely below the true horizon line. In other words: the
camera looks slightly up. The result of this assumption will be a reduction in the outliers.

As mentioned before, most of the water region will be at the bottom of the image and below
the horizon line, therefore, assuming the camera is parallel to the water plane (pitch is zero), I
decided to crop out the points that lie above the horizon line and use the lower half of the image
for the identification of the plane such that all the points from the point cloud that lie above the
xz plane of the CCF are removed. It should be noted that this assumption of pitch is valid only
for this project and should be tuned depending on the dataset or the environment.

7.2.3 Plane fitting and identification of the plane parameters

I decided to use Open3D’s implementation for the plane segmentation1 ([47]). The parameters
used by this function are given in the table 7.3. Let a, b, c, and d be the plane parameters then
the output of the plane fitting algorithm is the plane equation in the CCF.

ax+ by + cz + d = 0 (7.1)

Let n⃗ be the unit normal vector of the plane and d⊥ be the perpendicular distance between
the origin of the CCF and the fitted plane then the plane parameters can be used to compute

1The tutorial for this function is given here
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the normal vector n⃗ and the perpendicular distance d⊥.

n⃗ =





n⃗x
n⃗y
n⃗z





=
1√

a2 + b2 + c2





a
b
c





d⊥ =
d√

a2 + b2 + c2

(7.2)

7.2.4 Pitch estimation from the plane parameters

The identification of the plane w.r.t. the camera can also help us to identify the pitch and the
roll of the camera w.r.t. the identified plane. As a reminder, the z − axis and y − axis of the
CCF are pointing forwards and downwards respectively. First, the normal vector of the plane
(n⃗) will be projected on the yz plane of the CCF (see Fig. 7.4).

n⃗yz =





0
n⃗y
n⃗z



 (7.3)

Let u⃗z be the unit vector in the z-direction of the CCF and α be the angle between the u⃗z and
the n⃗yz, then the angle α can be computed by taking the inverse of the cosine of the normalized
projection of the n⃗yz on the u⃗z.

α = arccos

(

n⃗yz · u⃗z
∥n⃗yz∥∥u⃗z∥

)

(7.4)

Let θp be the pitch angle of the plane w.r.t. the CCF, then it can be computed from the angle
α.

θp =
π

2
− α (7.5)

It should be noted that the pitch angle θp could have been computed by taking the projection
of the n⃗yz on the unit vector in the y-direction of the CCF directly but I choose the unit vector
in z-direction because the Numpy’s implementation for the inverse of the cosine2 returns the
angle between [0, 180◦] and the pitch angle varies between [−90◦, 90◦]. Therefore, to correct this
mapping, I calculated the angle w.r.t. the unit vector in z-direction u⃗z and subtracted it from
the 90◦ such that the final pitch angle θp varies between [−90◦, 90◦]. Finally, the pitch angle θ
of the camera w.r.t. the plane is computed by taking the inverse of the rotation.

θ = −θp
= α− π

2

(7.6)

2The API reference for the NUMPY function to compute the inverse of the cosine is given here.
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Figure 7.4: Projection of plane normal vector on yz plane of the CCF

7.2.5 Identification of all plane inliers and pixel labeling

As mentioned before, the criteria to crop the point cloud is very loose and it is possible that the
actual plane may lie beyond the used horizon line if the camera is tilted towards the sea surface
and therefore, the inliers found by the RANSAC are not complete. To overcome this issue, the
distance (dp) of every point in the raw point cloud is estimated from the estimated plane, and if
this point lies within the threshold range (dist_th) then it will be considered as an inlier.

dp = n̂





xp
yp
zp



 + d⊥ (7.7)

where xp, yp, and zp represent the 3D point from the point cloud. As dp is not always positive,
it is possible to differentiate if the pixels are on the plane, above the plane, or below the plane.

labelp =











ABOV E_PLANE, if dp < −dth
ON_PLANE, if ♣dp♣ ≤ dth
BELOW_PLANE, if dp > dth

(7.8)

Using eq. 7.8, I have labelled the 3D points according to their distances from the plane. I have
used the same threshold value as RANSAC in-plane threshold (dth) to determine if the point is
an inlier or not.

7.2.6 Results and comments on RANSAC based plane segmentation

The above three steps were implemented and tested on the Z2-FM-EB-SEQ-1 sequence and the
results are shown in Fig. 7.5. When the ferry was far from the dock (see Fig.. 7.5a), the water was
dominating the lower half region of the image and therefore, the plane was successfully estimated
but when the ferry approached the dock (see Fig.. 7.5b), the dock also became part of the input
to the RANSAC plane estimator and resulted into a slanted plane which is inclined towards the
dock. Finally, when the ferry was about to dock (see Fig.. 7.5c), the plane segmentor identified
the dock as the water plane. From these results, it can be inferred that defining a constant horizon
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(a) (b) (c)

Figure 7.5: Figures are taken from the sequence Z2-FM-EB-SEQ-1. The blue color on
the graphics represents the inliers on the detected plane. This Fig. shows the problem
of fitting a plane when there are objects below the horizon line. As we see, parts of the
dock are considered as part of the water surface which gives wrong results. This problem
has been addressed and solved in section 7.2.8.

line is not sufficient for robust plane estimation. Therefore, multiple checks and knowledge from
the previous frame should be incorporated to estimate the ground/water plane.

7.2.7 How to prevent the method to lock into wrong planes

As we saw before, the method failed to find the water planes when it came closer to the dock
and identified invalid or other planes as the water plane. If I pick the horizon line carefully or
create a mask for all the water labels such that then the first plane can be safely assumed to be
an actual water plane then there could be a number of potential solutions revolving around the
first water plane to resolve the issue observed in Fig. 7.5b.

• Adaptive cropping of point cloud: The water plane information can be propagated to
the next timestep to crop the raw point cloud such that the number of outliers is reduced.

• Plane comparison: The detected plane parameters (plane normal vector and the per-
pendicular distance to the camera) can be compared against the valid water plane. If the
distance and the angle between the normal vectors of the detected plane and valid water
plane should be within a range of uncertainty. Instead of measuring the angle between
the normal vectors, the roll and pitch angle of the plane w.r.t the CCF can be computed
as well and can be compared against the nominal roll and pitch angle (obtained from the
valid water plane).

I have proposed some modifications in the RANSAC based plane segmentation approach and
apply the proposed solutions to avoid the invalid water planes in the next section.

7.2.8 Adaptive Plane Segmentation using RANSAC (APSR)

From the section 7.2.6, it became clear that the point cloud data and the initial estimate of
the horizon are not sufficient to identify the plane when the ferry is docking. To overcome this
challenge, the point cloud should be cropped in an adaptive way, and the planes that don’t
identify as the ground plane should be eliminated. My proposed algorithm APSR consists of a
bootstrapping step in which an approximate value of the horizon line is required at the beginning
of the sequence to identify the water plane and then use this plane information in the subsequent
frames to crop the point cloud. The plane is checked before identifying it as a water plane.
Unlike the previous algorithm, the point cloud is cropped based on the adaptive inlier mask
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that is updated after each iteration. This mask consists of the pixels that are the inliers of the
detected water plane. The steps of the algorithm are the following.

• Initialization: The nominal plane is initialized as xz plane of the CCF and the initial
inlier mask is identified using an initial guess of the horizon i.e. the xy plane of the CCF.
The raw point cloud is cropped using this initial inlier mask followed by the fitting of the
plane on the cropped point cloud and then a new inlier mask is created by labeling the
pixels that lie on the fitted plane.

Algorithm 2 Plane initialization

1 procedure initialize_plane(P 0)

2 mask0 =

[

0W×H/2

1W×H/2

]

3 P ′0 = crop(P 0,mask0)

4 [n⃗0, d0
⊥

] = fit_plane(P ′0)

5 mask0 = get_label_mask(P 0, n⃗0, d0
⊥

)
return [n⃗0, d0

⊥
,mask0]

• For every next frame:

1. Cropping and plane fitting: The previous inliers mask is used to crop the point cloud
followed by the plane identification.

2. Compliance check 1: The fitted plane is validated against the previous estimated
plane. If the normal vector from the current and previously estimated plane is
making an angle less than angle_th and the difference between the height of the
camera from the current and previous plane is less than height_th meters, then
the plane is marked as valid and invalid otherwise (see table 7.3 for the threshold
parameters).

Algorithm 3 Plane compliance check

1 procedure is_valid_plane(n⃗t, dt
⊥
, n⃗t−1, dt−1

⊥
)

2 height = ♣dt
⊥
− dt−1

⊥
♣

3 angle = arccos (n⃗t · n⃗t−1)

4 if angle ≤ angle_th and height ≤ height_th then
return True

5 else
return False

3. Compliance check 2: The fitted plane is validated against the nominal plane (the
plane identified in the beginning).

4. Labelling using nominal plane: If the fitted plane failed the compliance check 1 or
compliance check 2, then the inlier mask is created using the nominal mask instead.



7.3. Limitations of the proposed plane segmentation algorithms 49

(a) (b) (c)

Figure 7.6: Figures are taken from the sequence Z2-FM-EB-SEQ-1. The blue color on
the graphics represents the inliers on the detected plane. This Fig. shows the improved
results of the improved water surface detection (compared to Fig. 7.5), where the prior
knowledge is also used

The steps of the algorithm are summarised in alg. 4. From Fig. 7.6, it can be seen that
the adaptive masking of the inliers and the consistency checks enabled the algorithm to find the
water plane even during the docking and the false water plane observed in Fig. 7.5b and Fig.
7.5c are fixed using APSR. The major drawback of this proposed algorithm is that it can not
recover from a non-water plane zone. Once the ferry completely docks, the inlier mask will be
empty and the algorithm can not recover the plane when the ferry undocks.

Algorithm 4 Adaptive plane segmentation using RANSAC

1 procedure adaptive_plane_seg()

2 [n⃗0, d0
⊥
,mask0] = initialize_plane(P 0)

3 for t = 1 to ∞ do

4 P ′t = crop(P t,maskt)

5 [n⃗t, dt
⊥

] = fit_plane(P ′t)

6 if is_valid_plane(n⃗t, dt
⊥
, n⃗t−1, dt−1

⊥
) then

7 if is_valid_plane(n⃗t, dt
⊥
, n⃗o, do

⊥
) then

8 maskt = get_label_mask(P t, n⃗t, dt
⊥

)

9 else

10 maskt = get_label_mask(P t, n⃗o, do
⊥

)

11 else

12 maskt = get_label_mask(P t, n⃗o, do
⊥

)
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Figure 7.7: Disparity free zone from RANSAC based plane segmentation

7.3 Limitations of the proposed plane segmentation
algorithms

Both approaches have their pros and cons with respect to the application. In the Aquanet-based
approach, the network can successfully identify the water region using only the image. In most
cases, it is able to identify the whole region of water without any holes which is not possible
in RANSAC-based approach because of its strong dependency on the disparity data. From
Fig. 7.7, it can be seen that the APSR algorithm failed to label the pixels in the disparity-free
area. These disparity-free areas will always exist because the overlapping between the left and
right images of the stereo pair is not 100% complete. The holes in the water plane found by
neural network-based approaches may suffer from the reflections of the land structures and in
the geometry-based method, inaccuracy in the disparity estimates can lead to the holes in the
segmented water plane.

7.4 Object detection using YOLO-v8

[37] introduced YOLO (You Only Look Once) which is one of the most popular Convolutional
NN for object detection in real-time in 2015. Over the years, multiple versions of the YOLO
have been released and a complete review on them is given by [45]. I decided to use the latest
version of the YOLO (YOLO-v83) to segment the boats and other objects from the scene. The
YOLO-v8 comes in different sizes which means that the size of the model differs according to
application. For limited GPU memory, the nano size (yolov8n-seg) of the YOLO-v8 can be used
and for excessive GPU memory, the extra large model (yolov8x-seg) can be used. The accuracy
and performance increase with the size of the network therefore, the extra-large model has the
best performance among all of the trained models. In this project, Taking the available GPU
memory into consideration, I decided to use the largest version yolov8l-seg for the segmentation.

Figure 7.8 shows the results of the YOLO-v8 network on the recorded sequences. In Fig.
7.8b, we can see that the network found both of the boats in the scene even the farthest one but
at the same time, the network also suffers from the false positives as shown in Fig. 7.8d where
YOLO identified the dock as the boat.

3The link for the implementation of YOLO-v8 is here
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(a) Image from seq. Z2-FM-EB-SEQ-2. (b) YOLO mask for boats only.

(c) Image from seq. Z2-FM-EB-SEQ-1. (d) YOLO mask for boats only.

Figure 7.8: The input and the output to and from the YOLO-v8 network. The output
label image is colored according to the color coding defined in table 7.2.

Table 7.4: IMOs’ class labels and their values in YOLO-v8

class class value in YOLO-v8

person 0
bicycle 1

car 2
motorcycle 3

bus 5
train 6
truck 7
boat 8

7.5 Computation of a Semantic Image by Fusion of
Different Algorithms

In this chapter, we saw different strategies that can be used to segment the water plane and
the boats from the image. Each proposed segmentation algorithm whether it is Aquanet or
APSR, or the YOLO-v8 has its own pros and cons. The fusion of all of these proposed semantic
segmentation algorithms can provide more reliable and complete knowledge of the water surface
and the boats, therefore, in this section, I will propose the methodology to fuse the information
provided by them.

The algorithm to fuse the masks from different algorithms is given in algorithm 5. Initially,
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Figure 7.9: Semantic labeling of the environment

the YOLO-v8 semantic segmentation network also referred to as the object_detector is used to
detect the object/boat in the sequence. Also, the APSR based plane_segmentor is used to find
the pixels in the image that lie on the ground plane or on the water plane in the maritime
sequence and finally, I am getting a semantic label mask, similar to the one provided by the
YOLO-v8, that contains the information of the pixels that are on the sea from the Aquanet
and referred as sea_segmentor. The plane_mask from the plane_segmentor is merged with the
aquanet_mask from the sea_segmentor such that the pixels have been marked with sea label in
both masks will be remarked to the label definite_sea and the pixels which are not marked in
both but only in once are remarked to the label maybe_sea. The sea_mask is overlayed with
the object_mask such that the pixels in the fused_mask will be marked boat even if they are
marked with definite_sea in the merged_sea_mask to prioritize the boat identification over the
sea. The inputs, intermediate, and final results of the algorithm are shown in Fig. 7.10.

Algorithm 5 Fusion of different semantic and plane segmentation masks

1 #Define EPS = 0.000001

2 procedure fuse_masks(depth_img, color_img, intrinsics)

3 object_mask = object_detector(color_img)

4 plane_mask = plane_segmentor(depth_img, intrinsics)

5 aquanet_mask = sea_segmentor(color_img)

6 sea_mask = merge_masks(plane_mask, aquanet_mask)

7 fused_mask = overlay(sea_mask, object_mask)
return fused_mask
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(a) Input color image. (b) Input depth image in false colors.

(c) Aquanet mask (d) Plane mask.

(e) Object mask (f) Sea mask.

(g) Fused mask

Figure 7.10: Input and output of the algorithm 5. Image taken from Z2-FM-EB-SEQ-2
sequence is used as an input and the output label image is colored according to the color
coding defined in table 7.2.
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In the previous chapter, we saw how the Adaptive Plane Segmentation using RANSAC
(APSR) method can find the water plane. If the same algorithm is run recursively, it is possible
to estimate multiple planes from the point cloud. I tried to do the same (see appendix B, p.175)
and found out that each plane has different characteristics and fits the plane using the RANSAC
with the same set of parameters as of the water plane is not ideal. Also, if there is no dominant
plane (i.e. the number of inliers is smaller than the number of outliers) at any iteration while
finding the planes recursively then the estimated planes can be wrong.

In this chapter, I will explain a more simple but effective approach to classify pixels whether
they lie on a horizontal or an upright surface in a single iteration. The significance of the upright
pixels is that any region behind the upright pixels is an obstacle and the ego-vehicle can not
reach it if it keeps moving straight towards it.

8.1 The principle of detecting upright or horizontal
structures from the disparity image: the ’Stixel
Principle’

The stixels is an efficient way to represent the environment ([1]). The representation assumes
that the objects in the surroundings can be approximated using only the vertical and horizontal

55
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surfaces. Instead of representing the objects using the thousands of 3D points from the point
cloud, they can be represented using a set of adjacent rectangular strips called stixels (see Fig.
8.1a).

In this project, I also wanted to use the stixels to represent the environment, therefore, I
implemented the most basic simplified version which is based on the stixel principle. I extracted
the horizontal and upright surfaces using the disparity data only. If I assume that the camera is
looking parallel to the ground plane and every object in the scene is a box lying on the ground
plane, then their disparity will be constant for the upright surfaces of the object (if the surface
is perpendicular to the viewing direction) whereas the disparity will be increasing (when we go
from top to the bottom of the vertical disparity profile) for all horizontal planes (the farthest
point on the plane will have less disparity as compared to the closest point). In other words,
for a column in the disparity image, the vertical line segments (constant disparity) represent
the upright surfaces, and the slanted line segments (constantly changing disparity) represent the
horizontal surfaces (see Fig. 8.1b).

8.2 Looking at vertical profiles of disparity

In the previous section, I discussed the shape of the vertical disparity profile for upright and
horizontal surfaces but in this section, I will try to prove the same mathematically followed by
some real examples.

Let c be the distance of the plane under consideration, then the equation of the plane w.r.t
the Camera Coordinate Frame (CCF) (y − axis is pointing downwards and z − axis is pointing
forwards) parallel to the camera’s viewing direction (z − axis) is given by

y = c (8.1)

Let p⃗ be a 3D point with coordinates [x, y, z]T w.r.t the CCF and p⃗h be the projection of point
p⃗ on the plane y = c, then the point p⃗h lying on the plane y = c can be easily known.

p⃗h =





x
c
z



 (8.2)

(a) (b)

Figure 8.1: The left picture shows the representation of the environment using stixels
(Taken from [1]) and the right picture shows the variation of the disparity along the
vertical column of the image (Taken from [10]).
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Let dh be the Euclidean distance of the point p⃗h from the CCF.

dh =
√

p⃗Th · p⃗h
=

√

x2 + c2 + z2

(8.3)

Let αh be the slope between the distance dh and the depth z of the point ph, then the slope αh
can be computed by taking the partial derivate of distance dh w.r.t depth z.

αh =
∂dh
∂z

= 1
(8.4)

From the above equation, it can be stated that if there is a point p⃗h on the plane y = c such
that it is going away from the CCF (z is increasing), then the distance dh also increases with z
because of the constant slope αh = 1 or the disparity decreasew with the depth z because it is
inversely proportional to the depth z. In other words, The disparity has a negative slope with
respect to the distance of point p⃗h lying on a horizontal plane which is also observed in Fig. 8.1b.

Let us assume another plane that is perpendicular to the viewing direction of the camera,
then it can be expressed using the following equation.

z = c (8.5)

Let p⃗v be the projection of point p⃗ on the plane z = c.

p⃗v =





x
y
c



 (8.6)

Let dv be the Euclidean distance
dv =

√

x2 + y2 + c2 (8.7)

Let αv be the slope between the distance dv and the depth z of the point p⃗v,

αv =
∂dv
∂z

= 0
(8.8)

It is clear that the distance dv is independent of the depth z when the point p⃗v is lying on the
upright plane. It also implies that the disparity remains constant irrespective of the position of
point p⃗v on the plane z = c and hence, it is the reason why a vertical line (constant disparity)
can be observed for the upright surfaces (see Fig. 8.1b).

Figure 8.2 shows different vertical profiles of disparity data1. In figure 8.2b, we can see that
the slanted line segment after the 450th value in the y−axis of the plot because of the horizontal
water plane and a dominating vertical line segment due to the wall on the back. A small vertical
line segment around the 450th value in the y − axis due to the front wall of the platform. The
same small vertical line segment is shifted right for the dock (see red line in the plot) because
the dock is extruded from the platform and therefore, it is more closer to the camera (the more
will be its disparity) and hence it is shifted right.

1It should be noted that I used the Neural method of the ZED camera to compute the disparity/depth
data in this chapter instead of the Ultra mode because the depth images from the Neural mode are more
complete and can provide a better surface estimation.
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Figure 8.2e shows the vertical disparity profiles when the ego-vehicle is closer to the dock.
The vertical line segments for the front wall of the platform and the wall on the back are slightly
tilted because of the pitch of the camera. The effect of the pitch was not dominant or clearly
visible when the wall was far away. For the red line, we can three slanted line segments. From
the bottom, the first slanted line (coinciding with blue and green line segments) represents the
water plane. The second slanted line segment between the 600th and 800th value in the y− axis
represents the slanted plane of the dock and finally, the third slanted segment shows the combined
horizontal surface of the platform and the dock. It can be observed that the slope of the slanted
line segment for the dock is different than the water plane and the platform. It implies that it is
possible to extract only the horizontal and vertical surfaces using the vertical disparity profiles.
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Figure 8.2: The left images are from the recorded sequences and highlight the vertical
columns under consideration. The middle and right figures show the vertical disparity
profiles before and after the low-pass filtering respectively.
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(a) (b)

Figure 8.3: The left and right images the disparity profile (in false colors) before and
after the linear interpolation respectively.

8.3 Differentiation between the "upright" and
"horizontal" surfaces

The slope of the line segments in the vertical disparity profiles can help us to identify different
types of surfaces. Therefore, I computed the derivative on these vertical disparity profiles. The
disparity image from the ZED camera contains NAN , INF , and −INF for different cases
in which the disparity couldn’t be computed (see section D.2, p.184), therefore, I performed
1D interpolation on the raw disparity data to fill the invalid values with real numbers before
proceeding to the derivatives.

Let d be the disparity image of width W and height H, i be the vertical column in the
disparity image, d(i) be the disparity data in the column i, idxi be an array containing the row
index in the column i which has the valid disparity data, then we can extract the row indices
from the column i.

idxi = ¶j if d(j, i) is valid for j = 0...H♢ (8.9)

Let valid_d(i) be the disparity value for the idxi such that the disparity value stored in
valid_d(i) are always valid. It should be noted that the values in idxi are monotonically in-
creasing, therefore, I can use the interp function from the Numpy library to perform the 1D
interpolation on the disparity data d(i). Let dI(i) be the interpolated disparity data for ith

column, then I can use the interp function on valid_d(i) for the linear interpolation.

dI(i) = interp(idxi, valid_d(i)) (8.10)

The derivatives are very sensitive to noise, therefore, I first applied the low-pass filter on the
interpolated disparity profile dI . Let K be a kernel of size n× 1, and df be the low-pass filtered
disparity image, then the low-pass filtering can be performed by convolving the kernel K with
ith column of the disparity image dI .

df (i) = K ∗ dI(i) ∀ i = 0...W (8.11)

where kernel K is defined as

K =





1/n
...

1/n





n×1

(8.12)
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Figure 8.4: The left and right figures show the histograms of the vertical derivatives of
the disparity image when the ego-vehicle was far from the dock (see Fig. 8.2a) and close
to the dock (see Fig. 8.2d) respectively. The lower and the upper limits of the histogram
have been clipped.

Let M be the 1D Sobel kernel of size 3×1, and ∂d be the vertical derivative image of the low-pass
filtered disparity image df , then the vertical derivative image can be computed by convolving
the kernel M with each column of the low-pass filtered disparity image df .

∂d(i) = M ∗ df (i) ∀ i = 0...W (8.13)

where kernel M is defined as

M =





−1
0
1



 (8.14)

As mentioned before, each value of the slope corresponds to a particular type of surface (hori-
zontal, upright, slanted, etc.), the histogram of the vertical derivatives can show the number of
different surface orientations. Figure 8.4a shows the histogram of the derivative values in the
vertical derivative image ∂d when the ego-vehicle was far from the dock (see Fig. 8.2a). There
are only two dominating surfaces (horizontal and upright) in this case, therefore, two peaks can
be observed in the histogram. The peak near the zero value of the vertical derivative corresponds
to the upright surfaces and the other peak corresponds to the horizontal surface (water plane),
however, when the ego-vehicle was close to the dock (see Fig. 8.2d), the upright surface (wall
in the background) became more dominant (the peak at zero derivative value got bigger in Fig.
8.4b) but the other peak in the histogram is not clearly visible as in the previous case because
of the presence of other slanted surfaces in the scene such as the slanted surface of the dock.

The base for the classification of the pixels of the image is to look at the derivatives of their
disparity. If the derivative for a particular pixel lies around a peak as shown in the histogram,
then it can be labeled accordingly. I classified the pixels into three categories: (1) UPRIGHT, (2)
HORIZONTAl, and (3) UNKNOWN. The labeling of the pixels if the derivative of their disparity
is around zero as UPRIGHT is not enough as a hard threshold on the limits of the derivatives
can lead to incorrect results, especially for the edge cases. To find the range thresholds for the
derivatives, I represented each peak using a Gaussian curve. Let µ be the mean, and σ be the
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Table 8.1: Parameters used in the identification of Upright and Horizontal surfaces.

Parameter value

Low-pass kernel filter size (n) 5
Lower clipping limit for clustering -0.3

The upper clipping limit for clustering 0.5

standard deviations of the fitted Gaussian curves such that the lower ∂dL and upper ∂dU range
bounds for the derivatives can be calculated from Gaussian parameters.

∂dL = µ− σ
∂dU = µ+ σ

(8.15)

As we saw in Fig. 8.4, I may have one or more than one peak in the histogram data but the
classes I am mostly interested in are the UPRIGHT and HORIZONTAL. Therefore, I fitted two
Gaussian curves to the derivative data. To fit the curve, I need to know which derivative value
belongs to which Gaussian curve, and to know the same, I fit two clusters in the derivatives
data using K-means2 such that each cluster’s center may lie on the peak. I observed that the
derivative data has extremely low and extremely high values which influenced the clustering
algorithm negatively. Therefore, I decided to clip the lower and upper ranges for the derivatives
data. The algorithm also requires the initial estimate of the center of the cluster. From the
histogram data, I approximately pick the derivative values where the peak lies and used them
for the initial estimate of the peak locations. After fitting the derivative data into two clusters, I
fitted the Gaussian to each cluster. Let µ1 and µ2 be the means and σ1 and σ2 be the standard
deviations of the fitted Gaussian curves, ∂dL1, ∂dL2 be the lower and ∂dU1, ∂dU2 be the upper
range limits for the first and second curve respectively, then the range limits can be computed for
each curve using the eq. 8.15. It is possible that the upper range limit of the left peak overlaps
with the lower limit of the right peak. To handle this case, the priority of the label should be
defined. In my case, the class UPRIGHT will always be the left peak with its mean near zero
(the upright surfaces have 0 slope/derivative) and they should be given higher priority as they
are potential obstacles that should be avoided at all cost. Let L(x, y) be the label that defines
the class of the pixel (x, y), then it can be created using the derivative image and the fitted
Gaussian curves.

L(x, y) =











HORIZONTAL, if ∂dL2 < ∂d(x, y) < ∂dU2

UPRIGHT, if ∂dL1 < ∂d(x, y) < ∂dU1

UNKNOWN, otherwise

(8.16)

In the above expression, if the pixel is labeled as HORIZONTAL then the condition for the
UPRIGHT should be checked as well to give priority to this class and not the vice-versa.

2I used sklearn library for the implementation of K-means algorithm. The link to the function is
here.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.5: The left and the right figure show the input and the upright-horizontal
labeled images respectively. The pixels colored green are labeled as HORIZONTAL, red
as UPRIGHT, and gray as UNKNOWN.
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The depth map obtained from the stereo-matching algorithm can never be trusted completely
as the accuracy of the depth estimate vanishes when the point goes to infinity. The depth
accuracy highly depends on the stereo-matching accuracy (assuming the intrinsic and extrinsic
calibration parameters of the stereo camera are absolutely correct which is not true either). The
representation of the depth image in false colors doesn’t tell us much about the noise in it and
therefore, the most intuitive way is to represent the point cloud (generated from the depth map)
in the Bird’s Eye View (BEV). When we look at the point cloud data from the BEV, we can see
how the depth is distributed along the boundaries of the objects in the scene. In an ideal case, if
there is a wall in the camera’s image then it should be represented as a straight line in the BEV
(see Fig. 9.1), however, due to the noise in the depth data, the line will be deformed.

In this chapter, I will talk about the fundamental principles of the BEV followed by a depth
filtering technique to reduce the noise in the depth maps and finally the results of the BEV.

9.1 Bird’s Eye View

In the BEV, I used the orthogonal view (rather than the perspective view) that is perpendicular
to the camera’s view and it is looking towards the ground plane, i.e. if [x, y, z] are the coordinates
of a 3D point in the Camera Coordinate Frame (CCF), I reduced them to the [x, z] coordinates.
In the advanced modes, I first transformed the 3D coordinates of the pixels from the CCF to some
world coordinate frame for consistency in the BEV. How the points with the same [x, z] values
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Figure 9.1: Explanation of the BEV.

but different y values are dealt with is explained in section 9.1.3. In the following sections, I will
discuss the steps to prepare a BEV that can be used to analyze the depth and the semantically
labeled data together.

9.1.1 Generation of a point cloud

Let [xpx, ypx] be the pixel coordinates of any 3D point [X,Y, Z] in the space and D be the depth
of this point in the CCF, then the 3D coordinates of the point can be computed from the pixel
coordinates, depth, and the intrinsic parameters of the camera.

X =
(xpx − cx)D

fx

Y =
(ypx − cy)D

fy

Z = D

(9.1)

9.1.2 Cropping the point cloud

The point cloud generated from the stereo data is w.r.t CCF and if we want to find the navigable
area or the corridor that the vehicle can pass through, we need to transform the point cloud
from CCF to the ground (water) plane coordinate frame by first compensating the roll and pitch
of the camera w.r.t the water plane such that the x − z plane of the CCF is aligned with the
water plane and then we need to compensate the height of the vehicle such that we ignore all
the 3D points that are lying above the vehicle. In this project, I compensated for the pitch
angle and assumed that the roll angle is negligible, and picked a random value for the height of
the ego-vehicle to compensate for the height. In an actual implementation, the roll, pitch, and
height parameters can be obtained from the external calibration and then compensated before
computing the BEV.

When the ego-vehicle is moving on the water surface with the camera at a given height,
the points below the water surface may not appear or are irrelevant, and the points that are
much higher than the vehicle’s own height (e.g. bridges) are not relevant either. Also, in an
outdoor scene, the point clouds can have points at greater depth and such points can be ignored
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Maximum Vehicle Height

Z

Y

Figure 9.2: Maximum height threshold for the ego-vehicle

in the BEV. Taking these points into consideration, I decided to crop the point cloud prior to
generating the BEV. It should be noted that the cropping of point cloud data has been done
solely for the generation of the BEV’s images and has no influence on the ego-motion estimation
sub-system.

Instead of using the range thresholds for each Cartesian axis in the CCF, I used only the
maximum depth and maximum height threshold. The vertical threshold makes sure that the
points are not too high from the camera. The other thresholds are computed depending on the
properties of the camera.

Let Dth be the maximum depth threshold, fovh be the horizontal Field of View (FOV), minx
be the minimum range threshold for the x−axis, and maxx be the maximum range threshold for
the x− axis, then the minimum minx and maximum maxx range thresholds can be computed
using the horizontal FOV fovh.

minx = −Dth tan

(

fovh
2

)

maxx = Dth tan

(

fovh
2

) (9.2)

There is no threshold on the upper limit for the y component of the point and for the z−axis the
upper range threshold is given by Dth and no bound on the lower range as it is inherently bounded
by the constraint of having non-negative values. The only parameter that is left unchecked is
the lower range for the minimum value of y (maximum height threshold).

Pitch compensation in the BEV

It should be noted that the positive y− axis of the CCF is pointing downwards, therefore, I am
mostly interested in putting a threshold on the minimum value (miny) that a point can have
in the y − axis such that the maximum height can be maintained in the BEV. The maximum
height of the points in the BEV can be maintained only if the camera is looking parallel to the
ground plane but if there is some pitch in the camera due to the waves, then it has to be either
compensated in the maximum height threshold or in the whole point cloud. The limitation of
the former approach is that the depth threshold Dth has to be adapted according to the scene.
For a close-range scene, if I use a large depth threshold Dth, then for a given pitch angle, the
maximum height threshold will be over-estimated. Therefore, I used the latter approach to avoid
this issue and compensate for the pitch in the point cloud directly.
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Table 9.1: Constant parameters for the cropping of point cloud

Parameter code name Value

Depth threshold (Dth) D_th 50 meters
Maximum height threshold (yth) y_th -2 meters

BEV’s image width (W ) bev_w 800 pixels
BEV’s image height (H) bev_h 1000 pixels

Let θ be the pitch angle of the camera w.r.t. the plane and Rx(θ) be the 3D rotation matrix
for a rotation of θ angle about the x− axis.

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 (9.3)

Let P be the input point cloud and P ′ be the pitch compensated point cloud, then the pitch
compensated point cloud can be computed by pre-multiplying the rotation matrix Rx(θ) with
each point from the input point cloud P .

P ′ = ¶p′ = Rx(θ)× p ∀p ∈ P♢ (9.4)

The pitch angle θ can be computed for each new frame with the help of Adaptive Plane Segmen-
tation using RANSAC (APSR) module (see section 7.2.4, p.45).

9.1.3 Generation of the BEV

Once, the point cloud is cropped and the pitch is compensated, I mapped the points from the
Cartesian coordinates to the pixel coordinates. Let W and H be the width and height of the
BEV’s image, xpx and ypx be the xth and yth pixel coordinates in the BEV’s image, then the x
and z components of the 3D point can be mapped to the xpx and ypx pixel coordinates by first
scaling them and then moving the origin of the CCF to the bottom center of the image.

xpx =
W

2

(

1 +
x

maxx

)

ypx = H

(

1− z

Dth

)

− 1

(9.5)

All of this is implemented using Numpy library in Python so the computational time to compute
each BEV’s image is insignificant. It is possible that multiple points from the point cloud may
fall on the same pixel in the image. For example, the outer curvature of the boat and the water
just below it will have the same x and z components but their y component will be different. In
such scenarios, the point which is highest above the ground i.e. with the lowest y value (y−axis
is pointing downwards in the CCF) shall take the position in the image. This will make sure
that the points that are not visible from the BEV are suppressed. I didn’t use this approach
because the computational time to compute each BEV was in the order of seconds due to the
W ×H number of iterations.

9.1.4 Colouring of the BEV’s image

The final step to generate the BEV’s image is to color each pixel according to its semantic label
that we obtained from the fusion of different semantic segmentation masks (see section 7.5, p.51).
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I used the color coding defined in table 7.2 to represent the segmentation results in the BEV’s
image as well to avoid confusion.

9.2 Temporal Filtering of the disparity data

The accuracy in the depth data is tightly coupled with the accuracy of the stereo matching
algorithm which further depends on the pixel noise ([16]) and therefore, the depth value for
a pixel can be different for every new stereo pair even if the camera and the object are not
moving. The most effective and simple way to suppress such noise is to use the temporal filter.
In the simplest temporal filtering technique, we take the average of the depth images over a
time window, however, the depth images are computed using the disparity data, therefore, I
implemented the temporal filter on the disparity data.

Let d(x, y, k) be the disparity of the pixel (x, y) in an image taken at timestamp k. It should
be noted that d(x, y, k) may contain invalid disparity data due to occlusions, etc., therefore, the
invalid disparity data should be filtered before proceeding to the temporal filtering. All these
invalid values have been replaced with some non-zero EPS instead of zero because if it is replaced
with zero, then the depth can not be computed for that pixel.

d(x, y, k) =

{

d(x, y, k), if d(x, y, k) is valid

EPS, otherwise
(9.6)

Let df (x, y, k) be the temporal filtered disparity for the pixel (x, y) and L be the temporal window
length then the temporal filtered disparity df (x, y, k) can be computed as follows.

df (x, y, k) =
1

L

k
∑

i=k−(L−1)

d(x, y, i) ∀k ≥ L (9.7)

The disparity data also contains the spatial noise apart from the temporal noise, therefore, I
used the low pass filter of size K × 1 in the vertical direction of the temporal filtered disparity
image df (k). Let fx be the horizontal focal length of the left camera and b be the baseline of
the stereo setup, and Df (x, y, f) be the temporal filtered depth for pixel coordinate (x, y), then
Df (x, y, f) can be computed from the temporal filtered disparity df (x, y, k).

Df (x, y, k) =
fxb

df (x, y, k)
∀k ≥ L (9.8)

9.3 BEV of temporally filtered depth data

To color the pixels in the BEV, I need to label each pixel in the image and then color the pixels
according to the label. In chapter 7 and chapter 8, we saw two different strategies to label the
pixels. One was based on the semantic labeling and the other was based on the classification of
the labels based on their location on the upright and horizontal surfaces.

Let d be the disparity image after filtering the non-valid values (see eq. 9.6) and d_buffer
be the memory buffer containing previous L− 1 disparity images, then the depth’s BEV can be
computed using algorithm 6 in which the function get_pixel_labels returns the label image from
either the semantic labeling or the upright-horizontal surface labeling.

Figure 9.3d and Fig. 9.3e show the depth’s BEV for some frame in sequence Z2-FM-EB-
SEQ-2 (see Fig. 9.3a) using the semantic labeling and the upright-horizontal surface labeling
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respectively. In the fused mask (see Fig. 9.3b), we can see two boats in yellow color but in the
BEV, we only say one boat in yellow color because the other boat is farther than allowed depth
threshold Dth. Also, the density of the sea labels in the BEV reduces when we go far from the
camera. Finally, the region behind the boat is not visible in the image and therefore, a gray
void can be observed behind the boat in the BEV. The similar observations can be made for the
BEV generated using the upright-horizontal surface labels. The boat is colored red because it is
an approximately upright surface whereas the sea is colored green because it is on the horizontal
surface. In both the BEVs, thin horizontal lines can be observed that split the total length of
the BEV into equal partitions to visualize the approximate depth of each observed object.

Algorithm 6 Preparation of Depth Birds Eye View

1 #Define EPS = 0.000001

2 #Define K = 11

3 #Define L = 5

4 procedure get_depth_bev(d, d_buffer, color_img, camera_intrinsics)

5 D = cvt_d2D(d, intrinsics) ▷ see eq. 9.8

6 pixel_labels = get_pixel_labels(D, color_img, camera_intrinsics)

7 df = temporal_filter(d, d_buffer, L) ▷ see eq. 9.7

8 df = lowpass(df ,K)

9 Df = cvt_d2D(df , intrinsics) ▷ see eq. 9.8

10 bev = compute_bev(Df , pixel_labels)
return bev
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(a) Input color image

(b) Fused semantic mask (c) Upright-horizontal labeled mask

(d) BEV with semantic labeling (e) BEV with upright-horizontal labeling

Figure 9.3: The BEV for different pixel labeling techniques.
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The ego-motion estimation sub-system is mainly responsible for the estimation of pose-change
between two image frames using the keypoints-based pose estimation approach. In this chapter,
I will give an overview of the architecture of the ego-motion estimation sub-system.

Figure 10.1 shows the simplified architecture of the system in which the keypoints detector
finds the keypoints all over the image and uses the masks to filter out the non-interested region,
whereas the correspondence estimator finds the optimized correspondences in three steps: (1)
pose change pre-estimation, (2) correspondence prediction, and (3) correspondence optimization.
Finally, the correspondences and the pre-estimated pose are used to find the rotation first followed
by the optimized pose change. There is another features-based ego-motion estimation module
that is being used only to initialize the states (pose) of the system.

Figure 10.1 shows only the main modules and sub-modules of the ego-motion estimator
sub-system. There are also some hidden modules (not shown in figure 10.1) that aid the ego-
motion estimation. These include the semantic label finder, disparity data filtering, the keypoints
trajectory tracking, etc. The simple as it seems, the actual implementation is more dense and
complex. The modules are arranged in a linear fashion (see fig. 10.1) only for understanding but
in actual implementation, they are interconnected.

Algorithm 7 shows the ego-motion sub-system from the implementation point of view. Each
module and its components are briefly explained in the following sections.
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Figure 10.1: Architecture of the ego-motion estimation system.

Algorithm 7 Ego-motion estimation: frame to frame motion

1 stereo_datat=0 = get_next_stereo_data()

2 kpst=−1 = None

3 for t = 1 → t =∞ do

4 stereo_datat = get_next_stereo_data()

5 if t == 1 then

6 poset−1
t−2 = bootstrap(stereo_datat−1, stereo_datat)

7 labelst−1 = get_semantic_labels(stereo_datat−1)

8 [kpst−2, kpst−1]← corrt−1

9 kpst−1 = get_kps(stereo_datat−1, stereo_datat, labelst−1, kpst−1, pose
t−1
t−2)

10 pred_posett−1, corrt, scorest =

get_correspondences(kpst−1, pose
t−1
t−2, stereo_datat−1, stereo_datat)

11 posett−1 = get_pose(corrt, scorest, pred_posett−1)

12 yield posett−1

10.1 Get stereo data

The function get_next_stereo_data (see step 4 in algorithm 7) collects the stereo images from
the camera or the stereo images dataset. Besides the left and right images of the stereo camera,
it also returns the disparity image and the depth image. If the camera or the dataset doesn’t
provide the disparity/depth data then it is being computed first and then returned.
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Algorithm 8 Bootstrapping of the pose change

1 procedure bootstrap(streo_datat−1, stereo_datat)

2 init_pose = Id ▷ Id is 4× 4 Identity matrix

3 init_rot = None

4 kpst−1, descriptort−1 = get_kp_n_descriptors(streo_datat−1)

5 kpst, descriptort = get_kp_n_descriptors(streo_datat)

6 corr = feature_matching(kpst−1, descriptort−1, kpst, descriptort)

7 posett−1 = pose_estimator(corr, stereo_datat−1, init_pose, init_rot)
return posett−1

10.2 Initialization and bootstrapping of the ego-motion
subsystem

This module is run only once during the whole run-cycle of the ego-motion sub-system. It takes
the stereo data stereo_data at timestep t = 0 and t = 1 only and performs the features-based
ego-motion estimation (see section 15.1, p.132). It extracts the keypoints and their descriptors
from both of the images and then matches their descriptors to find the correspondences. After
that, it estimates the pose change between two frames using the Perspective-n-Point (PnP) (see
section 15.2, p.133). It also assumes the initial pose init_pose between the frames as an identity
Id (no pose change) and the initial rotation init_rot between them to be zero.

10.3 Keypoints Detector

The keypoint detector module generates the keypoints in an image that are enough in number,
widely distributed, and easily trackable. I used the Good Features to Track (GFTT) keypoints
and applied different masking strategies to keep control of the location, quality, and distribution
of the keypoints (see chapter 12, p.85). The masking methodology is the backbone of the module
that creates a mask and tells the keypoint detector whether it should find the keypoint at some
pixel or not. For example, the semantic labels (see section 5.2) can also be used as a mask such
that the keypoint detector can avoid finding keypoints on fellow boats or on the sea.

The keypoints from the previous timestep that are valid (keypoints with valid correspon-
dences in the current timestep) can be reused while generating the new keypoints (see Fig.
10.2).

10.4 Correspondences estimator

This module estimates the correspondences of all the keypoints in three steps. First, it pre-
estimates the pose change between the frames using the previous pose and other advanced
techniques (see chapter 11, p.79) and then uses this information to predict the location of the
keypoints from the previous frame to the next frame (see section 13.1, p.92). Finally, the corre-
spondences are optimized using a correspondence matcher algorithm (see section 13.2, p.93).
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Figure 10.2: Architecture of the keypoints detector module.

Algorithm 9 Keypoints detection using masks

1 procedure get_kps(stereo_datat−1, stereo_datat, semnatic_labelst−1, kpst−1, pose
t
t−1)

2 pred_pose, corr, scores =

get_correspondences(kpst−1, pose
t
t−1, stereo_datat−1, stereo_datat)

3 kpst−1 = filter_valid_kps(kpst−1, corr, scores)

4 masks = generate_masks(stereo_datat−1, semnatic_labelst−1, kpst−1)

5 new_kpst−1 = generate_keypoints(masks, stereo_datat−1)

6 kps_t− 1 = merge_kps(kpst−1, new_kpst−1)
return kpst−1

10.5 Pose change estimator

This module computes the pose change between two frames using the correspondences. It first
takes the correspondences from the far-away areas to compute the rotational angles (see chapter
14, p.97) and then uses these rotational angles along with the translation estimates from the
pre-estimated pose change to initialize the pose change estimation method. The pose change
estimation method uses the keypoints’ correspondences and the initialized pose change to esti-
mate the final pose change between two frames using the Perspective-n-Point (PnP) method (see
section 15.2, p.133).

Algorithm 10 Correspondence Estimation

1 procedure get_correspondences(kpst−1, pose
t
t−1, stereo_datat−1, stereo_datat)

2 pred_posett−1 = pose_predictor(posett−1)

3 kpst = corr_predictor(kpst−1, pred_posett−1, stereo_datat−1)

4 corrt, scoret = corr_optimizer(kpst−1, kpst, stereo_datat−1, stereo_datat)
return pred_posett−1, corrt, scoret
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Algorithm 11 Pose change estimator module

1 procedure get_pose(corrt, pose
t
t−1, stereo_datat−1)

2 far_corr = filter_far_corr(corrt, stereo_datat−1

3 rotation = rotation_estimator(far_corr)

4 posett−1 = pose_estimator(corrt, pose
t
t−1, rotation)

return posett−1
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The ego-motion estimation sub-system is a keypoint-to-keypoint correspondence-based (also
denoted as keypoints-based) pose change estimation system. In the keypoints-based system, the
keypoints are detected in one frame and their correspondences are estimated in another frame
and based on the correspondences, the pose change is estimated. The accuracy of the estimated
pose is highly influenced by the quality of the correspondence and the depth estimates. If
the correspondences are estimated at sub-pixel accuracy then the estimated pose is very much
accurate and if there is an outlier in the set of the correspondences, then it is possible that the
estimated pose change may be way far from reality. Avoiding the outliers at all costs, while
striving for sub-pixel accuracy in the keypoints-based system is nice to have for accurate pose
estimates, but the precision of the resulting relative pose estimate can also be obtained by using
many correspondences. But it is important to note that increasing the number of correspondences
will in general not help against the effect of outliers.

The outliers are very dangerous and can have catastrophic effects on the system. A loss
of precision in the range of fractions of pixels or some 1-2 pixels is unfortunate during the
correspondence estimation, as it reduces the precision of the motion estimate, but the outliers
can really kill the whole estimation. So the primary goal in correspondence estimation is to avoid
outliers. This is done by trying to make very good predictions (first of the 3D motion, and based
on this: on the 2D correspondences of all keypoints), and if this is accomplished then reducing
the search range for the correspondences as much as possible.

In the later chapter (see chapter 13, p.91), I will talk about the correspondence estimator
module which needs the estimate of the pose change between two frames to find the correspon-
dences. This estimate of the pose change is a pre-estimate (different from the final optimized
pose) and used by the correspondence detector module. As mentioned before, a good pose change
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Figure 11.1: Flow chart of the pose change pre-estimator module

pre-estimate allows us to reduce the search range of the correspondence estimator, and this is
good for avoiding false correspondences. The importance of the pose change pre-estimate stands
out when sudden changes in the camera motion occur, for instance when entering a sharp turn.
In this chapter, I will discuss the strategies and methodology to pre-estimate the pose change.

When the new frame (It) arrives, the correspondence estimator module intends to predict
the new position of a keypoint from frame It−1 on the frame It, and for this, it needs two kinds
of information: the visual depth of the 3D point corresponding to the regarded keypoint, and the
pose change of the camera (translation and rotation). However, it is just this pose change T tt−1

that I intend to pre-estimate. As we are in the fortunate situation of dealing with stereo data,
I already have the depth estimate from the stereo-matching algorithm. In other words: in order
to do correspondence prediction, I need either a pose change predictor for the new pose change
(typically based on the sequence of already computed poses and a dynamic model of ego-motion)
or a coarse pose change pre-estimator that preferably should not be based on using keypoints.
I intend to use both these approaches in combination, using a rotation pre-estimation and a
pose change prediction, where the translation component is the dominantly used part followed
by their data fusion.

Figure 11.1 shows the flow of data and the main building blocks of the pose pre-estimator
module. The first sub-module pose change predictor predicts the pose change given the previous
pose change and the second sub-module rotation pre-estimator estimates the rotational angles
given two image frames.

11.1 Pose change prediction

The pose change information can be predicted up to a certain extent with the help of the dynamic
model of ego-motion and such dynamic model-based predictor can also be observed as one of the
main components of the predictive filters, such as the Kalman Filter ([26]), Extended Kalman
Filter, Particle Filter ([20]), etc. I can not use such predictive filters directly as they also have
a correction step in which they update the state (pose) with the help of the measurements,
however, the combination of the pose change predictor based on the dynamic model and the
pose change correction using the pose change estimation can be regarded as a special case of
Kalman filtering. But the main ingredient of the pose change predictor is the dynamic model
and the identification of the dynamic model is itself a wide domain that is outside the scope of
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this project. Therefore, I decided to explore other predictors that can be implemented without
the knowledge of the dynamic model.

11.1.1 Statistics-based motion predictor

[6] proposed a linear predictor for the motion parameters based on the statistics of the ground
truth from the KITTI dataset. Let p⃗[n] be the motion parameter vector that defines the motion
between the timestep n and n-1, then they built a linear motion predictor that can predict the
relative motion parameter vector ˆ⃗p[n + 1] between timestep n+1 and n by learning the motion
statistics.

ˆ⃗p[n+ 1]
def
= E [p⃗[n+ 1] ♣ p⃗[n]] (11.1)

The learned motion parameters were the mean of the motion parameter m⃗n and m⃗n+1 at
timestep n and n+1 respectively and the cross-correlation Cn+1,n and auto-correlation covariance
Cn,n matrices. The learned auto-correlation covariance matrix Cn,n can tell us the intra-vector
(motion parameter vector) correlations and the cross-correlation covariance matrix Cn+1,n can
tell us if any of the motion parameters can be predicted from their temporally preceding values.
They considered p⃗[n] as a stationary process (independent of time) such that m⃗n = m⃗n+1. The
predictor is a linear predictor and therefore can be described by a linear prediction equation that
uses a predictor matrix A.

ˆ⃗p[n+ 1] = A · (p⃗[n]− m⃗n) + m⃗n (11.2)

where the predictor matrix A is

A
def
= Cn+1,n ·C−1

n,n (11.3)

The statistics-based motion model is very useful to reject the motion outliers that can arise from
sensor (IMU) noise, vibration of the ego-vehicle, etc.. and can be used to predict the next pose
change as the dynamic characteristics of any vehicle can be represented by the statistics of the
ego-motion data. Despite the model’s usefulness, I didn’t implement the same in my project
because of the need for ego-motion data, which is hardly available for maritime vehicles. Also,
the ego-motion data if available can be used to model only for the vehicle on which it was recorded
to obtain the best results but this is a general problem of all the model-based approaches.

11.1.2 Previous pose change based motion predictor

It is the simplest motion predictor among all of the motion predictors as it assumes the ego-
vehicle has constant velocity and no acceleration since the last timestep and therefore, the current
pose change is equal to the last pose change.

Let Rt−1
t−2 and t⃗t−1

t−2 be the rotation matrix and the position vector between the timesteps t-1

and t-2 respectively, then the pose change Tt−1
t−2 can be composed of the rotation matrix Rt−1

t−2

and the translation vector t⃗t−1
t−2.

Tt−1
t−2 =

[

Rt−1
t−2 t⃗t−1

t−2

03×1 11×1

]

(11.4)

Similarly, let R̂t
t−1 and ˆ⃗ttt−1 be the predicted rotation matrix and the predicted position vec-

tor between the timesteps t and t-1 respectively, then the predicted pose change T̂t
t−1 can be

computed from the last pose change.

T̂t
t−1 = Tt−1

t−2 (11.5)
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such that,

R̂t
t−1 = Rt−1

t−2

ˆ⃗ttt−1 = t⃗t−1
t−2

(11.6)

This approach has huge limitations when the ego-vehicle undergoes sharp maneuvers. When the
vehicle accelerates, the previous pose change underestimates the new pose change and overes-
timates when the vehicle de-accelerates. Due to the duration time for this project, I couldn’t
explore more options and decided to use this pose change predictor.

11.2 Rotation pre-estimation

As we know, the pose consists of two types of motion: rotation and translation. When the camera
undergoes some motion, the pixels in the image displaces from their original position. The effect
of translation on the displacement of the image points diminishes if they are far enough from
the camera as the 2D displacement is inversely proportional to the depth of the corresponding
3D point and therefore, this displacement is caused solely by rotation motion. In other words,
if the 2D displacement of the far-away points in the image plane is known then it can be used
to estimate the rotation assuming that the translation has no or negligible influence on this 2D
displacement.

It should be noted that the sole purpose of the rotation pre-estimator is to have a coarse
rotation estimate that can be used by the correspondence predictor. It implies that the keypoint’s
correspondences are not available to the pre-estimator and therefore, it should use other than the
keypoints’ correspondences. In chapter 14, I will discuss the rotation estimation from far-away
areas in detail. I will also introduce some methods to compute one or more rotational angles
based on the far-away areas or the far-away keypoints.

11.3 Fusion of pose change prediction and rotation
pre-estimation

In the previous sections, I talked about a very simple pose change predictor that uses the previous
pose change as the predicted pose change and the rotation pre-estimator that gives a coarse
estimate of one or more rotational angles based on the two image frames. The full or part of the
pose information from these two methods should be fused for a final pre-estimation of the pose
change such that it can be used by the correspondence detector.

The predicted pose change T̂ can be decomposed into the translation vector ˆ⃗t and the rotation
matrix R̂.

T̂ =

[

R̂ ˆ⃗t
01×3 11×1

]

(11.7)

The rotation matrix is further decomposed into roll, pitch, and yaw Euler angles using the
algorithm 23 (see appendix A.4, p.174). Let us assume that the rotation pre-estimator estimates
only the yaw angle, then this yaw angle is replaced with the yaw angle from the pose change
predictor and then the modified Euler angles are converted back into the rotation matrix followed
by the formation of the transformation matrix (see algorithm 12). Similarly, if more than one
rotational angles are computed, then they are replaced with the predicted rotational angles and
the remaining steps remain the same. These simplifications neglect the fact that for many real
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vehicles, rotation, and translation are to some degree coupled to each other. This coupling is
represented in Bradler’s prediction model ([6]).

It should be noted that due to the limited time of the project, I managed to explore the
different methods for the rotation pre-estimator but I couldn’t manage to fine-tune or analyze
them properly to actually use them in the module. Therefore, I used only the pose change
predictor to generate the final results, however, a detailed description of the rotation estimation
from far-away areas is given in chapter 14 for future work.

Algorithm 12 Fusion of pose prediction and rotation pre-estimation

1 procedure fuse_pose(prev_pose, prev_img, prev_depth_img, curr_img, curr_depth_img)

2 pred_pose = pose_predictor(prev_pose)

3 yaw_pre_est =

rotation_estimator(prev_img, prev_depth_img, curr_img, curr_depth_img)

4 [R̂, ˆ⃗t] = decompose(pred_pose)

5 [r, p, y] = rotation2euler(R̂) ▷ see alg. 23.

6 fused_rot = euler2rotation(r, p, yaw_pre_est) ▷ see eq. A.9.

7 fused_pose = compose(fused_rot, ˆ⃗t)
return fused_pose
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A reliable and robust Keypoints Detector (KptDet) module acts as a foundation block for
any keypoints based vision pipeline. The KptDet module should be able to identify the pixels
(keypoints) from the image that have unique properties and differentiate them from the other
pixels such that they can be robustly tracked in subsequent images. An individual pixel doesn’t
contain enough information, therefore, the neighborhood around the pixel is used instead. The
neighborhood is a sub-image or a patch of pixels centered at the pixel under consideration.
The key feature of any keypoint is that it should have enough texture around it otherwise the
displacement of homogeneous surfaces from one image to another can’t be estimated using a
keypoints-based approach.

In the past, many keypoint extractors have been proposed. [31] proposed a scale-invariant
keypoint extractor called SIFT. It is very robust but computationally expensive. Similarly,
other keypoints extractors such as SURF ([3]) and ORB ([39]) fall under the most popular
keypoints extractor category. The most common properties of these feature extractors were to
find the keypoint and generate a unique description of the keypoint based on the structure of the
neighborhood. This description is used to match the keypoint against the keypoints in the next
image. In this project, I have decided to use Good Features to Track (GFTT) ([43]) to identify
the keypoints as in [15]. The GFTT is an extension of the Harris corner detector.

I used the OpenCV’s implementation for GFTT1 to find the keypoints in the image. The
implementation is based on the original paper ([43]). The constraints offered by the function to
filter the keypoints are the following.

1The link for the tutorial is given here.
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Figure 12.1: The flowchart for the KptDet algorithm.

• Maximum Corners: This parameter defines the maximum number of keypoints to be
extracted. If there are more corners than the threshold, the strongest of them have been
kept.

• Quality Level: It filters the corners according to their quality measure relative to the
keypoint with the best quality. For example, if the best keypoint has a quality measure of
1000 then with a quality level of 0.15, all the keypoints with a quality measure less than
150 are not considered.

• Minimum Euclidean Distance: The minimum Euclidean distance between any two
keypoints2.

• Masking: It is possible to mask out the region from the image that is not interested for
the keypoints generation using a binary mask of True and False. The pixels that have
False in the mask are rejected for the keypoints.

12.1 Keypoint masking

In an outdoor scene, a considerable part of the image is always covered with the sky, and
specifically in maritime scenes, water, and sky cover the most part of the image. In an ideal
scenario for the computation of ego-motion from the keypoints matching, the keypoints should
be generated in the whole image except for the textureless regions and the dynamic objects in the
image. The homogeneity can arise from the walls of the building, sky, etc., and sea, clouds, other
objects in motion, etc. covering the dynamic objects of the scene. It is critical to differentiate
between the homogeneous and textured region and the static and dynamic part of the scene. I
have attempted to resolve this approach using the masking feature of the KptDet module.

In the following sections, I will talk about the different masking strategies that have been
used.

12.1.1 Valid depth mask

The depth of each keypoint has been taken into account during the keypoint pose prediction,
rotation estimation using far keypoints, and the ego-motion estimation. The rejection of the

2I tried to understand the source code of the function in OpenCV and I found out that the function
compares the distance of the found keypoints with other keypoints to maintain the distance.
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keypoints with invalid depth measures at the earlier stage of the processing increases the accuracy
as well as reduces the chance of failure of the system. I created a mask using the disparity image
of the stereo-pair. In the mask, all the pixels that have no disparity data due to occlusion, etc,
are marked False and the mask is created.

12.1.2 Region of Interest (ROI) mask

In some peculiar setups of the camera system or the environment, it is possible to have a consistent
region or space in the image that should be disregarded before extracting the keypoints. For
example, if the deck of the ship is in the view of the camera, then the pose estimated from
the keypoints on the deck is always null and can force the pose estimator to think that the
ego-vehicle is stationary. Similarly, if the projection of the sky on the image is consistent then
it can be disregarded completely by masking it out. The knowledge of the environment can be
used very efficiently while extracting the keypoints. Taking these points into consideration, I
have provided the feature to generate a static mask where pixels are marked False for those
uninterested regions.

12.1.3 Semantic labelled mask

As we know, the motion of any object is relative to some reference frame and the ego-pose
estimator shouldn’t confuse itself with the motion of other dynamic objects in the environment.
For example, in a harbor scene, the other dynamic objects are the fellow ships and boats and if
the keypoints lie on them then the pose estimated between two consecutive frames will be biased
towards the motion of the ego-vehicle with respect to the other vehicles instead of the inertial
reference frame.

The identification of the other dynamic bodies can be done using a semantic segmentation
mask generated from the machine learning techniques. In chapter 7, I mentioned multiple strate-
gies to segment the water plane and the fellow boats. I used the fused mask (see algorithm 5,
p.52) and convert it into a binary mask such that the labels that don’t correspond to sea, water,
or boat are marked False in the mask or True otherwise3.

12.1.4 Advanced masking: Keypoints mask

The tracking of keypoints across multiple frames is an important way to improve the precision
of the ego-motion estimation. Some keypoints, in particular those which are in the far distance
and in the motion direction of the vehicle, are visible for a very long time, and establishing the
correspondence between a keypoint in frame N and a keypoint in frame N +K is very valuable
for stabilizing the ego-motion, in particular, the estimates of the rotation, if the frame difference
K is large.

The actual design idea of the ego-motion subsystem is to track keypoints from frame to frame
as long as they are visible. This is good for having correspondences over substantial motions, and
this improves the precision of the motion estimation. However, due to the limited time, I could
only prepare the keypoint tracking system for this capability, but could not fully implement it.
In the current system, I am re-using the keypoints that have been tracked from the image at
timestep t−1 into the image at timestep t and trying to track it into the image at timestep t+1.
In future work, the trajectory of the keypoints shall be used to post-optimize the ego motion and
the trajectory of the ego vehicle. In this section, I will discuss how to deal with the keypoints

3The semantically labeled mask is available only for maritime scene.
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coming from the previous frames such as the clusters between the previously tracked keypoints
and the new keypoints can be avoided.

The OpenCV’s implementation of the GFTT provides an argument called minDistance to
limit the minimum distance between any two keypoints. As stated earlier, this can be used
to avoid the clusters of keypoints. However, it can not avoid the generation of new keypoints
near previously tracked keypoints. It can be possible by creating a mask for the previously
tracked keypoints. For each previously tracked keypoint, a circular patch of radius equal to
the minDistance around the keypoint is assigned False in the mask. With this mask, no new
keypoint is generated near to the previous tracked keypoint and the minimum distance between
keypoints can be maintained.

The keypoints mask is an advanced feature of the module and can be used only in the
presence of previously tracked keypoints. Figure 12.2 shows the effect of the keypoint mask on
the distribution of the keypoints4. In the presence of previously tracked keypoints (represented as
green in color in fig. 12.2a and fig. 12.2b), the KptDet module found new keypoints (represented
as blue in color) near to previously tracked keypoints in the absence of the keypoints mask and
resulted into a cluster of keypoints. It should be noted that the new keypoints are themselves not
clustered together because of the minDistance between the new keypoints. When the keypoints
mask (see fig. 12.2c) was introduced, the KptDet module was forced to look for new keypoints
far from the previously tracked keypoints (see fig. 12.2d) and distributed the keypoints all over
the image.

12.1.5 Fusion of the masks

The different kinds of masks discussed above can be fused together to form a single boolean
mask. There are different complex strategies that can be adapted to fuse them, however, I opted
for a simple one and fussed all of them using a logical and operation. If the pixel from any of the
masks is set to False, then the corresponding pixel in the resultant mask is False. The fused
boolean mask needs to be mapped to an 8-bit unsigned integer value such that it can be accepted

4It should be noted that the parameters used to generate these results are only temporary and have
no influence on the final module.

(a) (b)

(c) (d)

Figure 12.2: The extraction of keypoints using the keypoints mask.



12.2. Implementation of Keypoint Detector 89

Table 12.1: Parameters for KptDet module

Parameters code name Values

Maximum total keypoints max_total_kps 100
Minimum total keypoints min_total_kps 4

Quality level quality_level 0.01
Minimum distance between keypoints min_kp_dist 20 pixels

Valid depth mask use_depth_mask True
ROI mask use_roi_mask False

Semantic labelled mask use_label_mask False
Keypoints mask use_keypoint_mask True

by the function. The False is mapped to 0 and True is mapped to 1. The KptDet module finds
the keypoints only for those pixels that have a non-zero value in the resultant mask.

12.2 Implementation of Keypoint Detector

The main and the only role of the KptDet module is to provide good quality of keypoints.
The maximum number of keypoints should be limited to check the computational usage and
the minimum number of keypoints should be enough for the pose computation. I decided to
choose the maximum number of keypoints to be max_total_kps to begin with and analyze
the distribution of the keypoints along the sequence and the minimum number of keypoints
to be min_total_kps as there should be at least 4 keypoints to compute the rotation from
far-away points ([2]). It should be noted that if I allow the KptDet module to generate the
maximum number of keypoints for each frame then the total number of keypoints (= previously
tracked keypoints + newly generated keypoints) may exceed the maximum limit max_total_kps.
Similarly, if I have enough previously tracked keypoints, then the minimum number of new
keypoints will be different as well. Let prev_track_kps be the number of keypoints that have
been tracked from the previous frames and can be tracked successfully using the correspondence
estimator (see chapter 13, p.91) then the maximum and minimum limit for the new keypoints
can be computed using the following equations.

max_new_kps = max(0,max_total_kps− prev_track_kps)

min_new_kps = min(min_total_kps,max(min_total_kps− prev_track_kps, 0))
(12.1)

In case of no keypoint tracking (prev_track_kps = 0), the maximum and minimum number of
keypoints are max_new_kps and min_new_kps respectively.

12.3 Discussion on keypoints generation

The OpenCV’s implementation for the GFTT keypoints is very flexible in usage. It is possible to
set the maximum number and the relative quality of the keypoints. Also, it is possible to define
the interested regions through different masks. It should be noted that the different masks that I
suggested before can vary depending on the usage. The valid depth mask and the keypoint mask
require no knowledge of the environment and can be used directly. For the time being, I have
restrained myself to use ROI mask because it requires additional knowledge of the environment
and limited the use of the semantically labeled mask for the maritime sequence only.
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I ran the KptDet module only on the KITTI data from seq. 00 to seq. 10 to check if it
is able to find the max_total_kps for every frame irrespective of any masking and tracking. I
found out that the success rate for this module was 100 percent and there was no frame in those
sequences for which the module failed to generate the desired number of points. It implies that
the standalone module to generate the keypoints is sufficient and can be coupled with the other
modules.
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In the previous chapter, I talked about the generation of the Good Features to Track (GFTT)
keypoints from the image. These independent keypoints from the frame It−1 and the frame It
can not tell us about the motion that occurred between these two frames. To measure the motion
between two frames, we need the correspondences of the keypoints from one frame to another.
In other words, we need to find where the keypoints appear in the next frame after undergoing
some unknown motion and then recover the motion from them. This is called the correspondence
problem in which the correspondences of the keypoints from frame It−1 are found in frame It.
In an ideal case, the corresponding keypoint should be found at a sub-pixel accuracy, however,
due to the change of illumination, sensor noise, and limited camera resolution, there is always a
remaining measurement error. This error is typically in the sub-pixel range, or larger, depending
on the chosen method.

In the introductory chapter (see section 3.2.2, p.20), we saw that there could be multiple
approaches to find the correspondences, and the most popular among these approaches are the
Block Matching (BM), differential matching, and the phase correlation (PhC) matching method.
The BM is very simple to use but limited to pixel-level accuracy. The differential matching
algorithm requires a number of iterations and good initial correspondence estimates to converge
to the optimal result and the classical phase correlation-based method assumes the homogeneous
motion in the regarded patch which is not true in the complex motion.

I will discuss the Correspondence Estimator (CorrEst) module in this chapter that consists
of a correspondence predictor followed by a correspondence optimizer which is based on Lukas-
Kanade (LK) differential matcher because of its sub-pixel accuracy.

91
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13.0.1 Pose pre-estimator: Rotation pre-estimation

When the ego-vehicle is doing smooth maneuvers, the prediction of the correspondences in the
next frame is very close to the reality, however, during sharp turns, the correspondences start
to undershoot or overshoot and as a result, the correspondence optimizer may fail to find the
correspondences. Taking this potential issue into consideration, I attempted to pre-estimate the
rotation motion. It should be noted that the yaw is the most dominant rotation motion for any
maritime vessel or ground vehicle, therefore, I tried to estimate the yaw motion between the
previous frame and the new frame with an assumption that roll and pitch are zero.

13.1 Correspondence predictor

The performance of the LK matcher is tightly coupled with the initialization of the keypoints’
correspondences. The simplest approach is to use the pixel coordinates of the keypoints as the
initial locations for the correspondences. This approach may work for the farthest keypoints
under a small ego-motion but for the nearest keypoints, the 2D displacements are huge and
can lead to false or no correspondences. This issue can be resolved by using a large search
window by the matcher, however, the accuracy in the location of the correspondences are reduced
significantly as it increases the probability to estimate incorrect correspondences because the
image patches look similar. To overcome this challenge, I decided to predict the location of
the keypoints from the previous frame into the current frame using a correspondence predictor
module.

Let [x′
1, x

′
2]T be the keypoint in pixel coordinate, d be the depth of the keypoint depth in

the frame It−1, and [X1, X2, X3]T be the corresponding 3D coordinate of the keypoint w.r.t the
Camera Coordinate Frame (CCF) at timestep t− 1 then the keypoint can be projected from the
image space to the 3D space.
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(13.1)

Let [Y1, Y2, Y3]T be the 3D coordinate of the same keypoint [x′
1, x

′
2]T w.r.t the CCF at timestep t,

R̂ and ˆ⃗t be the rotation matrix and translation vector respectively computed by the pose change
pre-estimator (see chapter 11, p.79), then the 3D point [X1, X2, X3]T can be transformed into
the [Y1, Y2, Y3]T .
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Finally, this 3D point [Y1, Y2, Y3]T can be projected back on the frame It.

[

y′
1

y′
2

]

=
1

Y3

[

fxY1 + cxY3

fyY2 + cyY3

]

(13.3)

The keypoints from frame It−1 can be projected on frame It using eq. 13.1 to eq. 13.3. The
keypoint predictions give a good initial estimate for the LK matcher.
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Figure 13.1: The prediction of keypoint [x′
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]T from frame It−1 to frame It.

Algorithm 13 Correspondence Predictor

1 procedure pred_corr(kps, kps_depth, pred_pose, camera_intrisics)

2 3D_kps← pixel_to_3d(kps, kps_depth, camera_intrinsics) ▷ refer eq. 13.1

3 3D_trans_kps← transform(3D_kps, pred_pose) ▷ refer eq. 13.2

4 pred_corr ← 3d_to_pixel(3D_proj_kps, camera_intrisics) ▷ refer eq. 13.3

5 return pred_corr

13.2 Correspondences optimization

The correspondence estimate obtained from the keypoint pose predictor can be accurate only if
the depth data and relative pose are precisely known, however, it is not true due to the limited
accuracy in-depth and the lack of knowledge of true pose change. The correspondences should
be close to the ground truth as much as possible for the pose estimation, therefore, some opti-
mization needs to be done. I used the OpenCV’s implementation for pyramidal implementation1

of the LK matcher ([5]) method to optimize the correspondences from It−1 to It. The pyramid
implementation can handle the large motion between the frame without increasing the window
size. The parameters to tune the function are the following.

• Search window size: It is the search window size at each pyramid level.

• Number of pyramid levels: The number of maximum pyramid levels that the algorithm
may search in to find the correspondences.

• Termination criteria: The function allows two termination criteria. The first one is
the maximum number of iterations and the second is the convergence of the displacement
vector. If the displacement in the next iteration is below this value then the criteria is
fulfilled.

1The tutorial for the function is given here.
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Figure 13.2: Correspondence prediction and optimization on frame pair 12-13 of KITTI
seq. 01. The part of the image is magnified and shown on the right. The blue circle shows
the keypoints in frame 12 and the other end of the red line is prediction and the end of
the green line that stretches from the red line is the final optimized correspondence.

Table 13.1: Initial set of parameters for LK matcher

Parameters code name Values

Search window size lk_win_size 20× 20
Pyramid levels lk_num_pyrs 0

Maximum iterations lk_itr 5
Minimum displacement (ϵ) lk_epsilon 0.1

Correspondence error threshold lk_l1_th 25

It is very crucial to choose the values of the number of pyramid levels and the search window
size as these parameters highly influence the accuracy and robustness. During large ego-motion,
the pose estimates can be significantly wrong and can lead to the poor initialization of the corre-
spondences. The increase in the window size can provide robustness but at the cost of accuracy.
Therefore, a pyramid level can be introduced instead to handle the large motion without com-
promising the accuracy of the matcher, however, a good correspondence prediction may also
eliminate the need for the pyramid approach. Assuming that I have a good correspondence
predictor, I decided to choose no pyramid levels (the zero/base pyramid level is the original raw
image) and a window size of lk_win_size. The correspondences from the LK matcher can’t be
trusted blindly and therefore, the L1 residual should be monitored and thresholded to filter out
the false correspondences. I compared the L1 residual obtained between the patches around the
current keypoint and the corresponding keypoint by the OpenCV’s function with the lk_l1_th
threshold. Any correspondence with a residual above this value is disregarded. Table 13.1 lists
the initial set of parameters and their values for the LK matcher.
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Algorithm 14 Correspondence Optimization

1 procedure opt_corr(kps, pred_kps, prev_img, curr_img)

2 lk_params = ¶lk_num_pyrs, lk_win_size, lk_epsilon, lk_itr♢
3 opt_corr, error = lk_matcher(kps, pred_kps, prev_img, curr_img, lk_params)

4 if error ≤ lk_l1_th then

5 return opt_corr

6 else

7 return NONE

13.3 Discussion on the correspondence estimator

Unlike the KptDet module, I can’t run the CorrEst module independently because of the need
for the previous pose by the correspondence predictor. I ran the pipeline on different sequences
from the KITTI dataset using the parameters defined in table 13.1. Figure 13.2 shows that the
correspondence predictor managed to give a good initial estimate and then the correspondence
got optimized at sub-pixel level accuracy by the LK matcher. It should be noted that the valid
correspondences between any pair of frames can’t exceed the maximum number of keypoints i.e.
max_total_kps.
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In this chapter, I will extend the discussion from section 11.2 on the frame-to-frame change
of the pitch, yaw, and roll angles from the far-away region. I have already mentioned that the
rotation and translation motion can be decoupled if we look at the regions in the image that are
far from the camera because the 2D displacement of the far-away pixels in the image occurs due
to rotation (the translation will have a very little influence) but in this chapter, I will prove the
same.

In [2], the authors proposed a methodology to compute the pitch, yaw, and roll based on far-
field windows. Inspired by their approach, I decided to explore the same principle of estimating
the rotational angles from far-away areas due to the following reasons.

97
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• Availability of the depth: In the case of a stereo camera, the reliable farthest points
are easy to identify.

• Decoupling between translation and rotation: As the point goes to infinity, it can be
proved that the 2D motion (i.e. the displacement between corresponding pixel coordinates)
becomes independent of the translation motion.

• Problem simplification: Having rotation from a far-away region first simplifies the
translation estimation problem as instead of solving 6 non-linear equations simultaneously
for each degree of freedom, translation can be estimated using only 3 linear equations.

• Accuracy: The results shown in [2] are very promising and encouraging.

[2] used roll, pitch, and yaw Euler angles to represent the rotation (the coordinate frame and
notations will be explained later in section 14.1.1, p.98) and made a few assumptions such that
the motion vector field (= displacement vector field) of far away points is well approximated by

• the yaw leading to horizontal shift (only), and nothing else

• the pitch leading to vertical shift (only), and nothing else

• the roll leading to in-plane rotation by the same angle (only), and nothing else

These assumptions are if the image plane was not a plane but a sphere, and it is this deviation
of the image plane from being a sphere that causes these deviations from the 2d motion field
model defined in [2]. In the following sections, I will derive the 2D displacement equations
from the motion of the camera and prove that the 2D motion becomes independent of the
translation for far-away areas followed by answering the question "What can be considered as
a far-away point to neglect the coupling between translation and rotation?". After this, I will
derive the equations for the estimation of rotation angles from the 2D motion and later propose
three different methods for the rotation estimation. One of the three methods is the simplified
implementation of the algorithm proposed in the [2]. The second method uses the depth estimate
which is missing in the previous method and estimates only the yaw angle. Finally, the third
method uses the keypoints’ correspondences which is completely different from the first two area-
based approaches. The proposed algorithms have been tested on the KITTI dataset due to the
availability of the ground truth.

14.1 3D Motion Analysis from 2D motion field

In this section, I will discuss how the 3D motion (rotation and translation) affects the displace-
ment between a pair of corresponding pixels. If a camera undergoes a 6-degree of freedom motion
(3 for rotation and 3 for translation) then it results in a very complicated expression and becomes
very difficult to analyze. To make it comprehensible, I considered each motion independently and
studied its effect on the 2D motion field. Before going any further, I have defined the reference
frame in which the rotation and translation happen.

14.1.1 Coordinate Frame

I define three coordinate frames; the World Coordinate Frame (WCF), the Camera Coordinate
Frame (CCF), and the image coordinate frame. I used the same convention as [19] to define
these reference frames. In the CCF, the z−axis points forward, the y−axis points downwards,
and the x − axis points rightwards (see Fig.. 14.1a). The WCF is aligned with the camera’s
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(a) Camera coordinate system (b) Camera and Image coordinate system

Figure 14.1: Coordinate systems for the camera and image plane.

X

Y

Z

O

yaw

pitch

roll

Figure 14.2: The rotational angles w.r.t the CCF.

coordinate system at time t = 0. It is a fixed frame and doesn’t change with time. The image
coordinate frame is located on the top left of the image with x − axis on the rightwards of the
image ( = XI) and y− axis is downwards (=YI) (see Fig.. 14.1b). The image plane coordinates
are usually used to define the pixel coordinates of the keypoints.

[2] used the roll, pitch, and yaw Euler angles to represent the rotational angles about the
z − axis, x− axis, and y − axis respectively (see Fig. 14.2). I used the same notations for the
rotational angles in this project.

14.1.2 2D motion from general motion of camera

In section 13.1, we saw how the keypoint with pixel coordinates [x′
1, x

′
2]T transformed into the

pixel coordinates [y′
1, y

′
2]T after undergoing some motion. The expressions used in that section

are rewritten here for readability.
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Let ∆ be the 2D displacement of the keypoint due to this motion.

∆ =
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y′
2

]

−
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x′
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x′
2

]

(14.4)

If the coordinates of the keypoint correspondences are given in image coordinates (in meters)
instead in the pixels, then the expression for the 2D displacement ∆ can be simplified and easy
to understand. Let [x1, x2]T be the image coordinates of the keypoint, [y1, y2]T be the image
coordinates of the correspondence, and f be the focal length in meters then the above expressions
can be simplified.
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∆ =

[

y1

y2

]

−
[

x1

x2

]

(14.8)

In the proposed module, the keypoints are expressed in pixel coordinates, therefore, I focused on
the equations that we derived for the pixel coordinates only and not for the image coordinates.
Also, in the following sections, I will restrict the R and t⃗ to have at most one degree of freedom
together.

14.1.3 Rotation about x− axis (Pitch)

Let ϕ be the pitch angle or the rotation about the x − axis in the CCF and when the camera
undergoes the pitch ϕ motion, then the equation 14.1 remains the same and the equations 14.2
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and 14.3 get simplified as below.
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Let ∆φ be the 2D displacement due to the pitch ϕ.

∆φ =
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It can be assumed that fx = fy = f if the pixels are square which is generally true nowadays
and cx = cy = 0 if the pixels are measured at the principal point of the image only. These two
assumptions simplify the above equation as follows.
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For the positive rotation ϕ, the displacement of the keypoint in the vertical direction of the image
is always negative. It implies that the keypoint [y′

1, y
′
2]T moves up in the image.

For the points at infinity i.e. d→∞, the 2D displacement ∆φ does not change because it is
independent of depth.
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14.1.4 Rotation about y − axis (Yaw)

In this case, the camera undergoes the rotation about the y − axis. Let θ be the yaw angle or
the angle of rotation about the y − axis.
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Let ∆θ be the 2D displacement due to the yaw θ.
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If we set cx = cy = 0 and fx = fy = f , the above equations can be simplified and results into
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1

−x′
1 sin θ + f cos θ

[

(x′
1

2 + f2) sin θ
fx′

2(1− cos θ) + x′
1x

′
2 sin θ

]

(14.18)

For the positive rotation θ, the displacement of the keypoint in the horizontal direction of the
image is always positive. It implies that the keypoint [y′

1, y
′
2]T moves right in the image.

For the points in infinity i.e. d → ∞, the 2d motion (=∆θ) does not change because it is
independent of depth.
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14.1.5 Rotation about z − axis (Roll)

In this case, the camera undergoes rotation about z − axis. Let ψ be the roll angle or the angle
of rotation about the z − axis.
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Let ∆ψ be the 2D displacement due to the roll ψ.

∆ψ =
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If we set cx = cy = 0 and fx = fy = f , the above equations can be simplified and results into
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(14.23)

Let Rψ be the 2× 2 rotation matrix and I be the identity matrix then the eq. 14.22 and 14.23
can be re-written in the compact form.

y⃗ ′ = Rψ · x⃗ ′ (14.24)

∆ψ = (Rψ − I)x⃗ ′ (14.25)

For the points in infinity i.e. d → ∞, the 2d motion (=∆ψ) does not change because it is
independent of depth.
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14.1.6 Translation along x− axis

In this case, the camera undergoes the translation along x−axis. Let t1 be the translation along
the x− axis.
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Let ∆t1 be the 2D displacement due to the translation t1.

∆t1 =
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 (14.28)

If we set cx = cy = 0 and fx = fy = f , the above equations can be simplified and results into
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∆t1 =
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 (14.30)

The displacement is positive for positive translation and vice-versa. For the points in infinity i.e.
d→∞, the 2d motion vanishes as displacement approaches zero.

lim
d→∞

∆t1 =

[

0
0

]

(14.31)

14.1.7 Translation along y − axis

In this case, the camera undergoes the translation along the y − axis. Let t2 be the translation
along the y − axis.
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Let ∆t2 be the 2D displacement due to the translation t2.

∆t2 =
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(14.34)

If we set cx = cy = 0 and fx = fy = f , the above equations can be simplified and results into
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The displacement is positive for positive translation and vice-versa. For the points in infinity i.e.
d→∞, the 2d motion vanishes as displacement approaches zero.

lim
d→∞

∆t2 =

[

0
0

]

(14.37)

14.1.8 Translation along z-axis

In this case, the camera undergoes the translation along the z − axis. Let t3 be the translation
along the z − axis.
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Let ∆t3 be the 2D displacement due to the translation t3.

∆t3 =
1
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(14.40)

If we set cx = cy = 0 and fx = fy = f , the above equations can be simplified and results into

[

y′
1

y′
2

]

=
d

d+ t3

[

x′
1

x′
2

]

(14.41)
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Figure 14.3: Expansion field from translation along z − axis

∆t3 =
−1

d+ t3

[

t3x
′
1

t3x
′
2

]

(14.42)

For the positive values of [x′
1, x

′
2]T , the displacement is always negative for positive displacement

and vice-versa. For the points in infinity i.e. d → ∞, the 2d motion vanishes as displacement
approaches zero.

lim
d→∞

∆t3 =

[

0
0

]

(14.43)

The motion field generated from the translation along the z − axis can be visualized as an
expansion field. If the camera sees a circle and then translates forward (i.e. along the z − axis),
then the circle starts expanding in the image (see Fig. 14.3).

14.2 What can be considered a ’far away region’?

As we already observed from the previous sections that if the point is at infinity, the contribution
of the translation motion to the 2D motion is zero, however, it is not practically possible to
identify the points at infinity. Therefore, it is very crucial to set some thresholds on the depth
such that if the point is farther than this threshold, then we can assume that the 2D displacement
happened due to rotation only.

One of the approaches can be limiting the maximum displacement caused by the translation.
Let t be the translation along any axis, ∆max be the maximum allowed 2D displacement of the
pixel due to translation only, and dth be the corresponding depth threshold, then the depth
threshold for translation motion along each axis can be computed using the equations 14.30,
14.36, and 14.42.

14.2.1 Estimating depth threshold from translation along x-axis

In equation 14.30, we can see that the translation causes the displacement in the x′
1 only. From

this, we can find the corresponding dth as follows.

dth =
ft

∆max
(14.44)
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Table 14.1: Parameters of the camera to study depth thresholds (approximate values of
the ZED 1 camera)

Parameter name code name value

FPS fps 15
Image resolution res 2208× 1242

Focal length f 1400 pixels

14.2.2 Estimating depth threshold from translation along y-axis

In equation 14.36, we can see that the translation causes the displacement in the x′
2 only. From

this, we can find the corresponding dth as follows.

dth =
ft

∆max
(14.45)

14.2.3 Estimating depth threshold from translation along z-axis

It is not very straightforward to compute the dth from translation and displacement only as it
is also a function of the pixel coordinates (see eq. 14.42). From the eq. 14.42, it is clear that
the displacement is directly proportional to the value of the pixel itself. If I want to limit the
maximum value of displacement in the image, then the focus should be on the maximum value
of the pixel coordinate.

xmax =



x′
1 for ♣x′

1♣ > ♣x′
2♣

x′
2 for otherwise

(14.46)

Once, we have the maximum value, we can calculate the dth using the following equation

dth = − t(xmax − sign(xmax)∆max)

−sign(xmax)∆max
(14.47)

where,

sign(x) =



1 for x ≥ 0
−1 for otherwise

(14.48)

The sign function is important to keep the depth threshold dth positive. The maximum transla-
tion displacement ∆max always has the opposite sign of pixel coordinate for positive translation
(see eq. 14.42).

14.2.4 Depth threshold estimation for vehicles

In this section, I will consider two values for the maximum displacement ∆max and estimate the
depth threshold dth for the cars and the ships.

In the general case, the translation motion of cars and ships is restricted to the z−axis only
and therefore, I considered the translation along the z − axis to estimate the depth threshold
dth. Let s be the speed of the ego-vehicle in Km/h and fps be the FPS of the camera, and t
be the translation of the ego-vehicle between two consecutive frames then I can compute the
translation t for different speeds of the ego-vehicle for a camera with a FPS fps.

t =
s

fps
(14.49)
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(a) 0.1 pixels of maximum displacement
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(b) 0.5 pixels of maximum displacement

Figure 14.4: Depth threshold field for the ego-vehicle moving at 20 km/h

As depth threshold dth is a function of the pixel coordinates, the threshold value is not constant
for the whole image and varies from point to point. Figure 14.4 shows the depth threshold field
for the whole image with a resolution res. It can be noticed that the shape of the field remains the
same but the range of the depth threshold dth changes with the change in the maximum allowed
displacement ∆max. When the ∆max increases, the maximum value of the depth threshold dth
in the field decreases. In case ∆max = 0.1 (see Fig.. 14.4a), the maximum approximate value
for the depth threshold dth is 4000 meters but for ∆max = 0.5 (see Fig.. 14.4b), the maximum
approximate value for the depth threshold dth is 800 meters.

Similar results can be generated for cars moving at 50 km/h, 100 km/h, and 150 km/h or for
ferries moving with speeds of 3, 6, and 10 knots. Figure 14.5 shows the depth threshold field for
different speeds and the maximum displacement ∆max with a common scale for the ferry. From
the results, it can be inferred that the depth threshold increases with the increase of the speed s
of the car, the maximum displacement ∆max, and decreases when the pixel is towards the center
of the image.

14.3 Conclusions on the dependencies of image plane
displacements on 3D motion and 3D depth

From the displacement equations for rotations, it can be observed that the displacement is not
related to the depth of the point at all in the case of pure rotations. This also happens when
we do stereo registration in which there is a virtual rotation of both cameras until their view-
ing directions are exactly parallel. Also, the displacement becomes independent of translation
motion when depth d moves towards infinity. In other words, when depth d goes to infinity, the
displacement becomes zero for translation along the x− axis, y − axis, and z − axis.

14.4 Geometrical interpretation of the yaw and pitch

[2] used the geometrical interpretation to estimate the yaw and pitch angles which is explained
in this section. Let x⃗ be the world point, p1 and p2 be the projections of the world point x⃗ on
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two consecutive images, α be the rotational motion of the camera between two images (see Fig.
14.6a), then the angle α can be computed geometrically.

α = atan2(−p2, f)− atan2(−p1, f) (14.50)

The points p1 and p2 can be converted into pixel coordinates p′
1 and p′

2 respectively using the
principal point c from the intrinsics of the camera.

p = p′ − c (14.51)
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Boat Speed = 6 knots with max displacement = 0.1
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Figure 14.5: Depth threshold field for the boat/ferry moving at different speeds. The
value of the ∆max is 0.1 pixels and 0.5 pixels for the left and right figures respectively.

(a) Two unaligned images viewing the same
point x [2]

(b) Aligned images (Corrected version from
[2])

Figure 14.6: Estimation of 2D rotation from pixel displacement
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Eq. 14.50 is generalized and can be used to compute yaw θ and pitch ψ using displacement of
matched pixels along horizontal and vertical axis.

θ = atan2(cx − p′

1x, fx)− atan2(cx − p′

2x, fx) (14.52)

ψ = atan2(cy − p′

2y, fy)− atan2(cy − p′

1y, fy) (14.53)

14.5 Rotation estimation from 2D motion

In the previous sections, we saw how the 2D displacement can be computed if the motion is
known. In this section, I reversed the problem and derived expressions to estimate the rotation
from the 2D displacement. The expressions derived in section 14.1 are used to estimate the
rotation motion.

14.5.1 Estimation of rotation about x− axis (Pitch)

In eq. 14.12, we found the expression to map the pixel coordinates from one image to another
after going through some rotation around the x−axis. I can utilize only the y′

2 component from
the equation to find the desired angle of rotation.

y′

2 =
fy(x

′
2 cosϕ− fy sinϕ)

x′
2 sinϕ+ fy cosϕ

y′

2(x′

2 tanϕ+ fy) = fy(x
′

2 − fy tanϕ)

ϕ = atan2

(

x′
2fy − y′

2fy
y′

2x
′
2 + f2

y

)

(14.54)

The results obtained in the above equation are equivalent to the one given in [2].

ϕ = atan2

(−y′
2

fy

)

− atan2

(−x′
2

fy

)

ϕ = atan2

(

tan

(

atan2

(−y′
2

fy

)

− atan2

(−x′
2

fy

)))

ϕ = atan2









−y′
2

fy
− −x

′
2

fy

1 +
−y′

2

fy

−x′
2

fy









ϕ = atan2

(

x′
2fy − y′

2fy
y′

2x
′
2 + f2

y

)

(14.55)

It should be noted that I assumed cx = cy = 0 which implies that the points [x′
1, x

′
2] and [y′

1, y
′
2]

are measured w.r.t the principle point of the camera. If they are given in pixel coordinates
i.e. measured with respect to the top-left of the image, then the equation to estimate the pitch
angleis the following.

ϕ = atan2

(−(y′
2 − cy)
fy

)

− atan2

(−(x′
2 − cy)
fy

)

(14.56)
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14.5.2 Estimation of rotation about y − axis (Yaw)

Similar to the previous section, the eq. 14.17 can be exploited to get the angle of rotation about
the y−axis. For this case, I utilized only the y′

1 component from the equation to find the desired
angle of rotation.

y′

1 =
fx(x′

1 cos θ + fx sin θ)

−x′
1 sin θ + fx cos θ

y′

1(−x′

1 tan θ + fx) = fx(x′

1 + fx tan θ)

θ = atan2

(

y′
1fx − x′

1fx
y′

1x
′
1 + f2

x

)

(14.57)

Again, the equation given in [2] to compute the yaw can be expanded to compare it with my
derivation.

θ = atan2

(−y′
1

fx

)

− atan2

(−x′
1

fx

)

= atan2

(

tan

(

atan2

(−y′
1

fx

)

− atan2

(−x′
1

fx

)))

= atan2









−y′
1

fx
− −x

′
1

fx

1 +
−y′

1

fx

−x′
1

fx









= atan2

(

x′
1fx − y′

1fx
y′

1x
′
1 + f2

x

)

(14.58)

If we notice carefully, the rotation angles I obtained from the derivation and from the original
paper are equal in magnitude but opposite in direction. This is a technical error in the paper.
The corrected equation to compute the yaw motion should be.

θ = atan2

(−x′
1

fx

)

− atan2

(−y′
1

fx

)

(14.59)

If cx ̸= 0 then the revised expression is

θ = atan2

(−(x′
1 − cx)

fx

)

− atan2

(−(y′
1 − cx)

fx

)

(14.60)

14.5.3 Estimation of rotation about z − axis (Roll)

Similar to the previous section, the eq. 14.22 can be exploited to get the angle of rotation about
the z − axis. For this case, I utilized both y′

1 and y′
2 components from the equation to find the

desired angle of rotation
y′

1

y′
2

=
x′

1 cosψ − x′
2 sinψ

x′
1 sinψ + x′

2 cosψ

ψ = atan2

(

y′
2x

′
1 − y′

1x
′
2

y′
1x

′
1 + y′

2x
′
2

) (14.61)

In [2], the authors solved the estimation problem by considering it a Procrustes problem. Pro-
crustes problem or Orthogonal Procrustes problem is the least-squares problem of transforming
a given matrix A into a given matrix B by an orthogonal transformation matrix T such that
the sums of the squares of the residual matrix E = AT−B ([41]).
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The solution to solve the Procrustes problem using the Singular Value Decomposition (SVD)
is given in [13]. If I assume c⃗i and c⃗ ′

i represent the pixel coordinates of the correspondences from

the frame It−1 and It respectively and d⃗i is the 2D displacement vector then, I can define two
corresponding point sets c⃗i ∈ C and c⃗ ′

i ∈ C′, such that their elements are related by

c⃗ ′

i = c⃗i + d⃗i (14.62)

To calculate the rotation, I translated the point sets C and C′ to the origin of the coordinate
system by subtracting the mean of the point cloud.

¯⃗c =
1

N

N
∑

i=1

c⃗i −→ ˆ⃗ci = c⃗i − ¯⃗c

¯⃗c′ =
1

N

N
∑

i=1

c⃗ ′

i −→ ˆ⃗c′

i = c⃗ ′

i − ¯⃗c′

(14.63)

Let R be a 2× 2 rotation matrix defined for the roll angle ψ.

R =

[

cosψ − sinψ
sinψ cosψ

]

(14.64)

Let A =
[

ˆ⃗c1, ˆ⃗c2, ..., ˆ⃗cN ,
]

and B =
[

ˆ⃗c′
1,

ˆ⃗c′
2, ...,

ˆ⃗c′

N ,
]

be the 2 × N matrices defined by stacking

elements (row-wise) of C and C′ respectively then the objective or the loss functions defined in
[13] and [2] to estimate the roll angle can be written as eq. 14.65 and eq. 14.66 respectively.

e⃗2 =
1

N

N
∑

i=1

♣♣ ˆ⃗c′

i −Rˆ⃗ci♣♣2 (14.65)

min♣♣AR −B♣♣F (14.66)

The loss function defined in 14.66 and used by [2] is similar to the one used in [41], however, I
believe that the authors of [2] defined it wrongly because the rotation matrix should have been
either pre-multiplied to the matrix A or the inverse of the rotation matrix should have been
used.

Explanation: If I assume, the post-multiplication and pre-multiplication of the rotation
matrix give the same results then B = RA should be equivalent to BT = ATR (the
transpose changes the matrix from column-major to row-major). then the following should
be true as well.

(BT )T = (ATR)T −→ B = RTA (14.67)

It implies that the R = RT is possible only if the rotation matrix is the identity matrix.

Example: Let us assume if A contains only one point [x1, x2] then A can be either [x1, x2]
or [x1, x2]T . If A is pre-multiplied with the rotation matrix R then we get the following
result.

RA =

[

cosψ − sinψ
sinψ cosψ

] [

x1

x2

]

=

[

x1 cosψ − x2 sinψ
x1 sinψ + x2 cosψ

]

(14.68)

however, if R is pose multiplied with A, we obtain different results

AR =
[

x1 x2

]

[

cosψ − sinψ
sinψ cosψ

]

=
[

x1 cosψ + x2 sinψ −x1 sinψ + x2 cosψ
]

(14.69)
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From the above two results, it is clear that post-multiplying rotates the point in the
opposite direction. Therefore, the definition of the rotation matrix R in [2] is either wrong
or the object function (see eq. 14.66) is wrong.

I used eq. 14.65 as the loss function that has to be minimized. If I expand the objective
function, I get the following.

e⃗2 =
N

∑

i=1

(ˆ⃗c′T
i

ˆ⃗c′

i + ˆ⃗cTi
ˆ⃗ci − 2ˆ⃗c′T

i Rˆ⃗ci) (14.70)

This equation is minimized when the last term ˆ⃗c′T
i Rˆ⃗ci is maximized which is equivalent to

maximizing Trace(RH), where H is the correlation matrix.

H =

N
∑

i=1

ˆ⃗ci ˆ⃗c
′T
i

= ABT

(14.71)

I computed the SVD of correlation matrix H and get the orthogonal vectors as follows.

U,Λ,VT = SV D(H) (14.72)

Finally, the rotation matrix R can be computed.

R = VUT (14.73)

Analysis of the roll estimation

It is necessary to perform a few tests to validate the working and accuracy of the solution to the
Procrustes algorithm to compute the roll angle. In this test, I generated a set of N 2D points
from a Gaussian distribution. The distribution has the mean µ and the standard deviation σ.
Once I have the 2D points, the matrix A can be initialized by stacking the points row-wise. A
random roll motion ψ was applied to A and corresponding matched points (let us call it B) are
generated.

A = Gauss(µ, σ, size = (2, N)) (14.74)

B =

[

cosψ − sinψ
sinψ cosψ

]

A (14.75)

A, B, and ψ represent the ideal situation where the points are perfectly matched and the location
is exactly known. To test the algorithm, I can assume that the points are perfectly matched but
with an approximate location so I added a random noise with mean µn and standard deviation
σn to A and B.

A′ = A +Gauss(µn, σn, size = (2, N))

B′ = B +Gauss(µn, σn, size = (2, N))
(14.76)

Once, the noisy data is generated, I standardized the sets by subtracting the mean (ref eq. 14.63)
and computed the correlation matrix H (ref eq. 14.71). The rotation matrix R was estimated
by applying eq 14.72, and eq. 14.73. Finally, the roll is estimated from the rotation matrix using
the following equation.

ϕ̃ = atan2(sinψ, cosψ) = atan2(R[1, 0],R[0, 0]) (14.77)
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Table 14.2: Parameters used in analysis of the roll

Parameter Value

µ 0
σ 100
N 4
µn 0
σn 1

Once the test pipeline is set, The influence of different parameters on the accuracy of roll es-
timation can be analyzed. I evaluated four parameters against the absolute roll error. These
parameters are the standard deviation of point set distribution σ, number of matched points
N , mean of noise µn, and standard deviation of noise σn. The effect of the parameters on the
absolute roll error has been plotted in Fig. 14.7. From figure 14.7, the following statements can
be made.

• The greater the standard deviation in the point set, the less the error will be. The error
doesn’t decrease much after σ = 9 and decreases very slowly after σ = 20.

• The error is very large if the number of correspondences is below 4. A similar observation
was also given in [2].

• The mean of noise has no direct influence on the error or shows no pattern.

• The error is directly proportional to the standard deviation of noise added to the data.
Hence, the accuracy in the location of points is very crucial to the estimation of error.

14.6 Implementation of the rotation estimator

The estimation of roll, pitch, and yaw angle from the far-away corresponding points has been
summarised in this section. Let c⃗i and c⃗′

i be the pixel coordinates of the corresponding points
from the frame It−1 and It respectively then, I can define two corresponding point sets C and C′

such that c⃗i ∈ C and c⃗ ′

i ∈ C′.
It should be noted that unlike the roll estimation which uses all the corresponding points at

once by treating it as a Procrustes problem, I will get one pitch ϕ and yaw θ angle for every pair
of correspondence (c⃗i, c⃗

′

i). Let [x′
1i, x

′
2i]

T and [y′
1i, y

′
2i]

T be the pixel coordinates defined by c⃗i
and c⃗′

i respectively, ϕi and θi be the pitch and yaw angle estimated for the correspondence pair
(c⃗i, c⃗

′

i) respectively, and N be the total number of correspondences, then the pitch ϕi and yaw
θi can be computed.

ϕi = atan2

(−(y′
2i − cy)
fy

)

− atan2

(−(x′
2i − cy)
fy

)

∀ i = 1...N (14.78)

θi = atan2

(−(x′
1i − cx)

fx

)

− atan2

(−(y′
1i − cx)

fx

)

∀ i = 1...N (14.79)

One potential solution to obtain the final pitch and yaw is to take the mean of the arrays. This
gives equal weight to each estimated angle. Instead of taking the mean, I computed the weighted
average where I weighted them according to their correspondence scores. The correspondence
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Figure 14.7: Analysis of Roll Estimation Algorithm

score is a measure of the quality of the correspondences. If the correspondence has more residual
error, then its score will be proportionally less, and therefore, the angle measured from this
correspondence pair will be given less weightage. Let ϕ̄ be the final estimated pitch angle and θ̄
be the final estimated yaw angle, and α = αi ∀i = 1...N be the set of the correspondences’ scores
then the final pitch ϕ̄ and yaw angle θ̄ can be computed by taking the weighted average of the
array of the angles.

ϕ̄ =

∑N
i=1 αiϕi

∑N
i=1 αi

(14.80)

θ̄ =

∑N
i=1 αiθi

∑N
i=1 αi

(14.81)
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Figure 14.8: Flow chart of an algorithm for visual inspection of far-away regions

Algorithm 15 Estimation of roll, pitch, and yaw

1 procedure get_rpy(C, C′, α)

2 \\ Pitch Estimation

3 [ϕ] = compute_pitch(C, C′, cy, fy) ▷ see eq. 14.78

4 ϕ̄ = weighted_average([ϕ], α) ▷ see eq. 14.80

5 \\ Yaw Estimation

6 [θ] = compute_yaw(C, C′, cx, fx) ▷ see eq. 14.79

7 θ̄ = weighted_average([θ], α) ▷ see eq. 14.81

8 \\ Roll Estimation

9 A = origin_shift(C) ▷ see eq. 14.63

10 B = origin_shift(C′) ▷ see eq. 14.63

11 H = ABT ▷ see eq. 14.71

12 U,Λ,VT = SVD(H) ▷ see eq. 14.72

13 R = VUT ▷ see eq. 14.73

14 ϕ = atan2(R[1, 0],R[0, 0]) ▷ see eq. 14.77
return ϕ, ϕ̄, θ̄

14.7 Identification and visualization of far-away regions

The accuracy of the estimated rotational angles highly depends only on the fact that the region
or image points under consideration are far enough. Unlike the monocular case, I can utilize the
depth maps from the stereo camera to filter out the far-away regions. The disparity map or the
depth map may have holes due to occlusions or wrong estimates due to poor illumination, low
resolution, etc. Therefore, it becomes a primary task to verify whether the disparity map can be
trusted or not.

The disparity map can be obtained using the Semi Global Block Matching (SGBM) method
or advanced methods such as Neural Network (NN). The accuracy of the former approach
suffers from the textureless surfaces and the latter tries to assign depth even to objectively non-
measurable regions such as the sky. In this project, I used a ZED camera that computes the
disparity map using its Ultra mode (see section D.2, p.184 for the definition), therefore, I tried
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to find the far-away areas using ZED disparity maps and verified visually if these far regions in
the disparity map are actually far or not.

In our actual vision pipeline, I am focusing on the regions that have some texture and
avoiding the textureless surfaces. In these regions, the reliability of the disparity map also
increases. Therefore, I want to verify the disparity map for far-away regions with some texture.
Keeping the depth and texture as constraints to find the far regions in the image, I decided to
apply these constraints independently to the input data and merge the results to get reliable
far-away regions for visual inspection. The algorithm is shown in Fig. 14.8.

To find the texture, I first computed the horizontal gradients of the left image. The motivation
to estimate only horizontal gradients is that in the case of stereo matching, the pixels on the
left image are compared against the pixels on the right image along the same horizontal straight
line (in the case of rectified images). Therefore, computing the gradient along the vertical
direction does not give extra information about the reliability of the disparity map. The output
of the gradients on regular images typically consists of edges and sometimes isolated points.
After thresholding the horizontal gradients and applying the depth filter, I can get the far-away
regions but it would be very hard to see the far-away areas among edges and points. Therefore,
in the interest of good visualization, I increased the contour-like data coming from the texture,
such that they really form areas, and this is done by lowpass filtering followed by thresholding.
Generally, Sobel or Scharr operators are used to find the gradients of the image because they also
apply Gaussian smoothing to reduce the noise. But in this case, I applied the 1-D Sobel operator
without Gaussian filtering which is computationally inexpensive, and applied the unnormalized
box filter twice. I applied the box filter twice as it effectively uses the triangular filter.

The low-pass filtered horizontal gradient image was converted into a binary mask by applying
a threshold that was chosen empirically. This exact value of the threshold is not important as
the results are used only for visual inspection and they are not part of the final vision pipeline.
Let I be a grayscale input image, Ix be the derivative of image I in the horizontal direction,
then the derivative image Ix can be computed by applying a 1D Sobel filter.

Ix = Sobel(I) (14.82)

Let box_filter be a function that does the lowpass filtering using a kernel of size k, and Îx be
the smoothed derivative of image I, then the smoothed derivative image Îx can be obtained by
applying the box filter twice.

Îx = box_filter(box_filter(♣Ix♣, k), k) (14.83)

Let Îth be the threshold for the smoothed derivative, and txt_I be the binary mask for the
texture in the image, then the texture mask txt_I is computed by comparing the value of each
pixel in smoothed derivative image Îx with the threshold

txt_I(x, y) =



1 for Îx(x, y) ≥ ˆIth
0 for otherwise

(14.84)

where, (x, y) are the pixel indices. Similarly, if Id is the depth image, dth is the depth threshold
for the far-away areas, and dep_I be the binary mask for the depth image, then the depth mask
dep_I can be obtained by comparing the depth of each pixel with the depth threshold dth.

dep_I(x, y) =



1 for Id(x, y) ≥ dth
0 for otherwise

(14.85)

These two masks are combined together using the logical and operator and applied to the left
image of the stereo pair to get the faraway region.
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Table 14.3: Parameters used in the visualization of the far-away areas

Parameter name code name value

Texture threshold Ith 1000
Depth threshold dth 40 meters

Kernel size for box filter k1 3× 3
Kernel size for box filter k2 5× 5

I considered different instants from the recorded dataset to validate the robustness of the
disparity maps obtained from the ZED camera. I used two different kernel sizes for the box
filter (see table 14.3) for the visualization. Figure 14.9 and Fig. 14.9d present different cases
that can occur very frequently during the operation of the boat. In both cases, we can see that
the disparity data is able to identify the farthest areas. In Fig. 14.9l, the far-away areas are
highlighted even in the low-exposure settings but the disparity data couldn’t handle the reflection
of the sun on the water but in the normal settings (see Fig. 14.9i), this issue can not be seen.
From these results, it can be stated that the disparity map obtained from the ZED camera can
be used to find far-away landmarks but in some cases, it doesn’t give the best results as we saw
in Fig. 14.9l.

14.8 Different methods to compute the 2D displacement
for the detected far distant image regions

As mentioned at the beginning of the chapter, I will be discussing three different methods in
the following sections that are based on the principle of estimation of rotational angles from
far-away areas. The first two methods consider a window in an image that mostly represents the
far-away area and then estimate the 2D displacement of this window in the next image using
the PhC method. On the other hand, the third method uses 2D displacement of the keypoints
within the frames. All the methods use the 2D displacements to compute the rotational angles
as mentioned in section 14.5.

The first method takes only one window from the image and uses the distance-weighted
gray value profiles to compute the yaw angle only, whereas the second method takes multiple
small windows and computes their displacement in the next image using the PhC and then
estimates all the rotational angles. Finally, the third method uses the correspondences obtained
from the Correspondence Estimator (CorrEst) module to compute all the rotational angles. It
should be noted that the first two methods are area-based methods and they do not require
the keypoints and their correspondences, therefore, they can be used anywhere in the whole
system, whereas the third method requires the correspondences and therefore, it can be used
only after the correspondences are estimated. It also implies that area-based methods can be
used to pre-estimate the rotational angles (see section 11.2, p.82) but it is not true for the
correspondences-based method.

14.9 Rotation estimation using distant gray value profiles

The main principle of the approach is based on the PhC of two 1D signals. Two 1D signals
that can represent the information distributed along the horizontal axis of the previous and the
current image are extracted. In the frequency domain, the linear translation of these signals can
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 14.9: In left figures, the original 2k HD color images are shown. The far-away
regions obtained using the kernel of size k1 and k2 are shown in the middle and right
figures respectively.
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be measured as the phase change. Therefore, when the car is moving straight (no horizontal
shift in the signal), there is zero phase change and when the car turns, a phase change occurs
between the signals that correspond to the horizontal translation between the signals due to the
yaw change. The whole algorithm will be discussed in detail in the following sections followed
by the results and comments.

14.9.1 Preparation of the 1D signals

I took a rectangular patch window from the previous and the current grayscale images. The width
of the window is kept equal to the frame width and the height of the window (win_height) is
equal to the win_height_ratio∗frame_height. The window should be aligned with the horizon
of the scene because we are mostly interested in the far region but for the KITTI dataset, I
assumed that the horizon is aligned with the camera’s horizontal axis and passes through the
center of the image. Therefore, the image patch is a horizontal strip taken from the center of the
image. Similarly, I took the patch windows from the previous and current depth images using
the same window alignment and size.

The patches are still in 2D dimension with size frame_width × win_height. To convert
these 2D signals into 1D signals, I first weighted the grayscale patches with their corresponding
depth patches such that the pixels that are far away are given more importance. A hard threshold
on the depth patch can be used to prepare a binary weighted mask of zeros and ones where the
ones are given to the pixels that have a depth higher than the threshold, however, this totally
ignores the close-range pixels which are crucial during the turns in the urban scenarios where
the close range pixels are dominating. Therefore, I passed the depth patch to a sigmoid function
(see appendix A.3, p.172) to smoothly assign the weights depending on the depth. After the

Algorithm 16 Signal preparation

1 procedure get_signal(img_patch, depth_patch)

2 signal = [0]frame_width×1

3 depth_sigmoid_patch = sigmoid(depth_patch, sig_a, sig_b)

4 for [col_img, col_weight] ∈ [img_patch, depth_sigmoid_patch]; i = 0 do

5 sig =
col_img ⊙ col_weight

sum(col_weight)

6 if sum(col_weight) ≥ sig_th then

7 signal[i] = sig

return signal

Table 14.4: Parameters for the yaw estimation using weighted gray value profiles.

Parameter code name value

Window height ratio win_height_ratio 0.2
sigmoid a param sig_a 1
sigmoid a param sig_b 5
signal threshold sig_th 0.3
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preparation of the sigmoid depth patch, the weighted average of the grayscale patch is computed1

where the weights are the sigmoid depth mask. The weighted patch is normalized to improve
the signal. If the weighted average is below the sig_th, then the value is replaced with zero (see
algorithm 16).

14.9.2 PhC between weighted gray value profiles

The PhC has to be performed in the frequency domain, therefore, I applied the Fast Fourier
Transformation (FFT) on the 1D signals using the fft function from the Numpy library. It is
recommended to use the signal length that is a power 2 for the faster computation of the FFT,
therefore, the signal needs to be cropped from the center. For example, if the signal length is
1030, then after the cropping, it will be 1024 as it is the largest power of 2 that is just before
the signal length. After the cropping of both the previous and current 1D signals, the following
steps have been taken to compute the phase change, and the algorithm is given in 17.

• Suppressing the edge effects of the signal using the hamming window.

• Computation of the FFT.

Algorithm 17 Phase Computation

1 procedure get_phase(prev_sig, curr_sig)

2 prev_sig = hamming(prev_sig)

3 curr_sig = hamming(curr_sig)

4 prev_spectrum = fft(prev_sig)

5 curr_spectrum = fft(curr_sig)

6 cross_spectrum = prev_spectrum⊙ curr_spectrum
7 ph_th = 1e−4 ∗max(♣cross_spectrum♣)
8 ph = cross_spectrum/♣cross_spectrum♣
9 for val ∈ cross_spectrum; i = 0 do ▷ Normalization

10 if ♣val♣ > ph_th then

11 cross_spectrum[i] = val/♣val♣
12 else

13 cross_spectrum[i] = 0

14 varphi = ifft(cross_spectrum) ▷ Inverse FFT
return varphi

• Computation of the cross-spectrum. 2

1In the algorithm 16, the symbol ⊙ has been used to represent the element-wise multiplication of
two arrays

2In the mathematical notations, if x is the signal then the complex conjugate of the signal will be
denoted by x
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• Dynamic estimation of the threshold value to suppress the small phase changes which are
due to the noise in the signal.

• Normalization and filtering of the cross-spectrum.

• Inverse Fourier Transformation using the Numpy library.

14.9.3 Yaw angle estimation using the horizontal shift of the signal

In the previous section, I converted the 1D image signals from two image patches and computed
the phase change between them. After the inverse FFT, the resulting 1D signal should have
a peak that corresponds to the horizontal displacement of the signal. The signal is circular in
nature, therefore, in case of no horizontal shift, half of the peak lies on the left edge of the signal
and the remaining half of the peak lies on the right edge (see Fig. 14.10). When there is a
horizontal displacement between the two input 1D signals, the peak moves accordingly. If the
peak is in the right half of the 1D signal then it implies the rotation of the image patches in the
opposite direction and therefore, the horizontal shift is negative and has to be mapped to the
left. In other words, the range of the shift in the signal is [−signal_length/2, signal_length/2],
where the signal_length is the maximum power of 2.

Let prevkp be the keypoint lying at the center of the previous image, shift be the horizontal
shift (in pixels) that the previous keypoint prevkp undergoes, and currkp be the correspondence
of the previous keypoint in the current image, then the corresponding point can be calculated
using the shift only.

0 Signal Length
0

Figure 14.10: The left figure shows the circular nature of the signal after the inverse FFT
and the right figure shows when the circular signal is opened to become a 1D signal and
the peak splits into two and moves to the edges in case of zero horizontal displacement.
The left and right figures are not on the same scale.

prevkp =

[

0
0

]

currkp =

[

shift
0

] (14.86)

I can safely assume that this keypoint is sufficiently far because we weighted the signal according
to the depth. The yaw angle can be computed from the previous prevkp and current keypoint
currkp using eq. 14.87 which is also written here.

θ = atan2

(−x′
1

fx

)

− atan2

(−y′
1

fx

)

(14.87)
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Algorithm 18 Horizontal shift from the peak

1 procedure get_shift(varphi)

2 shift = argmax(varphi)

3 if shift > signal_length/2 then

4 shift = shift− signal_length
return shift

Algorithm 19 Yaw angle pre-estimator

1 procedure get_yaw(prev_img, prev_depth_img, curr_img, curr_depth_img)

2 [prev_patch, prev_depth_patch] =

crop(prev_img, prev_depth_img,win_height_ratio)

3 [curr_patch, curr_depth_patch] =

crop(curr_img, curr_depth_img,win_height_ratio)

4 prev_sig = get_signal(prev_patch, prev_depth_patch) ▷ see algorithm 16

5 curr_sig = get_signal(curr_patch, curr_depth_patch) ▷ see algorithm 16

// Reduce the signal to have length power of 2.

6 [prev_sig, curr_sig] = crop(prev_sig, curr_sig)

7 varphi = get_phase(prev_sig, curr_sig) ▷ see algoritm 17

8 shift = get_shift(varphi) ▷ see algoritm 18

9 [prev_kp, curr_kp] = get_kp(shift) ▷ see eq. 14.86

10 yaw = get_yaw_from_corr(prev_kp, curr_kp) ▷ see eq. 14.87
return yaw

14.10 Rotation estimation using multiple faraway areas

In the previous section, I considered only a single thin patch at the center of the image and
computed the yaw angle by measuring the horizontal shift from the phase change. The method
described in this section also uses the PhC to compute the 2D motion between the two frames
but it is more similar to the approach mentioned in [2]. In this approach, multiple windows
(aligned on the horizontal axis of the image) have been considered over the horizon in the image.
The size of the window should be picked in a way such that the largest motion (in pixels) for
that window is smaller than half of the window size. It is possible to detect multiple motions
within the window using the enhanced PhC ([34]) but this feature is not available in the proposed
approach.

Let N be the total number of windows, w × h be the size of each window patch, W ×H be
the size of the image, s be the horizontal spacing between the two windows, hf be the height
factor for the placement of windows on the vertical axis of the image, and (xi, yi) be the pixel
coordinate of the center of the ith window in the image, then the origin of all the windows
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Table 14.5: Parameters for the rotation estimation from multiple faraway areas

Parameter description code name value

total number of windows (for maritime) N 45
total number of windows (for KITTI) N 20

window size w × h 64 256
spacing between windows s 40 pixels

height factor hf 0.48
allowed depth type d_type_req VERY CLOSE

depth threshold for FAR depth type farth 40 meters
depth threshold for MEDIUM FAR depth type med_farth 20 meters

depth threshold for CLOSE depth type closeth 5 meters
ratio threshold for the depth type r 0.5

(xi, yi) ∀ i = 1...N can be computed.

xi =
W

2
− s( (N − 1)

2
− i− 1)

yi = H ∗ hf
∀ i = 1...N (14.88)

Once the size of the window is defined and the coordinates of the center of the window are
computed, N window patches can be extracted from the previous and current images. Unlike
the previous method, I used depth data to check if the window is in the far region or not instead
of using them as weights. The depth type for each window from the previous image can be
classified into four categories (1) FAR, (2) MEDIUM FAR, (3) CLOSE, and (4) VERY CLOSE.

Let farth, med_farth, and closeth be the depth thresholds for the FAR, MEDIUM FAR,
and CLOSE categories respectively, n_far, n_med_far, and n_close be the number of points
in the window that is above the farth, med_farth, and closeth depth thresholds, r be the ratio
threshold which defines the depth type of the window patch, then each window can be labeled
into any of the four depth types using the criteria given below.

d_typei =



















FAR, if n_far > r(w ∗ h)

MEDIUM FAR, if n_med_far > r(w ∗ h)

CLOSE, if n_close > r(w ∗ h)

VERY CLOSE, otherwise

(14.89)

The above-mentioned depth types are given a rank in which the FAR has the highest rank and
the VERY CLOSE depth type has the lowest rank. Let d_type_req be the accepted depth type
such that the windows with the d_type_req and above this rank are accepted. For example, if
the MEDIUM FAR depth type is accepted then the windows with MEDIUM FAR as well as the
windows with FAR depth type are accepted but this is not true the other way around. Among
the N windows from the previous image, only those windows are processed further that fulfill the
depth type filtering. The windows in the current image are also removed if their corresponding
window in the previous image didn’t survive the depth type filtering.

For the PhC, the Hanning window is applied to all of the windows from the previous and the
current image to reduce the edge effects, and the PhC is performed between the corresponding
windows using the function from the OpenCV. The function returns a 2D displacement and a
score that corresponds to the strength of the identified peak.
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Algorithm 20 Rotation estimation from multiple faraway areas

1 #DEFINE SOFT_FACTOR = 0.08

2 procedure get_phc_rotation(prev_img, curr_img, prev_depth_img,win_params)

3 soft_window = generate_hamming_win(win_params) ∗ SOFT_FACTOR

4 w_centers = generate_windows(win_params) ▷ see eq. 14.88

5 [prev_w, curr_w, prev_depth_w] =

extract_windows(prev_img, curr_img, prev_depth_img)

6 for i = 0; i < N ; i+ + do

7 is_valid = get_depth_type(prev_depth_w(i), d_type_req) ▷ see eq. 14.89

8 if is_valid then

9 [∆, scores(i)] = phc(prev_w(i), curr_w(i), soft_window)

10 [points(i), corrs(i)] = create_correspondences(w_centers(i),∆)

11 roll, pitch, yaw = rpy_estimator(points, corrs, scores) ▷ see algorithm 21, p.127
return roll, pitch, yaw

The windows from the previous image can be treated as the points (with the center of the
windows as their coordinates) that are displaced to a new location in the next image. Let n
be the total number of windows in the previous image that survived the depth type filtering,
pointj = (xj , yj) be jth point in the previous image, (∂xj , ∂yj) be the measured displacement
from the PhC, and corrj be the new location of point pointj in the current frame.

corrj = pointj + (∂xj , ∂yj) j = 1...n (14.90)

The set of points point and their displaced correspondences corr can be used to estimate the
roll, pitch, and yaw using the solution given in section 14.5.

14.11 Rotation estimation from faraway keypoints

This approach is responsible to calculate the rotation estimates from the faraway GFTT and
their correspondences. In chapter 12 and chapter 13, we saw how the GFTT keypoints can be
generated and their correspondences can be estimated. This approach assumes that the keypoints
have been generated and their correspondences are already estimated.

To follow the same principle of using faraway regions to compute the rotation, I first filtered
out the keypoints and their correspondences that are not far by comparing their depth with some
threshold (d_th). As the number of correspondences is limited in this case and it is possible that
none of the correspondence survives the depth filtering, therefore, I reduced the depth thresh-
old by some amount (d_red) at every iteration until the minimum number of correspondences
(min_corr) survived or the maximum number of iterations (max_itr) reached. Finally, based
on these faraway correspondences, I computed the rotational angles.
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14.12 Comparison of different rotation estimation
algorithms

I have discussed three methods so far that can compute the rotation from the faraway region.
All of these methods use depth to distinguish the faraway region from the close region. Let Alg
1 be the algorithm described in section 14.9 that can compute only yaw angle, Alg 2 be the
algorithm that uses multiple faraway windows (see section 14.10), Alg 3 be the algorithm that
uses the faraway correspondences (see section 14.11), and BR be the algorithm from the [2]. All
of these algorithms are run on 11 KITTI sequences that have the ground truth to compare the
estimated rotation angles.

Table 14.6 shows the comparison of different algorithms. I computed the mean of the absolute
difference between the estimated rotational angle per frame and the true (ground truth) rotation
angle per frame for all the frames in the sequence for which I have a valid estimate of the rotation
angle.

In some cases, a particular algorithm can not always estimate the rotational angles and
therefore, the success rate of the algorithm should be considered as well. Let N be the total
number of frames in a sequence, n be the number of frames for which the algorithm returned a
valid rotational angle, then the success rate r can be computed by taking the ratio of the n w.r.t
the N .

r = n/N (14.91)

I used the same metric as in [2] to measure the performance of the algorithm. I computed the
mean of the absolute difference between the estimated and the true (ground truth) rotation angle
per frame for all the n frames. Table 14.6 shows the comparison of different algorithms. In the
table 14.6, r is the success rate and val is the mean value for a particular rotational angle. Alg
1 can not compute the roll and pitch angle, therefore, a cross mark (✗) has been put in front of
the roll and pitch for this algorithm. The success rate of Alg 1 and Alg 3 for all the sequences is
1, whereas, for the Alg 2, it is either 1 or approximately 1. I used the results from the [2] as the
benchmark and compared the results of the three proposed algorithms against it. The values in
the bold show that the result is better than the BR and if it is red in color, then it implies that
is best among the three algorithms and if it is bold and red in color then it means that it is the
best among all four of the algorithms.

For the roll and pitch, the Alg 2 outperformed in all the sequences whereas the Alg 3 gave
the best yaw estimates in most of the sequences. The Alg 1 is a very basic and pre-matured
implementation and therefore, it couldn’t compete with the other two algorithms but some
advanced filtering in the Alg 1 could have given completely different results. From the table
14.6, the following conclusion can be drawn.

• The keypoints-based rotation estimator gives the best yaw estimates in general but in the
case of road sequences such as 01, 04, and 06, the performance of the algorithm drops.

• The multiple far-away windows-based algorithm gives the best roll and pitch estimates
as this algorithm approximates the motion of the whole window and reduces the noises
in the roll and pitch estimates which have a zero mean value. It is not possible in the
keypoints-base rotation estimation as the noise in any correspondence of the keypoint
directly influences the estimate of the rotational angle.

• The Alg 2 also dominated the Alg 3 for the road sequences (seq 01, 04, and 06) because the
motion generated due to the fellow moving vehicles is reduced by considering a window.
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Algorithm 21 Rotation estimation from far-away points

1 procedure get_rotation(prev_kps, curr_kps, prev_kps_depth, corr_scores)

2 adap_d_th = dth

3 for i = 0; i < max_itr; i+ + do

4 num_far_kps =
∑¶1 if d > adap_d_th else 0 ∀ d ∈ prev_kps_depth♢

5 if num_far_kps ≥ min_corr then

// Keep far keypoints only.

6 far_prev_kps = filter(prev_kps, prev_kps_depth, adap_d_th)

// Keep correspondences of far keypoints only.

7 far_curr_kps = filter(curr_kps, prev_kps_depth, adap_d_th)

8 roll, pitch, yaw = rpy_estimator(points, corrs, scores) ▷ see alg. 21, p.127
return SUCCESS, roll, pitch, yaw

9 else

10 adap_d_th = adap_d_th− d_red ▷ Depth threshold reduction

return FAILURE,NONE,NONE,NONE

Table 14.7 and table 14.8 show the sub-sequences from the KITTI sequence 00 in which the
yaw error per frame is large when estimated using Alg 3. I commented on these sequences to
highlight the challenging cases for the rotation estimator.

14.13 Conclusion on the rotation estimation from
faraway region

In this chapter, I derived the equations to estimate the rotational angles from the correspondences
and then proposed three different algorithms. The first approach used the distance-weighted gray
profile to measure the yaw by computing the phase change between two images. This approach
is very simple but effective and can be used as a yaw rotation pre-estimator if some filtering
techniques are also introduced. The second approach used multiple far-away windows to measure
all three rotational angles and it also used the PhC technique. It doesn’t use the keypoints as
well therefore, it can be used as a rotation pre-estimator but the yaw estimates are somewhat not
accurate as the origin method proposed in [2] or the third approach (Alg 3 ). The final approach
used the correspondences from the ego-motion sub-system to estimate the rotational angles. It
gave good rotation estimates and especially yaw which is the most dominant and important
rotational angle.

In an ideal case, the window/area-based algorithm (Alg 1 or Alg 2 ) should have been used as
a rotation pre-estimator only but due to the limited time, I managed to explore the keypoints-
based rotation estimation algorithm the most and decided to use it initialize the rotational angles
for the final pose estimator. In future work, the window/area-based algorithm should be more
focused to use them in the rotation pre-estimator module and the decision whether to keep the
Alg 3 for the rotation initialization or not shall be made.
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Table 14.6: Comparison of different methods based on the rotation estimation from the faraway region.

Seq 0 1 2 3 4 5 6 7 8 9 10

r 0.961 0.991 0.938 0.979 0.947 0.983 0.984 0.976 0.958 0.940 0.934
BR

val 0.121 0.078 0.159 0.086 0.142 0.108 0.089 0.100 0.104 0.136 0.139
r 0 0 0 0 0 0 0 0 0 0 0

Alg 1
val ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

r 0.998 0.994 0.999 1 1 1 1 0.996 0.998 1 0.997
Alg 2

val 0.054 0.046 0.054 0.034 0.051 0.044 0.040 0.043 0.052 0.061 0.060
r 1 1 1 1 1 1 1 1 1 1 1

Roll

Alg 3
val 0.131 0.066 0.140 0.065 0.077 0.095 0.069 0.109 0.107 0.128 0.134

r 0.999 0.999 0.999 0.998 0.996 0.999 0.999 0.999 0.999 0.999 0.999
BR

val 0.044 0.024 0.053 0.038 0.040 0.033 0.026 0.030 0.034 0.040 0.040
r 0 0 0 0 0 0 0 0 0 0 0

Alg 1
val ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

r 0.998 0.994 0.999 1 1 1 1 0.996 0.998 1 0.997
Alg 2

val 0.034 0.021 0.032 0.026 0.021 0.025 0.020 0.022 0.028 0.029 0.032
r 1 1 1 1 1 1 1 1 1 1 1

Pitch

Alg 3
val 0.079 0.056 0.088 0.063 0.107 0.059 0.058 0.062 0.069 0.079 0.077

r 0.999 0.999 0.999 0.998 0.996 0.999 0.999 0.999 0.999 0.999 0.999
BR

val 0.133 0.068 0.126 0.098 0.121 0.114 0.105 0.151 0.123 0.125 0.121
r 1 1 1 1 1 1 1 1 1 1 1

Alg 1
val 0.292 0.328 0.400 0.241 0.356 0.271 0.444 0.347 0.279 0.433 0.305
r 0.998 0.994 0.999 1 1 1 1 0.996 0.998 1 0.997

Alg 2
val 0.128 0.141 0.149 0.097 0.144 0.102 0.089 0.094 0.112 0.139 0.134
r 1 1 1 1 1 1 1 1 1 1 1

Yaw

Alg 3
val 0.095 0.108 0.119 0.077 0.218 0.061 0.122 0.062 0.076 0.103 0.079
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Table 14.7: Scenes from the KITTI seq. 00 where yaw error per frame is relatively large.

Seq
Frame number

Comment
Starting End

00 99 108 from beginning to half of the turn
00 175 175 A very close point tracked
00 195 108 from beginning to half of the turn
00 347 360 Because of the high pitch in motion vectors?
00 426 423 from beginning to half of the turn
00 440 400 A very close points tracked
00 573 580 from beginning to half of the turn
00 655 655 A very close points tracked
00 737 744 during beginning to half of the turn
00 942 954 from beginning to half of the turn
00 962 962 A very close points tracked
00 990 990 A very close points tracked
00 1045 1045 A very close points tracked
00 1055 1072 A close points tracked from trees and a few of them have

wrong correspondences
00 1093 1096 A close points tracked from trees and a few of them have

wrong correspondences
00 1027 1032 from beginning to half of the turn
00 1192 1192 Motion vectors in trees
00 1214 1221 Close scene
00 1620 1620 Unidentified reason
00 1761 1800 Mostly keypoints on trees
00 1944 1963 Less keypoints, keypoints on trees? High errors
00 2094 1963 Close scene. Some other issues as well as there are high errors
00 2358 2440 error cluster. close scene, keypoints on trees, wrong corre-

spondences maybe
00 2831 2870 close scene with turn
00 3884 3913 a lot of trees

Table 14.8: Scenes from the KITTI seq. 00 where yaw error per frame is huge.

Seq
Frame number

Comment
Starting End

00 1058 1058 cluster of wrong or close correspondences
00 1955 1970 close scene and unidentified reasons
00 2402 2430 wrong correspondences and close scene
00 2836 2870 a closing scene towards trees
00 2965 3000 wrong correspondences from trees and then turns
00 3240 3277 turning around a close scene
00 3340 3383 turning around a close scene
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In the ego-motion estimation sub-system, I talked about the generation of the keypoints in
an image, pre-estimation of the pose change that can be used by the correspondence estimator,
and then rotation estimation based on these correspondences. The final step for the ego-motion
is to estimate the pose change from the correspondences with the help of the estimated rotation
from the far-away correspondences.

During the prediction of the pose (see chapter 11, p.79), I said that the pose prediction module
uses the previous pose change for the prediction but I didn’t talk about what will happen when
the system starts. In this chapter, I will talk about another module that handles the initialization
(also referred to as bootstrapping) of the system. Another module that will be discussed in this
chapter is the estimation of the pose change using the correspondences.

The pose can be estimated from two frames if the correspondence between some of their pixels
is given. This pose estimation problem can be solved in multiple ways. In [18], the authors talked
about 3 different strategies that can be implemented to estimate the pose change which are also
briefly mentioned below.

• 2D-to-2D: In this approach, the depth data is not used, and the Essential matrix is
computed from the correspondences. If the camera calibration matrix is not known, then
the Fundamental matrix will be computed. The Essential matrix is decomposed into the
rotation matrix and the translation vector. In the absence of the depth data, the scale can
not be estimated as the translation vector is not up to the scale.

• 3D-to-3D: In this approach, the keypoints from both frames are converted into their
corresponding 3D points, and then 3D points from one Camera Coordinate Frame (CCF)
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are transformed into the second CCF using some unknown transformation matrix and then
the error between the corresponding 3D points and transformed 3D points is minimized
using some non-linear optimizer.

• 3D-to-2D: This approach is considered to be the best among the three of them if the
depth data is available. It also computes the 3D points from the keypoints from one frame
but unlike the previous case, it projects these 3D points on the other frame and then
minimizes the reprojection error. It is better than the 3D-to-3D approach because the
previous approach triangulates the keypoints twice (one for each frame) and because of
that, the error in the second triangulation gives more uncertainty to the pose estimation.
Therefore, the minimization of the reprojection error is proven to be more robust than the
above methods. This approach is also called Perspective-n-Point (PnP).

15.1 Bootstrapping of the ego-motion estimator

This module handles the initialization of the system for the first two timesteps. Let Tw
0 be the

pose of the CCF at first timestep t = 0 w.r.t theWorld Coordinate Frame (WCF), then the pose
Tw

0 is initialized to be an identity matrix of size 4× 4.

Tw
0 = identity(4)

=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(15.1)

When the second frame arrives in the system at timestep t = 1, theKeypoints Detector (KptDet)
module detects the keypoints in the first frame and the correspondence predictor predicts the
location of these keypoints in the second frame but the pose available to the system is the initial
pose Tw

0 . This initial pose contains no knowledge of the motion and therefore it can not be used
to predict the next pose change T1

0 and later used by the correspondence predictor. In this case,
the bootstrapping comes in handy as it estimates the pose change of the CCF T1

0 between the
first t = 0 and second timestep t = 1.

The bootstrapper uses the description-based (see section 3.5.1, p.3.5.1) pose change estima-
tion to estimate the pose change T1

0. I extracted the ORB features from the first and second
frame using the OpenCV library 1 and then matched them using the knn based Brute Force
matching2. In this matching, the algorithm computes the distance between the descriptor from
frame 1 with all the descriptors from frame 2 and keeps the top two matches that have the least
distance. The knn approach was used such that the ratio test can be applied to reject the outliers
after the matching of the features. Let di,1 and di,2 be the distances for the top two matches
in the second frame for a ith descriptor in the first frame, N be the total number of detected
features in the first frame such that i = 1...N , and rth be the ratio threshold, then, in the ratio
test, the ratio r of the least distance di,1 is taken w.r.t the second least distance di,2 such that is
this ratio r is below the threshold rth, then the match can be accepted.

matchi =







True, if
di,1
di,2

< rth,

False, otherwise
∀ i = 0...N (15.2)

1The tutorial to find the ORB features is here.
2The link to the tutorial is here.
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Once, the correspondences are found between the first two frames, the pose change is computed
using the correspondence-based pose estimator which will be discussed in the next section. The
pose change T1

0 estimated by the feature-based ego-motion estimator during the bootstrapping
is passed to the pose-change predictor where it doesn’t process this pose change and forwards it
to the correspondence predictor.

15.2 Pose change estimation using the correspondences

As mentioned at the beginning of the chapter, I had three choices to compute the pose change
from the correspondences but I used the PnP based approach because it gives much better results
as compared to the other two approaches. In chapter 13, I also mentioned that the outliers in
the correspondences are very dangerous for the whole system and they should be identified at
all costs. Taking this comment into consideration, I wanted to use a pose estimator that can
ignore as much as outliers as possible during the pose change estimation. I decided to use the
solvePnPRansac3 function from the OpenCV library. This function uses the Random sample
consensus (RANSAC) to filter out the outliers together with the PnP to estimate the pose change.

This function accepts the 3D keypoints from the previous frame and their corresponding 2D
points in the current frame. Therefore, the 2D keypoints have to be converted into the 3D points.
The eq.13.1 can be used to project the keypoint from the pixel space to the Cartesian space. Let
[x′

1, x
′
2]T be the keypoint in pixel coordinate, d be the depth of the keypoint depth in the frame

It−1, and [X1, X2, X3]T be the corresponding 3D coordinate of the keypoint w.r.t the Camera
Coordinate Frame (CCF) at timestep t − 1. With this, the keypoint can be projected from the
image space to the 3D space.





X1

X2

X3



 = d















(x′
1 − cx)

fx

(x′
2 − cy)
fy

1















(15.3)

Also, the function assumes an identity transformation matrix in case the initial transformation
matrix is not provided but in my case, I have the prediction of the pose change (see section 11.1.2,
p.81) and the estimation of the rotational angles from the far-away keypoints (see section 14.11,
p.125). The pose information obtained from these two can be fused together using algorithm 22
to obtain an initial transformation matrix.

Finally, the 3D points in the w.r.t the previous CCF, their correspondences in the current
frame, and the initial estimate of the pose change can be used together to estimate the pose
change between the frames.

3The link to the tutorial is here.
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Algorithm 22 Fusion of pose prediction and rotation from faraway keypoints

1 procedure get_init_pose(prev_pose, prev_kps, curr_kps, prev_kps_depth, corr_scores)

2 pred_pose = pose_predictor(prev_pose) ▷ see section 11.1.2, p.81

3 status, r, p, y =

get_rotation(prev_kps, curr_kps, prev_kps_depth, corr_scores) ▷ see alg. 21.

4 if status == SUCCESS then

5 [R̂, ˆ⃗t] = decompose(pred_pose)

6 R = euler2rotation(r, p, y) ▷ see eq. A.9.

7 fused_pose = compose(R, ˆ⃗t)

8 else

9 fused_pose = pred_pose

return fused_pose
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As a reminder, I have been focusing on ego-motion estimation using the left image from the
stereo camera only and using the right image to generate the depth map only. This approach
to estimate the pose change between two timesteps is sufficient and can be used without any
roadblocks, however, in this approach, a lot of information from the right image has been ignored.
When I found the keypoints in the left image, I only tried to find their correspondences in the next
left image using the Correspondence Estimator (CorrEst) module (see chapter 13, p.91). The
correspondence optimizer provides the final correspondence by minimizing an error metric used
by the Lukas-Kanade (LK) differential matcher. In most cases, the optimized correspondences
are very close to the true correspondences but in some rare cases where unexpected motion
occurs, a few outliers in the optimized correspondences can be observed. These outliers have
a drastic effect on the ego-motion estimation and therefore, some measures should be taken to
minimize the number of outliers.

Stereo keypoint matching is the extended version of the previous approach and can be imple-
mented only for setups that have more than one camera, such as a stereo camera, with overlapping
images. It imposes more constraints while doing the correspondence estimation such that reliable
correspondences can be estimated.

The idea of the stereo keypoint matching algorithm is to find the keypoints in the left image
(using a keypoint extractor) and then find the corresponding keypoints in the right image of
the same stereo-pair (using the disparity image) and then find their correspondences in the left
and right image of the next stereo-pair respectively by minimizing a joint loss function. In an
ideal case, the correspondences found in the left and right image for an original keypoint from
the previous left image should lie on the same horizontal axis (if the stereo images are rectified).
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The joint optimization of the correspondences can be done in Block Matching (BM) mode or in
differential LK style. The former is simple to implement and the latter is much more difficult to
implement.

In this chapter, I will discuss the correspondence predictor that can be used by a stereo-
matching algorithm followed by a loss function for the pose change estimation. It should be
noted that the joint optimization of the correspondences and the pose change estimation are left
for future work and this algorithm has no influence on the ego-motion estimation sub-system
that I proposed before.

16.1 Stereo Correspondence Prediction

The stereo correspondence prediction is similar to the correspondence predictor proposed for
the ego-motion estimation sub-system (see section 13.1, p.92) but the former also predicts the
location of the keypoints in the right image of the stereo pair (see Fig. 16.1). This process is
done in three steps.

• The keypoint in the previous left image is predicted in the current left image.

• The keypoint in the previous left image is predicted in the previous right image.

• The keypoint in the previous right image is predicted in the current right image.

16.1.1 Prediction of keypoints from left-to-left image

The derivation for the prediction of the keypoint on the next frame using an estimate of the pose
change already has been done in section 13.1, p.92 but I derived it again in this section because
of the new notations used for the stereo pair (see Fig. 16.2).
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Figure 16.1: Projection of a point P on two stereo images in two different positions
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Figure 16.2: Prediction of keypoint location

Let ILt−1 be the left image from the stereo pair at timestep t−1, x⃗Ln
def
=

[

xL1n xL2n
]T

be the
normalized coordinate vector of the keypoint from left image ILt−1, and dL be the depth of the
keypoint and x⃗L be the 3D point in left CCF at timestep t− 1, then the normalized coordinate
vector x⃗Ln can be mapped to the 3D point x⃗L using the depth dL.

x⃗L =











xL1

xL2

xL3











= dL











xL1n

xL2n

1











(16.1)

Let Tt
t−1 be the prediction of the pose change (see chapter 11, p.79) of the CCF from timestep

t − 1 to timestep t, then it can be decomposed into the rotation matrix R and the translation
vector t⃗.

Tt
t−1 =

[

R t⃗
01×3 11×1

]

(16.2)

Let y⃗L be the transformed 3D point x⃗L w.r.t the CCF at timestep t, then the same transformation
matrix Tt

t−1 can be used to transform the 3D point x⃗L from the CCF at timestep t − 1 to the
CCF at timestep t.

y⃗L =











yL1

yL2

yL3











= Rx⃗L + t⃗ (16.3)

In the homogeneous coordinates,
[

y⃗L

1

]

= Tt
t−1

[

x⃗L

1

]

(16.4)

Let y⃗Ln be the normalized coordinates of the projection of the 3D coordinate yL on the left image
ILt at timestep t, then the predicted keypoint y⃗Ln can be computed from the 3D point y⃗L.

y⃗Ln =





y⃗L1n

y⃗L2n



 =
1

yL3





yL1

yL2



 (16.5)
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16.1.2 Prediction of keypoints from left-to-right image

Let IRt−1 be the right image from the stereo pair at timestep t− 1, and x⃗Rn
def
=

[

xR1n xR2n
]T

be
the normalized coordinate vector of the keypoint x⃗Ln in right image IRt−1, fx be the focal length
of the camera in the horizontal axis, and dL be the disparity between the keypoint in the left and
right image of the stereo pair w.r.t, then the keypoint in the right image x⃗Rn can be estimated
from the keypoint in the left image x⃗Ln using the disparity dL.

x⃗Rn =





x⃗R1n

x⃗R2n



 =





x⃗L1n

x⃗L2n



 +







dL

fx

0






(16.6)

16.1.3 Prediction of keypoints from right-to-right image

In the case of the rectified stereo images, the depth of any 3D remains the same whether it is
w.r.t the left CCF or w.r.t the right CCF. Let x⃗R be the 3D point for the keypoints x⃗Rn in the
right CCF at timestep t− 1, then the 3D point x⃗R can be computed using the depth dL and the
normalized image coordinates of the keypoint x⃗Rn .

x⃗R =











xR1

xR2

xR3











= dR











xR1n

xR2n

1











(16.7)

The 3D point x⃗R can not be pre-multiplied with the transformation matrix T tt−1 directly to
get the transformed 3D point y⃗R as in the section 16.1.1. For the left camera, it was possible
because the transformation matrix T tt−1 and the 3D point y⃗L were both in the left CCF. For
the projection of points in the right image, the transformation between the left camera and the
right camera has to be considered as well.

As the left and the right camera of the stereo setup are fixed on a rigid body, the transforma-
tion between them always remains constant (assuming the impact of the temperature, vibrations,
tear, and wear on the stereo rig is negligible). In our case, the images are already rectified so
the only motion parameter for the transformation between the left and the right camera is the
baseline b along the x-axis of the CCF. Let TR

L be the transformation matrix that transforms
the point from the left CCF to the right CCF, then the transformation matrix TR

L depends only
on the baseline b.

TR
L =









1 0 0 −b
0 1 0 0
0 0 1 0
0 0 0 1









(16.8)

Let TL
R be the inverse of the transformation matrix TR

L .

TL
R =









1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1









(16.9)

To transform the 3D point x⃗R from the right CCF at time step t− 1 to the right CCF at time
step t, it is first premultiplied with TL

R to transform it to left CCF, then premultiplied with Tt
t−1
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to transform it to left CCF at time step t and then finally premultiplied with TR
L to transform

it to the right CCF at timestep t. The order of the transformations is summarized below.

[

y⃗R

1

]

= TR
LTt

t−1TL
R

[

x⃗R

1

]

(16.10)

Finally, the 3D coordinate y⃗R can be projected back onto the right image plane IRt , and the
normalized coordinates yRn can be obtained.

yRn =





yR1n

yR2n



 =
1

yR3





yR1

yR2



 (16.11)

16.1.4 Comments on the stereo correspondence predictor

The maths behind the correspondence predictor is very straightforward and should work (theoret-
ically) given the accurate depth of the keypoint and the pose change between the two timesteps
but in practice, this information is not accurately known to us. The depth is approximately
known and the pose change information can only be predicted up to a certain accuracy. To
check the reliability of this predictor, I tested this algorithm on the KITTI dataset where the
transformation from the ground truth can be used and the depth can be calculated using the
SGBM method.

Fig. 16.3 shows the results of the stereo correspondence predictor on the KITTI dataset.
Fig. 16.3a reflects the patch of size 16 × 16 around a GFTT keypoint in the left image and
Fig. 16.3b shows the corresponding patch in the right image obtained using the disparity of the
GFTT keypoint. Patches with size 64 × 64 are shown in Fig. 16.3c and Fig. 16.3d for better
visualization of 16.3a and 16.3b respectively. The predicted location of the keypoint at the next
time step on the left and right images are shown in Fig. 16.3e and 16.3f respectively. Fig. 16.3g
and 16.3h shows fig. 16.3e and 16.3f but with bigger patch size for better visualization. From
Fig. 16.3e and Fig. 16.3f, it can be said that the predictor did its job well and gave a good
approximate of the location where this keypoint can be found in the next stereo frames. However,
it should be noted that it failed sometimes to predict the location of the keypoint with good
accuracy. This behavior could be due to poor disparity estimation.

16.2 Loss function for the motion estimation from stereo
correspondences

In the previous section, I talked about the stereo correspondence predictor that can predict
the location of the GFTT keypoint from the previous left image to the previous right image
and the current stereo images. The correspondences can be optimized if I have an optimizer
that slides the search window in the current left and right images together such that combined
error metrics (for say SSD) can be minimized. Let SSD be a function that computes the SSD
between the two patches and ∂ be the 2D displacement that needs to be estimated to optimize
the correspondences, then the loss function for the stereo correspondence optimizer may look
like the following.

min
∂

{

SSD((yLn + ∂), xLn) + SSD((yRn + ∂), xRn )
}

(16.12)

For the pose estimation from the stereo correspondences, we can combine the reprojection
error from the correspondences from the left frames and the right frames respectively. Let
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16.3: The results from the stereo correspondence detector. The images are ex-
plained in the section 16.1.4.

T̂t
t−1 be the homogeneous transformation matrix that defines the pose change between two

timesteps, reproj(T, x) be a function that transforms 3D point x to some other reference frame
using homogeneous transformation matrix T (see eq. 16.4) and then project it on the image at
timestep t using eq. 16.5. With this, the pose changes T̂t

t−1 can be optimized such that the joint
reprojection error is minimized.

min
T̂

t

t−1

{

♣♣yLn + ∂ − reproj(T̂t
t−1, x

L)♣♣+ ♣♣yRn + ∂ − reproj(TR
LT̂t

t−1TL
R, x

R)♣♣
}

(16.13)
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In the previous chapters, I discussed the main architecture of the ego-motion sub-system (see
chapter 5, p.31) and the corresponding modules and the components of the sub-system (see part
IV, p.73). The final module of the ego-motion estimation sub-system returns the pose change
between two timesteps. It is crucial to check the performance of the sub-system against the
ground truth such that the edge cases can be identified and the performance of the system can
be improved. If any of the modules is not carefully designed or the parameters are not carefully
tuned, then the accuracy can be dropped significantly. In this chapter, I have looked into the
various aspects of the system and tried to identify the issues in the system and what can be
reconfigured to make the system better.

17.1 Analysis of the correspondences estimator

A good and robust Correspondence Estimator (CorrEst) should find the accurate correspon-
dences and maintain the total number of correspondences. In the absence of true correspon-
dences, the correspondence can be considered good only if the residual error between the corre-
sponding keypoint and the original keypoint is below some threshold (see algorithm 14, p.95).
If the CorrEst couldn’t find enough correspondences, then the pose can not be estimated. For
example, the 5 Point algorithm ([33]) requires at least 5 correspondences to estimate the pose.
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(e) KITTI Seq 06
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(f) KITTI Seq 08

Figure 17.1: The moving average on the different total valid correspondence statistics for
different KITTI sequences without pyramid approach. The red and blue plot shows the
number of valid correspondences for newly generated keypoints and previously tracked
keypoints. The black plot shows the total number of valid correspondences

Therefore, I decided to analyze the CorrEst module by looking at the total number of correspon-
dences. The total number of correspondences consists of two types of correspondences. First, the
correspondences of the previously tracked keypoints and the second from the newly generated
keypoints. In chapter 12, I mentioned that the Keypoints Detector (KptDet) module was able
to detect approximately the maximum number of keypoints max_total_kps (including the pre-
viously tracked keypoints and the new keypoints), the valid number of correspondences between
any pair of frames can’t exceed the maximum number of keypoints i.e. max_total_kps.

Figure 17.1 shows the number of valid correspondences (after the moving average) for different
KITTI sequences. When I ran the CorrEst module on seq. 00, I found out that the number of
valid correspondences was dropping below half of the maximum allowed correspondences during
the sharp turns (refer fig. 17.1a). To validate this observation, I ran the CorrEst module on
sequence 01 in which the car takes the turn but with a bigger turning radius, sequence 04 in
which the car takes no turn at all, sequence 06 in which the car takes two 180◦ turns on the road,
and finally sequences 02 and 08 which are similar to sequence 00 in terms of the sharp turns of
the car. The sudden drop in correspondences can be seen in sequences such as 02, and 08 as
well as shown in Fig. 17.1c and Fig. 17.1f respectively. Sequence 01 from the KITTI dataset is
a highway sequence and the car didn’t take any sharp turn on the highway which is the most
suitable condition for the current LK matcher settings but for the other urban sequences such as
00, 02, and 08, I found that the success rate for CorrEst to find the correspondences decreased
during the sharp turns.

From fig. 17.1b, fig. 17.1d, and fig. 17.1e, it is clear that the module works very well when
the turns have a high radius of curvature but on the other hand, the performance decreases
significantly when the ego-vehicle takes any sharp turns (see fig. 17.1a, fig. 17.1c, and fig. 17.1f).
The possible reason behind this limitation of the module is the inaccurate prediction of the
correspondences. When the vehicle was accelerating or deaccelerating during sharp turns, the
previous pose used by the correspondence predictor underestimated and overestimated the turns
respectively resulting in invalid correspondences.

The possible solutions to improve the performance of the CorrEst module is either by intro-
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(c) KITTI Seq 08

Figure 17.2: The moving average on the different total valid correspondence statistics
for different KITTI sequences with pyramid approach.

ducing a good pose estimator or by letting the Lukas-Kanade (LK) matcher to wider its search
area. The former solution is inevitable and should be picked in any case but for the robustness of
the CorrEst module, I decided to introduce a pyramid level during the search for the correspon-
dences. This solution proposed no harm or advantage to the sequences 01, 04, and 06, however,
the success rate for the valid correspondences got better for the urban sequences (refer fig. 17.2).

17.1.1 Effect of pyramidal approach on yaw

Previously, I mentioned that the introduction of the one pyramid level in the LK matcher,
improved the number of valid correspondences but it doesn’t imply that the precision of these
correspondences is improved as well. The only way to know this is to look at the error between
the estimated pose change and the true pose change (from the ground truth). As we saw before,
the CorrEst module is very sensitive to sharp turns, it can be stated that the error in yaw per
frame decreases if the pyramid level improved the module. Therefore, I focused on the yaw
error per frame only to analyze the performance of the module before and after the pyramidal
approach because the yaw is the dominant rotational term for a vehicle and it is also responsible
for the drop of the correspondences during sharp turns. If the pyramidal approach reduces the
yaw error or at least does not increase it then we can safely assume that there is no side-effect
on the rest of the pipeline.

I compared this estimated yaw angle per frame (estψ) with the ground truth (gtψ) and
computed the yaw error per frame (errorψ) by taking their absolute difference.

errorψ = ♣gtψ − estψ♣ (17.1)

In figure 17.3, we can see the impact of the introduction of one pyramid level on the yaw error
per frame especially for sequences 00, 02, and 08. The difference between the errorψ for the
pyramid and for the non-pyramid approach is so huge for sequences 00, 02, and 08 that the
errorψ appears to be approximately zero as compared to the non-pyramid approach (see Fig.
17.3a, Fig. 17.3c, and Fig. 17.3f). The pyramid approach increases the search area without
increasing the search window size and therefore, it can compensate for the overestimation and
underestimation of the prediction of the pose change which is required during the sharp turns
in the urban sequences. However, the pyramid approach didn’t reduce the errorψ at all for
sequences 01, 04, and 06 as shown in Fig. 17.3b, Fig. 17.3d, and Fig. 17.3e respectively. It
is due to the fact that the radius of curvature was already big in sequences 01, 04, and 06 as
compared to the other remaining sequences. In other words, the pyramid level should be used
only if the pose change pre-estimator is not good enough and the sudden change in motions can
be observed. In the following sections, I used one pyramid level for all the sequences.
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Figure 17.3: The moving average on the absolute yaw error per frame was plotted for
different KITTI sequences with and without the pyramid approach. The black and red
plots show with and without pyramid level approach.

17.2 Planar pose analysis

The accuracy in the pose or the trajectory itself is very crucial for the ego-motion estimation
sub-system. If I ran the system on the whole KITTI sequence, I will obtain a trajectory that
may or may not align with the actual trajectory obtained from the ground truth data because
the errors in the estimated poses accumulate over time and the trajectory diverges from the
ground truth eventually. In this section, I focused on the strong frame-to-frame pose errors first
to identify the critical situations in which the system is underperforming.

For the car moving on the planar surfaces, we are mostly interested in the position of the
car in the x − z plane and its heading (yaw) in the Camera Coordinate Frame (CCF). It is
because the pose in y− axis has a zero mean value because of the planar constraint between the
ground and the car and the roll and pitch angles also have a zero mean value as the main source
of the roll and pitch angles are the vibrations from the ego-vehicle and the bumps on the road
surfaces. Therefore, these three pose parameters (position of the ego-vehicle in x−z plane and its
heading (yaw)) have been considered to analyze my ego-motion estimation system. I compared
the estimated absolute pose with the ground truth. Instead of comparing the frame-to-frame
poses for each timestep, I compared the relative pose of the CCF at timestep at t = n+L relative
to the pose at timestep t = n (referred as Tn

n+L), where L is the sliding window’s width, to check
how much the estimated pose diverged since timestep t = n until t = n + L. It highlights the
critical sequences where the strong pose errors are occurring.

17.2.1 Estimation of the relative pose errors between two timesteps

To compute the relative pose of the camera after L frames w.r.t the current frame n, I need
the absolute poses at these timesteps i.e. Tw

n and Tw
n+L which can be calculated from the

relative pose estimates as mentioned in the section 2.1.1. The pose Tn
n+L can be calculated by

pre-multiplying the inverse of Tw
n (see eq. 2.4) with Tw

n+L.

Tn
n+L = inv(Tw

n )Tw
n+L (17.2)
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Using the above equation, I obtained two relative poses: one for the estimated pose data
(est_Tn

n+L) and the second for the ground truth pose data (gt_Tn
n+L). To compute the position

error and the orientation error between them, I need to decompose the relative poses or the
homogenous transformation matrices into the rotation matrix and the translation vector.

est_Tn
n+L =

[

est_Rn
n+L est_t⃗ n

n+L

01×3 11×1

]

gt_Tn
n+L =

[

gt_Rn
n+L gt_t⃗ n

n+L

01×3 11×1

] (17.3)

The rotation matrices est_Rn
n+L and est_Rn

n+L can be decomposed into the Euler angles roll
ψ, pitch ϕ, yaw θ (see algorithm 23, p.174).

estφ, estθ, estψ = rotation2euler(est_Rn
n+L)

gtφ, gtθ, gtψ = rotation2euler(gt_Rn
n+L)

(17.4)

Let eθ be the heading error, then it can be estimated by taking the absolute difference between
the estimated and true heading.

eθ = ♣estθ − gtθ♣ (17.5)

Let est_t
def
=

[

est_t⃗ n
n+L[0] est_t⃗ n

n+L[3]
]T

be the estimated relative planar position,

gt_t
def
=

[

gt_t⃗ n
n+L[0] gt_t⃗ n

n+L[3]
]T

be the true relative planar position between the timesteps
n and n+L, and ∆t be the difference in the estimated and true relative positions, then the error
et in position can be computed as follows.

∆t = est_t− gt_t (17.6)

et =
√

∆T
t ·∆t (17.7)

17.2.2 Discussion on the relative pose errors for different KITTI
sequences

Figure 17.4 and Fig. 17.5 shows the position errors and the heading errors for sequences 00,
01, 02, 04, 06, and 08 with the sliding window length L = 10. To compare different sequences
w.r.t their position and heading errors, the vertical and the horizontal scale for each plot should
have been the same but I decided not to do that because, in some sequences, the heading error
and the position error are so huge that these errors in other sequences will not look comparable.
Therefore, the reader is advised to look at the range of the vertical and horizontal axis of the
plots carefully.

From the Fig. 17.4b, Fig. 17.4f, and Fig. 17.5f we can clearly see that the orientation errors
are dominating in sequences 00, 02, and 08 respectively, whereas, the sudden increase in the
position error can be spotted in Fig. 17.4c. The sequences 00, 02, and 08 are similar in terms of
the objects such as buildings, cars, trees, etc, present in the scene as well the nature of driving
(in the urban areas). Therefore, I put my focus on seq. 00, as it has the highest position and
orientation errors, and on seq. 01 which has a huge position error for a duration of ≈ 20 seconds.

The seq. 01 is a highway sequence where the ego-vehicle is being driven at higher speeds
and accompanied by other fellow cars. It is safe to assume that any deviation in the heading of
the ego-vehicle corresponds to sudden and huge position errors. It should be noted that these
results are generated using the pyramidal approach by the correspondence optimizer. I plotted
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(a) Seq. 00: Position error
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(b) Seq. 00: Heading error
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(c) Seq. 01: Position error
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(d) Seq. 01: Heading error
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(f) Seq. 02: Heading error

Figure 17.4: The top, middle, and bottom row shows the position errors and orientation
errors for KITTI seq. 00, 01, and 02.
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(a) Seq. 04: Position error
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(b) Seq. 04: Heading error
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(c) Seq. 06: Position error
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(d) Seq. 06: Heading error
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(e) Seq. 08: Position error
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(f) Seq. 08: Heading error

Figure 17.5: The top, middle, and bottom row shows the position errors and orientation
errors for KITTI seq. 04, 06, and 08.
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(a) Seq. 00: Position error
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(b) Seq. 00: Heading error
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(c) Seq. 01: Position error
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(d) Seq. 01: Heading error

Figure 17.6: The position and the heading errors for KITTI Sequences without using
the pyramid levels.

the position and heading error for seq. 00 and 01 for the non-pyramidal approach (the number
of pyramid levels is zero) in Fig. 17.6. As mentioned before, the impact of the introduction of
the pyramid level on sequence 00 is advantageous whereas, for seq. 01, it made the results more
worst. From all of these results, it can be concluded that there the selection of the number of
pyramid levels should be done on the basis of the type of driving scenario. In the case of sharp
turns, the pyramid levels can improve the correspondence estimation otherwise not.

17.3 The influence of other moving objects on the pose
estimation

It can be assumed that the huge position errors in seq. 01 are happening due to the moving
cars as the current system has no means to differentiate between a moving and stationary object
and therefore, it is quite possible that the keypoints and their correspondences may lie on the
moving vehicle which results in the wrong pose estimation. Therefore, I decided to mask out the
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Figure 17.7: The position errors and orientation errors for KITTI seq. 01 fellow vehicles
are masked out using object detection.

fellow vehicles with the help of an object mask using YOLO-v8 (see section 7.4, p.50) such that
no keypoint lie on the fellow cars irrespective of the motion. Figure 17.7 shows the position and
heading errors when the object mask was used along with one pyramid level on seq. 01. The
maximum heading error dropped from 3 degrees to 2.5 degrees in the presence of object masking
(see Fig. 17.4d and Fig. 17.7b) but the position error didn’t change much.

Also, even in the presence of the object detection mask, the influence of moving objects
from the ego-motion estimation can not be removed completely. In Fig. 17.8, we can see that
the keypoints and the correspondences are estimated at the intersection of the shadow and the
road surface. As the shadow is moving with the car, these correspondences should be considered
outliers. Therefore, it can be stated that the use of neural networks or any semantic network is
not a complete solution to suppress the effect of the Independent Moving Objects (IMOs) and
there should be advanced techniques that should be employed to solve this problem. Therefore,
for the KITTI dataset, I didn’t use the YOLO network at all.

On the other hand, semantic labeling can be very useful for maritime sequences where the
dominant part of the surrounding environment (sea and fellow boats) is dynamic. In chapter 7,

Correspondences on the shadow

Figure 17.8: The keypoints are extracted at the shadow of the moving vehicle and the
correspondences are estimated.
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Figure 17.9: The trajectory for the maritime sequence in the absence of the object
masking.

I introduced two semantic networks, in which the Aquanet (see section 7.1.1, p.40) can identify
the pixels on the image that lie the sea and the YOLO-v8 can identify the fellow boats. A fused
mask generated from these two semantic networks can be very helpful to mask out the IMOs
during the keypoints generation.

Figure 17.9 shows the trajectory generated from the seq. Z2-FM-EB-SEQ-2. The sequence
is split into two sub-sequences such that the first sub-sequence (Z2-FM-EB-SEQ-2-1) contains
the scene in which the ego-vehicle is standing still and the second sub-sequence (Z2-FM-EB-
SEQ-2-2) contains the scene in which the ego-vehicle is standing still but observing another boat
moving in front of it. In Fig. 17.9a, We can see that the ego-trajectory is drifting around the
initial position in the absence of the fellow boat but in Fig. 17.9b, the trajectory is oscillating
back and forth as the other fellow boat is moving in a circle in the front of the ego-vehicle and
therefore, the ego-motion is strongly influenced.

When the object masking was added to avoid the keypoints lying on the moving objects, the
trajectory for the sub-sequence Z2-FM-EB-SEQ-2-1 didn’t change much as there was no moving
boat in the view but for the sub-sequence Z2-FM-EB-SEQ-2-2, the trajectory got stabled and
drifted from the initial position only due to the accumulation of the pose errors over the time.

17.4 RANSAC outlier ratio analysis

In the current ego-motion estimation system, I have used the RANSAC based PnP method to
estimate the pose change from the correspondences (see section 15.2, p.133). The RANSAC is
used to make the motion estimation module robust to the outliers in the correspondences and
identify the outliers as much as possible such that their effect during the motion estimation can
be reduced. It is crucial to check whether the RANSAC actually benefits the algorithm or it is
just making it slightly better at the cost of computation. To answer this question, I did a check
on the outliers identified by the RANSAC by taking a ratio of the number of outliers to the
total number of correspondences estimated at an instant and then taking the moving average
(see appendix A.1, p.171) on the outlier ratio for the whole KITTI sequence.
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Figure 17.10: The trajectory for the maritime sequence in the presence of the object
masking.

Figure 17.11 shows the outliers ratio test (without using the pyramidal approach) for KITTI
seq. 00, and seq. 01 which are the most critical sequences for the analysis. For sequence 01, we
can see that the maximum value for the outlier ratio is 0.04 which is 4% of the total number of
correspondences (see Fig. 17.11a) but for seq. 01, it reaches to the 0.3 which is the 30% of the
total number of correspondences (see Fig. 17.11b). It implies that there were a lot of outliers
in the correspondences for seq. 01 but if the RANSAC was able to identify this many outliers
and excluded them during the motion estimation then the reason behind the huge position error
(see Fig. 17.4c) could either be the inaccurate correspondences in the inliers set or the RANSAC
identified the wrong outliers. The analysis of the motion estimation module based on the outliers
ratio and position error is left for future work due to the limited time I had on this project.
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Figure 17.11: The ratio of the outliers to the total number of correspondences
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Trajectory results for the KITTI and
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The objective of the ego-motion estimation sub-system is to estimate the pose change between
two consecutive timesteps. The pose change can be helpful to analyze the system but in an actual
application, we are mostly interested in knowing the absolute pose of the ego-vehicle. This
absolute pose can be either w.r.t the world coordinate system or w.r.t the Camera Coordinate
Frame (CCF) at timestep t = 0. The absolute pose can be generated from the pose change
information recorded over time (see section 2.1.1, p.10).

In chapter 17, I mentioned the cases in which the pyramid level can be used by the Corre-
spondence Estimator (CorrEst) module and concluded that the pyramid levels should be avoided
if a good pose change predictor is available and not, then the pyramid levels should be used only
for the cases where the sharp moments occur. But in some scenarios, the sharp moments of the
ego-vehicle can not be avoided especially for the cars. Therefore, I decided to use one pyramid
level for the road sequences and no pyramid levels for the maritime sequences. Also, I used
object masking for the maritime sequences only.

18.1 Trajectories for the maritime sequences

The trajectories have been plotted for the maritime sequences but due to the unavailability of the
ground truth, they can not be trusted completely, however, the shape of the generated trajectory
looked similar to the motion of the ego-vehicle in the recorded scenarios. Figure 18.1 shows the
trajectory obtained for maritime sequence Z2-FM-EB-SEQ-1. In this sequence, the Milliampere-
2 moved straight and then took a right turn to dock to the docking station which is also shown

155
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Figure 18.1: The trajectory generated for the maritime sequence Z2-FM-EB-SEQ-1.

Figure 18.2: The trajectory generated for the maritime sequence Z2-FM-EB-SEQ-2. The
green dots are the GPS data and the red trajectory is the estimated trajectory.

by the trajectory however, due to the unavailability of any ground truth, the results can not be
verified.

Similarly, figure 18.2 shows the trajectory generated for the maritime sequence Z2-FM-EB-
SEQ-2. I managed to obtain a few GPS readings for this sequence from the Garmin GPS device
and plotted them on the satellite image using the geoplot function from MATLAB. The trajectory
obtained from the ego-motion estimation system was in Cartesian coordinates, therefore, it was
first transformed into the North-East-Down (NED) coordinates and then plotted alongside the
GPS data. It should be noted that the ego-vehicle in this sequence was standing still. From the
figure, it can be stated that the trajectory is more stable than the GPS data.

18.2 Trajectories for the KITTI sequences

In this section, I computed the trajectory for the KITTI and compared them against the sequences
with the ground truth i.e. the sequences from 00 to 10. To generate the trajectory, I used an
open-source toolbox to evaluate the trajectories. The name of the toolbox is KITTI Odometry
Evaluation Toolbox 1. Figure 18.3 shows the trajectory estimated using the proposed ego-motion
estimation system. In all the estimated trajectories, we can notice that the estimated trajectory

1The link to the source code is here
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started to diverge from the ground truth sooner or later. In some sequences such as seq. 00, 05,
and 08, this divergence is huge, and in others such as seq. 02, 03, 10, it is little.

A final modification that I decided to implement after looking at the trajectories is to use
the top k correspondences for the ego-pose estimation. These correspondences have the least
residual error as compared to other correspondences. Figure 18.4 shows the new trajectories
after using the top k correspondences. The trajectories were improved for most of the sequences.
For example, the drift of the estimated trajectory from the ground truth is reduced for seq 00
(see Fig. 18.4a), and the huge position error in seq 01 is also reduced (see Fig. 18.4d).
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Figure 18.3: KITTI Trajectories for different sequences
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Figure 18.4: KITTI Trajectories for different sequences using the top k correspondences
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Conclusion

Ferry-SLAM system is a perception system for maritime vehicles that can represent the sur-
rounding environment using single stereo image pairs and also includes a Visual Odometry (VO)
sub-system. In the former, I explored and proposed different strategies to perceive the envi-
ronment. I used Aquanet and YOLO-v8 semantic segmentation networks to label the seawater
and the surrounding obstacles such as a boat, etc. in the image respectively. The YOLO-v8
gave astonishing results while segmenting the fellow boats but it also gave a lot of false positives
which made the system more cautious unnecessarily. On the other side, the Aquanet network
was found to be good for the proof of concept only as it can not be used in a real applica-
tion with much reliability. The limitation of the Aquanet provided a motivation to explore the
geometry-based methods to segment the water-plane. and therefore, I proposed a novel RANSAC
based 3D plane fitting algorithm that can transfer the knowledge of the water plane to the next
timestep for robust water surface segmentation. The algorithm can track the water plane with
high accuracy even when the ego-vehicle approaches the dock which was not possible with the
Aquanet network. The results from the 3D plane fitting algorithm together with the semantic
segmentation networks have been fused to create a complete understanding of the environment.
This knowledge of the scene can be used to identify the navigable area and the potential objects
that should be avoided. I also attempted to follow the Stixels-based approach to represent the
scene and proposed a pixel classifier that can distinguish between the upright and the horizon-
tal surfaces in the image using the disparity data only. This type of representation is simpler,
computer-efficient, and can be used to identify the navigable areas but the meaning of what it
perceives can not be extracted using this representation alone. I used the Bird’s Eye View (BEV)
for the scene representation which is very effective and can visualize the 3D scene in 2D without
losing the depth and the perception information. Such representation can be very helpful in
identifying the boundaries of objects such as boats, docks, etc., to avoid collision.

I also developed a frame-to-frame-based ego-motion estimation sub-system that uses the key-
points and their correspondences to estimate the ego-motion. Such keypoints-based systems are
very sensitive to the outliers in the correspondences, therefore, the outliers have been identified
and rejected at multiple levels to improve the accuracy of the pose estimates. The proposed
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Keypoints Detector (KptDet) generates the keypoints in an image using a masking-based strat-
egy that gives full control over the keypoints’ generation process to the user. These masks can
highlight the region of interest for the keypoint generation without worrying about the distribu-
tion and the number of the keypoints in the image and when it is combined with the semantic
labels, the perception can be added during the keypoints generation. The perception enabled
the KptDet module to avoid generating the keypoints on the sea and the boat because of their
dynamic nature to improve the motion estimates. Also, with the help of the depth mask, the
keypoints have been generated only for those pixels that have valid depth instead of rejecting
them at later stages in the pipeline.

The principle behind the estimation of the rotational angles from the faraway region has been
thoroughly studied in this project. I derived the mathematical expression behind this principle
and proposed three different novel algorithms based on it. The rotational angles reported in
[2] are regarded as the benchmark to compare the accuracy and performance of the proposed
methodologies. The first method was to estimate the yaw angle using the phase shift of the
distance-weighted horizontal profile of images. This algorithm didn’t use much pre-filtering of
the image profiles and the post-filtering of the phase change but still, the yaw estimates from
this algorithm were close to the ground truth and deviated only during the sharp turns. The
second method was also phase correlation (PhC) based and used to estimate the roll and pitch
rotational angles along with the yaw angle. The results of this algorithm for the roll and pitch
angle were more accurate than the results reported in [2] but for the yaw angle, it didn’t perform
well comparatively. The third algorithm used the keypoints and their correspondences that lie in
the faraway regions and then estimated the rotational angles. The yaw angles estimated from this
proposed methodology surpassed the first and second algorithms and the approach mentioned in
[2].

For the Correspondence Estimator (CorrEst) module, I implemented a predictive keypoint
matching algorithm that uses the prediction of the pose change to predict the location of the
keypoints in the next image and then later the correspondences have been optimized using the
Lukas-Kanade (LK) differential matcher. The combination of the prediction followed by the
optimization reduced the chances of the occurrence of outliers in the correspondences. I also
proved experimentally that the pyramidal approach used by the LK matcher can be beneficial
only during the sharp turns and should be avoided otherwise but in the absence of a good pose
change predictor, the pyramidal approach can compensate for the over and underestimates of the
predicted pose change. Finally, the pose change has been estimated using the RANSAC based
Perspective-n-Point (PnP) method from the set of the correspondences.

I tested the ego-motion estimation pipeline on the KITTI dataset and the dataset I recorded
using the ZED camera in Trondheim, Norway, and compared the generated trajectory with
the ground truth from the KITTI dataset. The smooth deviations of the estimated trajectory
from the ground truth due to the absence of the loop closure and the accumulation of errors in
the estimated pose have been observed in the KITTI dataset. It implies that the ego-motion
estimation subsystem managed to address different driving scenarios without running into a
failure state. In the recorded sequences, the GPS data was available only for the sequence Z2-
FM-EB-SEQ-2 (the ego-vehicle is stationary) and it is being used the compare the estimated
trajectory. It was found that the pose of the ego-vehicle was drifting near the initial position
even in the presence of other moving boats. Also, the recorded GPS data was more spread
around the initial position of the ferry than the estimated trajectory. It was possible only due
to semantic masks provided by the YOLO-v8 and the Aquanet during the keypoint generation.
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Recommendation of the future work

The Ferry-SLAM project is a long-term project that is under development for the localization,
navigation, and situation awareness for maritime vehicles. I started the project and explored
different techniques and methods that can be implemented in the maritime context, however,
due to the limited time period of the thesis, there were a lot of topics that either remained
untouched or didn’t end up with a conclusion. In this chapter, I will highlight a few topics that
will be the focus in the future of the Ferry-SLAM project.

• Keyframing: The keyframing concept is more helpful in the maritime context. When
the ferry operates in an open sea and observed only the sea and a distant landmark, the
estimation of the change of the position between two consecutive frames is very challenging
because the effect of the translation vanishes when the landmark goes to infinity. Therefore,
unless there is a huge change in the position of the ferry the system may think that it is
only rotating at one position over time but with the keyframing strategy the system can
neglect the intermediate frames for a period of time for the estimation of the translation
and can estimate the translation only for the keyframes.

• Improving the rotation estimation using the distance-weighted horizontal pro-
files: I proposed an algorithm that can estimate the yaw change between two frames
using the phase correlation method: The algorithm needs to be improved such that the
yaw estimates can be improved.

• Keypoint trajectory and Bundle adjustment: The ego-motion estimation module
reuses the old keypoints but doesn’t store the trajectory of the keypoints for a number of
frames. It can improve the pose estimation and can stable the correspondence estimation.
In the future, a suitable datatype should be used to record the trajectory of the keypoints
and use them to further optimize the pose estimation using the Bundle Adjustment.

• Improving pose change pre-estimation: In the current module, I have used only
the prediction of the pose change for the correspondence estimation. The predictor can
be replaced with some advanced techniques and also the rotation pre-estimates based on
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the phase correlation can also be used. I proposed two methods to compute the rotation
from far-away areas using phase correlation but I didn’t use them in the pose-change
pre-estimation due to the limited time. It can be done in the future.

• Object tracking: I used YOLO-v8 to identify the fellow boats for the scene representation
and to mask them during the keypoints generation but this can be extended to the object
tracking in which the objects can be tracked over time to avoid the collision in the future.

• Stixels-based scene representation: I implemented the first step towards the stixels-
based representation in which I represented the scene in upright and horizontal structures.
It was a proof of concept for the future in which the scene can be represented using
rectangular strips called stixels.

• Implementation of the stereo keypoint matching: The stereo keypoint matching
algorithm fully utilizes the stereo camera and can prevent the outliers in the correspon-
dences. I gave a theoretical overview of the same in this project but in the future, the
practical aspects should be explored.
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A.1 Moving average

I analyzed the Ferry-SLAM system by plotting different statistics for different KITTI sequences.
These include the number of keypoints generated in each frame, the number of valid correspon-
dences, the yaw error per frame, etc. If I had plotted the raw data, It could have been very
difficult to analyze and find the critical sub-sequences in which the system was underperforming.
Therefore, I smoothed the data by convolving it with a kernel of size w1. In the moving average,
the function slides a window of length w over the input data (number of generated keypoints per
frame for say) such that the oscillations can be minimized.

A.2 Image contrasting and visualization of the depth
images

Throughout the report, I have used multiple images from the KITTI dataset and the recorded
dataset and overlayed the graphics over them for the explanation of the modules of the system.

1In the convolution, I used the Numpy function convolve with the valid mode. In this mode, the
moving average is taken only for those which completely overlap with the lowpass filter.
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For example, I plotted the detected keypoints on the images. Such graphics are not clearly
visible if they are overlaid over the raw image from the dataset, therefore, I first controlled the
contrast on the input image only for the presentation of the data in this report. Let (x, y) be
the coordinates of the pixel, I(x, y) be the intensity of the pixel (x, y) with a range [0,maxI ],
and I ′(x, y) be the intensity of the same pixel after controlling the contrast, then the contrast
can be reduced by reducing the range of the intensity of the pixel.

I ′(x, y) =
maxI

2
+
I(x, y)

2
(A.1)

Similarly, the depth maps are 16 bits floating number arrays and they can not be visualized
directly by an 8 bits integer array which is the most common data format for the images. In
the literature, the authors always use false coloring for the visualization of the depth images. In
such color mappings, the blue color can represent the areas that are close to the camera and the
red for the distant areas. I tried to follow such color mapping for the visualization of my depth
images. Let D be a depth image with 16 bits floating number, then the depth image D can have
invalid values in the data. These invalid values can come from the occluded pixels or the regions
in the image that are very far or close to the camera. These invalid values need to be replaced
with some integer before the visualization. I replaced them with zero. Let (x, y) be the pixel
coordinates, D(x, y) be the depth of the pixel (x, y), and D′(x, y) be the filtered depth, then the
invalid values can be replaced with zero to filter the raw depth image D.

D′(x, y) =

{

D(x, y), if D(x, y) = valid

0, otherwise
(A.2)

After the filtering, the depth image D′ is still 16 bits floating array. Therefore, it should be
scaled down to 8 bits integer array. I used the convertAbsScale2 function from the OpenCV
library. This function performs three operations sequentially: scaling, taking an absolute value,
and conversion to an unsigned 8-bit type. Let α and β be the scaling factors then they can be
calculated from the range of the filtered depth image D′.

α =
maxI

max(D′)−min(D′)

β = 0
(A.3)

Let D′′ be the scaled depth image, then the function convertAbsScale applies the absolute scaling
to the filtered depth image D′ as below.

D′′ = saturate_cast < uchar > (♣D′α+ β♣) (A.4)

Finally, the Turbo color mapping has been applied to the scaled 8 bits depth image D′′ using the
applyColorMap function from the OpenCV.

A.3 Sigmoid curve

In the Rotation estimation from faraway areas using the distance-weighted gray value profiles
method (see section 14.9, p.118), I wanted to weight the grayscale patches with their correspond-
ing depth patches such that the pixels that are far away are given more importance. A hard

2The link to the function is here.
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Figure A.1: Sigmoid curve with different slope and fixed horizontal displacement

threshold on the depth patch can be used to prepare a binary weighted mask of zeros and ones
where the ones are given to the pixels that have a depth higher than the threshold, however, this
totally ignores the close-range pixels which are crucial during the turns in the urban scenarios
where the close range pixels are dominating. Therefore, I passed the depth patch to a sigmoid
function to smoothly assign the weights depending on the depth.

Let a and b be the sigmoid parameters, and x be the input to the function. With this, the
sigmoid of the input x can be computed.

σ(x) =
1

1 + exp−a(x− b) (A.5)

A.4 Conversion of the rotation matrix to Euler angles

If a rotation matrix R of size 3× 3 is given with a determinant +1, then it can be decomposed
into the Euler angles as follows 3.

3The tutorial to the conversion of rotational angles is given here
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Algorithm 23 Rotation matrix to Euler angles

1 #Define EPS ← 0.000001

2 procedure rotation2euler(R)

3 sy =
√

R[0, 0]2 +R[1, 0]2

4 if sy > EPS then

5 rotx = atan2 (R[2, 1], R[2, 2])

6 roty = atan2 (−R[2, 0], sy)

7 rotz = atan2 (R[1, 0], R[0, 0])

8 else

9 rotx = atan2 (−R[1, 2], R[1, 1])

10 roty = atan2 (−R[2, 0], sy)

11 rotz = 0

return rotx, roty, rotz

A.5 Conversion of the Euler angles to rotation matrix

Mathematically, the rotation can be expressed as a 3 × 3 orthogonal matrix R. If the rotation
about the x− axis, y − axis, and z − axis are denoted θ, ψ, and ϕ, then the rotation matrices
for each axis can be computed.

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 (A.6)

Ry(ψ) =





cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ



 (A.7)

Rz(ϕ) =





cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1



 (A.8)

The rotation matrices Rx(θ)m Ry(ψ), and Rz(ψ) can be multiplied together to form the rotation
matrix R. It should be noted that the order of the multiplication matters.

R(ϕ, ψ, θ) = euler2rotation(ϕ, ψ, θ)

= Rz(ϕ)Ry(ψ)Rx(θ)

=





cosϕ cosψ cosϕ sinψ sin θ − cos θ sinϕ sinϕ sin θ + cosϕ cos θ sinψ
cosψ sinϕ cosϕ cos θ + sinϕ sinψ sin θ cos θ sinϕ sinψ − cosϕ sin θ
− sinψ cosψ sin θ cosψ cos θ





(A.9)
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Multi plane identification

It is always interesting to identify all the planes in the scene for a simple and intuitive scene
representation, so I decided to extend the Adaptive Plane Segmentation using RANSAC (APSR)
(see section 7.2.8, p.47) to identify more planes from the scene. After identifying the water plane,
a recursive loop was created to keep identifying the planes from the scene until the number of
points to be fitted dropped below a threshold. The steps followed by the extended algorithm are
as follows.

1. Water Plane Segmentation: The water plane is extracted from the masked point cloud
using Adaptive Plane Segmentation using RANSAC (APSR) approach. This results in a
mask of inliers for the points that lie on the water plane.

2. Cropping: The raw point cloud is cropped using the inliers mask generated in the previous
step such that the cropped point cloud has no point on the water plane. Let us say it an
outlier point cloud.

3. Recursive plane identification:

a) Number of points in the outlier point cloud is checked. If they are below a threshold,
then no new plane can be extracted and the algorithm ends.

b) In the outlier point cloud, a plane is fitted using Open3D’s plane segmentation algo-
rithm. Apart from the plane model, it also returns the new outlier point cloud that
can be used for the next iterations.

c) The inliers are found using 7.2.5.

The above approach is very simple and in theory, it should find all the planes recursively.
From the figure B.1, it is clear that the algorithm didn’t perform as excepted. It managed to
find only one other plane which was the dock even after a lot of iterations. The points that lie
on the segmented dock plane seem to overlap with the water plane because the estimated dock
plane is slanted and not completely parallel to the water plane. It implies either that the dock
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Table B.1: Cropping limits for the point cloud

Axis
Range (in meters)

Minimum Maximum

x -10 10
y -5 5
z 0 20

plane model can not be trusted or the dock is actually slanted with respect to the water plane.
The major flaws of this approach are the following.

• When the ferry is far from the dock, the fitting of planes on the structure became very
hard because of the high variance in the disparity. The disparity is accurate only up to
short distances.

• Determining a fixed distance threshold is not enough to identify different kinds of planes.
Thresholds should be adaptive and vary according to the distance to the structures.

• The number of iterations performed by the RANSAC has to increase to make it identify
the plane among the large set of outliers but the computational time will be increased
significantly.

To solve the first two drawbacks of the algorithm, I limited the search of planes within a
close range only. It means, instead of taking the whole outlier point cloud, the algorithm crops
the outlier point cloud such that the points that lie outside the given range (refer table B.1) are
excluded. Defining a close-range outlier point cloud reduces the occurrences of false disparity
measurements in the plane segmentation pipeline. The threshold can be limited to some value
as well for all the planes. After this change in the algorithm, it is not able to identify the other
planes unless the ego-vehicle is close to the dock. Figure B.2, shows the results of the multi-
plane segmentation approach when the ferry is close to the dock. From the results, it is very
clear that the multiple planes can be found recursively but only in certain situations which are;
good disparity estimates; and a large number of RANSAC iterations.

Figure B.1: Multi plane segmentation. Navy blue shows the water plane and the cream
color shows the second plane.
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Figure B.2: Multi plane segmentation after the cropping of the outlier point cloud. The
navy blue color represents the water plane and the other 3 colors represent the other
identified planes.
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The theoretical aspect and results of the work are very important to understand the funda-
mentals, methods, and algorithms used in this project but at the same time, the practical aspects
should not be neglected as well. In this chapter, I will briefly talk about the design and testing
principles I followed to build the Ferry-SLAM system.

C.1 Design principles

The main design principles that I considered while developing the system are the following.

• Modularity: The Ferry-SLAM system consists of multiple modules in which each of the
modules has unique functionality. It is very common to test new methods and techniques
during the development of the system but if the system is not modular then the chances
of the failure of the system increase or not but the time of the development, debugging,
and testing increase for sure. Therefore, I tried to develop the Ferry-SLAM system as
modular as I could such that the new methods can be introduced without changing the
main architecture of the system as well as the readability of the code can be increased for
future work.

• State awareness: For any complex system that uses multiple sub-systems and modules
such as the Ferry-SLAM system, it is very often that one of its components breaks during
the processing of the data or runs into a questionable state that the system was not pre-
pared for. It is impossible to know every state of a system that operates in a very dynamic
environment such as the roads, sea, etc. Therefore, the system should be aware of such
questionable states and warn the user if it falls into any such situation. I attempted to

179



180 Design and Test Principles

follow the same principle and returned the status from every module. The most common
statuses were the SUCCESS and the FAILURE. If any module processes the input suc-
cessfully, it returns the SUCCESS, and if not then it either returns a FAILURE status or
another specially designed error code. For example, if the Keypoints Detector (KptDet)
module can not find any Good Features to Track (GFTT) keypoint in the input image,
then it returns the NO_GFTT_FOUND status. Similarly, if the number of keypoint-
to-keypoint correspondences is not sufficient for the motion estimation, then the module
returns NOT_ENOUGH_CORRESPONDENCES status. Using these status messages,
the super system that is using the Ferry-SLAM system can take the precautionary steps
whenever my system runs into such state.

C.2 Testing priciples

The principles or guidelines I followed for the analysis and the testing are the following.

• Identification of edge cases: A most favored procedure in algorithm development is
to run the algorithm on some test dataset and identify the edge cases and failure cases.
These cases can be distinguished from the rest by the huge deviations from the expected
output and these cases should be handled carefully. I followed the same approach and
identified the critical sub-sequences from the KITTI dataset in which my system was not
performing well. I focused on different statistics such as the pose error or the number
of keypoints generated (see chapter 17, p.143) for the analysis of the module and put
the critical sub-sequence into the control file of the sequencer (see section 6.1.3, p.37) to
analyze it again.

• Regression tests: Whenever I identified an edge case and analyzed it by looking at
different statistics, I fine-tuned the system parameters such that the edge cases and the
failure cases were resolved and then ran the whole system again to check if the modified
version still works fine with the data it could process successfully before.

C.2.1 Data collection for testing and analysis

For the ego-motion estimation sub-system, the most important parameters are the pose param-
eters. The estimated pose needs to be compared with the ground truth to check the accuracy
of the sub-system, therefore, along with different parameters, the pose is also recorded for a
sequence. In this section, I will discuss how the pose data has been recorded and what other
parameters have been recorded.

In chapter 10, we saw that whenever the new stereo data arrives from the camera, the
ego-motion estimation sub-system outputs the relative pose of the camera between the current
timestep t and the previous timestep t− 1. Let P⃗t−1 be a 3D homogeneous point w.r.t the CCF
at timestep t− 1 and Tt

t−1 be the homogeneous transformation matrix that defines the relative
pose of the CCF at the previous timestep t−1 w.r.t the CCF at the current timestep t, such that
the point P⃗t−1 can be transformed to the CCF at timestep t using the transformation matrix
Tt
t−1.

P⃗t = Tt
t−1P⃗t−1 (C.1)

When the algorithm is run over a sequence of images, I will obtain N − 1 relative poses from
the pipeline from a sequence containing N frames. Each relative pose Tt

t−1 obtained at timestep
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t can be decomposed into the rotation matrix (Rt
t−1) and the translation vector (⃗t t

t−1).

Tt
t−1 =

[

Rt
t−1 t⃗ t

t−1

01×3 11×1

]

(C.2)

The rotation matrix can be further decomposed into the Euler angles (see algorithm 23, p.174).
Let rotx, roty, and rotz be the rotational angles about the x − axis, y − axis, and z − axis
respectively w.r.t the CCF.

rotx, roty, rotz = rotation2euler(Rt
t−1) (C.3)

The rotx, roty, and rotz rotational angles and the translation vector t⃗ t
t−1 between two con-

secutive stereo pair is saved along with other miscellaneous data. The miscellaneous data consist
of the intermediate information given by the pipeline that can be useful to debug. It includes the
execution time, and the system status such as SUCCESS, FAILURE, etc. The keypoints and the
correspondence’s statistics have also been recorded during the sequence. All of this information
can be useful to create a trajectory from the relative poses as well as to debug the pipeline.
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ZED is a stereo camera developed by Stereo Labs company. It is specially designed for
Computer Vision (CV) application as it comes with a proprietary SDK that allows the user to
use the camera in their autonomous applications. It provides multiple features that can be used
from the Visual SLAM (V-SLAM) perspective. In this chapter, I will discuss the specifications
and features of the ZED camera.

D.1 Camera Specifications

The Stereo Labs manufactures different types of stereo cameras. A brief comparison between
different models is given in table D.1 and table D.2. The basic model from the Stereo Labs is
called ZED 1 camera (also used in this project) and it can be used with different resolutions
such as 2k High Definition (HD), HD 1080, HD 720, and WVGA. The intrinsic properties such
as the FOV, focal length, etc. of the camera varies depending upon the resolution used. Table
D.3 gives the approximate values of the different intrinsic parameters of the ZED 1 camera. The
intrinsic calibration parameters of the ZED 1 camera that has been used in this project are given
in table D.4. It should be noted that the calibration of the camera was done by the company
itself.

The default settings of the camera allow us to retrieve the rectified images, however, it is
also possible to get the raw data from the cameras as well as the grayscale images, depth images,
and normal’s images (color rendering of the normals).
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Table D.1: Operational characteristics of different ZED camera models

Model Depth Range Depth Accuracy
Operating Temperature

(in Celsius)

ZED 0.5 m to 25 m
< 2% up to 3m
< 4% up to 15m

0° to +45°

ZED M 0.10 m to 15 m
< 1.5% up to 3m
< 7% up to 15m

0° to +45°

ZED 2 0.3 m to 20 m
< 1% up to 3m
< 5% up to 15m

-10° to +45°

ZED 2i 4mm 1.5 m to 35 m
< 2% up to 10m
< 7% up to 30m

-10° to +45°

ZED X 4mm 1 1.5 m to 35 m
< 2% up to 10m
< 7% up to 30m

-20° to +55°

Table D.2: Available sensors and miscellaneous features of different ZED camera models.

Model IMU Magnetometer Barometer
Temperature

sensor
IP66-rated
Enclosure

ZED ✗ ✗ ✗ ✗ ✗

ZED M ✓ ✗ ✗ ✗ ✗

ZED 2 ✓ ✓ ✓ ✓ ✗

ZED 2i 4mm ✓ ✓ ✓ ✓ ✓

ZED X 4mm ✓ ✗ ✗ ✓ ✓

Table D.3: Approximate values of the intrinsic properties of the ZED camera for different
resolutions.

Resolution
Focal length
(in pixels)

Pixel size
(in mm)

FOV
Available FPS

Vertical Horizontal

HD2K 1400 0.002 47° 76° 15
HD1080 1400 0.002 42° 69° 15, 30
HD720 700 0.004 54° 85° 15, 30, 60
WVGA 350 0.008 56° 87° 15, 30, 60, 90

D.2 Depth Sensing

ZED camera’s SDK also provides the 3D data directly without the explicit processing of the
rectified images. The maximum recommended depth range of the camera is from 0.4 meters to 40
meters but it can be configured according to the application. The SDK provides different methods
to compute the depth map from the stereo data. The available methods are the following.

1The moment when this report was written, the model ZED X has not been launched. This new
model offers ultra-wide lenses (up to 120 degrees) and can provide a depth map at 120 FPS at 600p
resolution. It is also possible to obtain the HD1080 or HD1200 resolution 60 FPS which is not possible
in other models.



D.3. Depth Map Filtering 185

Table D.4: ZED’s left camera calibration parameters at 2k HD resolution.

Parameter name Parameter Value (in pixels)

fx 1404.2700
fy 1404.8199
cx 1110.9700
cy 614.7650

• Neural: It uses AI techniques to provide accurate and smooth depth maps (see Fig. D.1).

• Ultra: It gives the highest depth range with improved depth accuracy.

• Quality: It gives smooth surfaces using strong filtering techniques.

• Performance: It provides smooth depth maps but lacks some details.

The depth map obtained from these depth modes can have some holes in them. These
holes arise from the occlusions and failure of the stereo-matching algorithm. The ZED SDK
provides additional settings called FILL (see Fig. D.2b) in contrast to the STANDARD mode
(see Fig. D.2a) to fill the holes and occlusions in the depth map and improves edges and temporal
stability by adding a filtering stage. From the manufacturer, it is recommended that the FILL
mode should be preferred for visualization only.

In the case of the STANDARD mode, the depth image may have some invalid depth data
(holes) for some pixels of the image. The values associated with the invalid depth can take the
following depending on the situation.

• NAN : The depth can not be estimated due to the occlusion.

• - INFINITY : The depth can not be estimated because it is too close to the camera.

• INFINITY : The depth can not be estimated because it is too far from the camera.

D.3 Depth Map Filtering

The depth map provided by the ZED camera can be filtered according to the confidence of the
algorithm in estimating the depth and the texture of the scene.

(a) Color image (b) Depth range: 0.4m to 40m (c) Depth range: 10m to 200m

Figure D.1: Images from seq. Z1-FT-MB-SEQ-1. The middle and right figures are the
depth images computed using Neural mode with different depth ranges.
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(a) Standard mode (b) Fill mode

Figure D.2: Depth images computed using Ultra mode with depth range 10m to 200m.

(a) Neural mode (b) Ultra mode

Figure D.3: Confidence maps for different depth sensing modes computed with a depth
range of 10m to 200m with FILL mode.

D.3.1 Confidence Filtering

During the depth map computation, any algorithm tries to assign a depth value to each pixel if
a corresponding pixel on the other image of the stereo pair is found. The assignment of depth
is never 100% accurate and therefore, a confidence value can also be assigned in parallel to the
depth value. This confidence value corresponds to the accuracy of the algorithm in estimating the
depth. For example, the algorithm may be less confident to assign the depth at the boundaries
between two objects.

The ZED SDK also provides a confidence map (see Fig. D.3) along with the depth map. It
gives every pixel in the image a value in the range [1,100]. Pixels having a confidence value close
to 100 are not to be trusted. The depth map can be filtered using this confidence map explicitly
or it can also be done by the SDK itself. A runtime parameter (confidence_threshold) can be
used to remove all points from the data that have confidence higher than this threshold.

D.3.2 Texture Filtering

In most of the VO or the V-SLAM applications, the part of the scene that has enough texture
is utilized for keypoint extraction and matching as the textured region can be easily tracked
without ambiguity. Therefore, such algorithms always check the texture of the scene before
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going further.

Unlike the confidence map, it is not possible to get the textured map from the ZED SDK,
however, it is possible to filter the depth map based on the texture level of the image. A
parameter (texture_confidence_threshold) can be set between 1 and 100 as a runtime parameter
to the SDK. This will remove all the points from the data that have a texture value above this
threshold. It is counter-intuitive because the texture value is inversely proportional to the level
of texture. For example, the texture_confidence_threshold = 100 will keep all the regions of
the image (uniform and non-uniform) whereas texture_confidence_threshold = 50 may remove
the uniform areas from the depth map. The texture_confidence_threshold can take a value in
the range [1, 100].

D.4 Advanced Features

Besides the stereo images and the depth map estimation, the ZED SDK also has some in-built
algorithms to post-process the stereo data into meaningful results. The most relevant features
of the ZED camera that are related to the VO are the following.

D.4.1 Positional Tracking

The ZED SDK provides the ego-pose using visual tracking for all the ZED cameras. In the case
of ZED M or other models with inertial measurement unit (IMU) (refer table D.2), it fuses their
data to provide more accurate pose estimates.

D.4.2 3D reconstruction

ZED SDK can also provide a 3D map of the environment. The map can be either a mesh or
fused point cloud.

D.5 Multiple Camera Setup

It is more informative to have cameras looking sideways from the longitudinal direction of the
boat. It will provide full coverage of the surroundings and multiple cameras can be used to
jointly estimate the motion.

According to the ZED SDK, it is possible to set up multiple ZED cameras on one system
or on different machines. For the multiple-camera setup, synchronization of the frames coming
from different cameras is very important however ZED SDK doesn’t talk about hardware syn-
chronization of multiple ZED cameras. The key findings about the multiple ZED cameras are
the following

• Two ZED cameras are not synced with each other, they most likely work all on their own
even if they are connected with individual USB controllers to overcome bandwidth issues.

• The timestamp generated by ZED SDK is not the exact time when the camera captures
the image, instead, it’s when the image data is received by the PC and appears on the
PC memory. So, there’s no way we can recover the exact time point of image capture and
therefore, the motion can not be compensated completely because of this asynchronization.
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(a) Confidence threshold is 50 (b) Texture threshold is 50 (c) Combined thresholds.

(d) Confidence threshold is 30 (e) Texture threshold is 30 (f) Combined thresholds.

(g) Confidence threshold is 5 (h) Texture threshold is 5 (i) Combined thresholds.

Figure D.4: Comparison of different confidence and texture thresholds on the depth
images computed with Ultra sensing with STANDARD mode with a depth range of 10m
to 200m.

As mentioned above, hardware synchronization is not possible for multiple ZED camera
models except for the ZED X model. If multiple ZED X cameras (up to 4) are integrated with
the ZED box, hardware synchronization is possible.
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The GUI is developed in Python language using the QT library 1. It is slower than the former
approaches as it is more complicated and requires the conversion of the images from OpenCV
format to QT format, however, it is very intuitive to interact with and simple to integrate in any
kind of application. In this section, I will talk about the different features offered by the GUI.

E.1 General Features of the GUI

The default features of the GUI for Sequencer 2.0 are highlighted in figure E.1. Each feature is
labeled with a number in the figure E.1 and their explanation is given below.

1. Dataset type Selection: It is possible to select different kinds of datasets. There are
three options that are available to the user. The user can switch between the ZED, KITTI,
and VIDEO (not implemented yet) dataset formats.

2. Dataset Files Selection: Each of these dataset requires different input files. For ZED,
the required dataset file should be in SVO (Dataset format used by the ZED SDK) format.
For KITTI, the required parameters are the path to the left and right images and the path
to the calibration file. Other optional parameters can also be used such as pose file,

1The link to the library is here
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1 2 3

4 5 6 7

8

9

109
11

Figure E.1: Highlighted Features of the GUI

timestamps, etc. Any kind of dataset file can be passed to this dataset type as long as
the format of the calibration file is similar to the one in KITTI. The third option is the
VIDEO which can accept the video files to load the images from and the calibration file.
The VIDEO mode (not implemented) is not interfaced with the sequencer yet. The option
to upload the control file is available for every dataset type.

3. Start/Quit/Reset: The system can be started with the start button. When the Start
button is pressed, the sequencer starts loading the image and starts rendering it. The Quit
button is to quit the application. The Reset button (not implemented) is to reset the GUI.

4. Play/Pause: The beginning state of the player is Paused. In this state, the sequencer
doesn’t provide new images to the GUI and the GUI keeps rendering the first image. In
the Playing state, the sequencer keeps providing the next image and the GUI renders it
on the screen.

5. Video Controller: The GUI can be used as a video player for the sequencer. Similar to
any video player, the user can jump between frames using the slider and use the Next and
Prev buttons to move to the next and previous frame respectively.

6. Frame Number: The frame number of the rendered image is displayed here.

7. Jump to: For advanced usage, it is possible to enter the frame number directly and jump
to this frame using the sequencer.

8. Image Viewer: The imagesare displayed here. There are two image windows by default.

9. Save Results: For the offline analysis of the system, sometimes it becomes necessary
to save the processed images at particular instances. From the GUI, the user can select
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the directory in which the results should be saved. He can also select if the current date
should be added in from the name of the image to be saved followed by the format of the
image. The Sequencer supports PDF and JPEG formats to save the image.

For each image window, there is a name assigned to the frame given by the system. This
name is used to save the image when the Save button is clicked. Experimental feature: If
the user wants to use some other name for the image, they can directly enter the name in
the image name window and save it.

It is also possible to save all the images during the runtime of the GUI. Auto Rec option
can be selected and the GUI starts saving all the images in the save directory.

10. Timestamp: The timestamp for the left and the right image is displayed here. These
timestamps can be exported (Experimental) into a text file with the name times.txt in the
save directory.

11. Config Files Reader: The state of the GUI such as the dataset file paths, the path to
the save directory, etc. can be recorded into a .yaml file. This file when loaded again in
the GUI will auto-fill the details and saves time.

E.2 Advance Features of the GUI

There are also some advanced features offered by the GUI and require the system to interface
with the GUI in a more complicated way. These features are the following.

1. Multiple Image Windows: It is possible to visualize up to 3 images.

2. Plotting: A plot can also be drawn in real-time in the same GUI window.

3. Dynamic hyperparameters: System parameters can be changed from the GUI in real-
time.

E.3 The interface of the GUI

The GUI is a standalone application, however, it needs an instance (Python Class object) of the
sequencer. The sequencer class should have the following functions such that the GUI can call
them and interact with the sequencer.

• get_next_stereo_images: It returns the stereo data for the next time step.

• jump_to: It moves the index to a particular frame number in the dataset such that when
get_next_stereo_images() is called, the data belonging to this frame number should be
returned.

• get_frame_count: It returns the total number of frames in the dataset.

• close: This closes the camera in case of a live ZED camera or performs other tasks.

The flow of execution of processes is shown in Fig. E.2. The steps are listed below.

1. When the user starts the system, it opens the GUI, passes an object of the sequencer to
the GUI, and initializes the callback functions. The major callback functions are on_start,
on_streo_data, return_image_1, and return_image_2. The system defines the behavior
of these callbacks. These functions will be discussed in the next steps.
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User GUI Pipeline
Start Program

Display GUI
Return sequencer object
and set callback functions

Select Dataset Type & Files

Press Start Button
on_start(dataset filepath)

get_next_stereo_images()

stereo data
on_stereo_data(stereo_data)

Process data and return the status Stereo Images
Processingreturn_image_1()

 return_image_2()
Images

Render Images

Press Play Button

Stereo Images
ProcessingRender Images

Figure E.2: Flow of execution of steps performed by the user, the GUI, and the Ferry-

SLAM system.

2. Once, the GUI is rendered, the user selects the dataset type, for example, ZED, and selects
the SVO file to be loaded.

3. After pressing the Start button, the GUI invokes the on_start function and passes the
dataset information to the sequencer via the system. In the case of the ZED dataset, the
sequencer only sets the runtime parameters for the SDK and allocates the memory to store
the stereo data for a single instant only. For the KITTI dataset, it loads the calibration
file, timestamps file, and the pose file (if available). It also processes the image files but
doesn’t load them in the memory.

4. Once, the sequencer object is initialized, the GUI requests stereo data from the sequencer
by invoking the get_next_stereo_images function. The handler loads the images in the
memory and returns the stereo data.

5. On successful retrieval of data, the GUI invokes the on_stereo_data callback. In this step,
the stereo data is passed to the system for processing.

6. Once the processing is finished, the processing status is returned to the GUI. After that,
the GUI requests the system to return the images to be displayed on the left and right
image windows by calling the function return_image_1 and return_image_2 respectively.
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During this, the system returns the images it wants to render and the name of the image
to be displayed.

7. Once, the images are retrieved from the system, the GUI renders them.

8. The GUI goes to an infinite loop where it keeps following from 5 to step 7 until the Play
button is pressed.

9. If the Play button is pressed, it repeats the step 4 to step 7 in a loop until get_next_stereo_images
returns an END_OF_FILE signal or the system enters into a failure state or the Pause
button is pressed.

10. The user press Quit button to exit the system and close the GUI.
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