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Abstract

This thesis delves into the application of artificial intelligence (AI) techniques for real-time fine-tuning of

dynamic models in surface vehicles for control purposes. In the initial stage of this investigation, two

baseline nonlinear models were conceived to capture the characteristics of a conventional boat and a

hydrofoil, respectively. The first model was designed to be simple, with small nonlinearities, while the

second was thought to be challenging with sharp nonlinearities. From those base models, the ground-

truth data were generated and used in the learning process of three AI methods for identification. Firstly,

the Sparse Identification of Nonlinear Dynamics (SINDy) technique was adopted to identify both the

simple and the challenging model. Secondly, a feed-forward Neural Network (NN) was trained to predict

a sequence of states of the hydrofoil model, revealing its potential for application in a reinforcement

learning structure. Finally, the hydrofoil model was identified offline and adjusted in real-time using a

Long Short Term Memory (LSTM), a Gate Recurrent Unit (GRU), and Vanilla Recurrent Neural Net-

works (RNN) combined with Extended Kalman Filter (EKF). The models were trained offline by applying

Backpropagation Through Time (BPTT), and later they were refined on-the-fly by the EKF. This novel

approach allowed adaptation and optimization of control systems during operation. Overall, this research

offers insights into the use of AI techniques, including SINDy, feed-forward NN, and RNN, to improve

control and model identification capabilities in surface vehicles, particularly hydrofoils.
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Resumo

Esta tese investiga a aplicação de técnicas de inteligência artificial (IA) para ajuste fino em tempo real

de modelos de controlo em veı́culos de superfı́cie, com foco em hidrofólios. Inicialmente, dois mod-

elos não lineares foram desenvolvidos com o objetivo de gerar os dados de referência para o treino

dos módulos de IA. O primeiro é um modelo mais simples que representa um barco convencional, en-

quanto o segundo é um modelo mais complexo para identificação, que retrata a dinâmica elaborada de

um hidrofólio. A partir dos dados gerados pelos dois modelos básicos, foram testados e comparados

três métodos de aprendizagem para identificação. O primeiro método de aprendizagem emprega a

Identificação de Sistemas Dinâmicos Não Lineares Esparsos (SINDy) para identificar tanto o modelo

simples como o modelo mais complexo com o hidrofólio. O segundo consiste no uso de redes neuron-

ais para a identificação do modelo complexo, revelando o seu potencial de aplicação numa estrutura de

aprendizagem por reforço. Por último, este trabalho mostrou que, ao integrar o filtro de Kalman esten-

dido e as redes neuronais recorrentes (LSTM, GRU e Vanilla RNN), é possı́vel refinar, em tempo real,

modelos de hidrofólios identificados previamente com Backpropagation Through Time. Em geral, esta

pesquisa compara e descreve informações importantes sobre o uso de técnicas de aprendizagem, in-

cluindo SINDy, redes neuronais feed-forward e redes neuronais recorrentes, com o objetivo de melhorar

o desempenho da malha de controlo e identificação para modelos de veı́culos de superfı́cie.

Palavras Chave

RNN; aprendizado em tempo real; Controlo; Identificação; Dinâmica de Veı́culos Marinhos.

v





Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Challenges in traditional Control Theory . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Artificial Intelligence supporting Control Theory . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the art 7

2.1 Adaptive and stochastic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Machine Learning associated with control methods . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Deep Learning and vehicle control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Reinforcement Learning applied to robotics . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Marine robotics modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Problem Statement 19

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 The complexity and difficulties of marine robotics models . . . . . . . . . . . . . . 21

3.1.2 Problem statement - extreme dynamics of hydrofoils . . . . . . . . . . . . . . . . . 21

3.2 Baseline for the investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Applying Feedback Linearization to control the hydrofoil and generate datasets for

the learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Identification with Machine Learning - Sparse Identification of Nonlinear Dynamics (SINDy) 29

4.1 SINDy applied to a simplified Unmanned Surface Vehicle (USV) model . . . . . . . . . . . 33

4.2 SINDy limitations - the method applied to a complex hydrofoil model . . . . . . . . . . . . 34

5 Real-time identification with Neural Networks 39

5.1 Offline Training of Neural Networks for Identification . . . . . . . . . . . . . . . . . . . . . 41

5.2 Real-time Learning of Neural Networks for Identification with EKF . . . . . . . . . . . . . . 46

5.2.1 Vanilla RNN applied for system identification in real time . . . . . . . . . . . . . . . 49

5.2.2 LSTM applied for system identification in real time . . . . . . . . . . . . . . . . . . 51

vii



5.2.3 GRU applied for system identification in real time . . . . . . . . . . . . . . . . . . . 53

5.2.4 Challenges to apply real-time training with Extended Kalman Filter (EKF) . . . . . 56

6 Conclusions 61

6.1 Overview and final considerations for the identification learning methods . . . . . . . . . . 63

6.2 Limitations for real-time learning with EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67

viii



List of Figures

1.1 Overall comparison between learning and expert-driven methods. . . . . . . . . . . . . . 5

1.2 Machine Learning, Deep Learning, and reinforcement learning as study areas. [1] . . . . 5

3.1 Two different modes of a hydrofoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Modeling of dissipative terms in a hydrofoil with sigmoids. . . . . . . . . . . . . . . . . . . 24

4.1 Control Sequences used to identify the simplified model. . . . . . . . . . . . . . . . . . . . 34

4.2 Feedback Linearization trajectory with SINDy for the simple model. . . . . . . . . . . . . . 35

4.3 Feedback Linearization error with SINDy for the simple model. . . . . . . . . . . . . . . . 36
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1.1 Introduction

Autonomous or unmanned vehicles have been playing an important role in research and production

fields. Such devices can be used to perform tedious or dangerous tasks for people, reducing the risk of

accidents, human errors, and the cost of processes. Autonomy has been applied to self-driven street

cars, flying drones, manufacturing automation, and also to the marine and maritime industry.

For the marine field, specifically, Autonomous Surface Vehicle (ASV) has the potential to improve

ocean surveys, transportation, and sea security/defense [3]. The scientific community has been apply-

ing multiple efforts to overcome challenges related to Simultaneous localization and mapping (SLAM),

trajectory tracking, path following, and performance of manipulators, etc. [3]

The progress of autonomous marine vessels is directly related to the development of Control Theory

and artificial intelligence (AI). This master’s research is based on the combination of both, and the

following section will explore the motivation behind the connection of those two fields.

1.2 Motivation

1.2.1 Challenges in traditional Control Theory

The architecture for marine autonomy can be constituted by several layers, like communication, task

planning, mapping, etc. [3]. Three of those modules are important and present even in simpler au-

tonomous crafts, namely: navigation, guidance, and control. The navigation unit collects the sensed

information to provide a good state estimation. Guidance uses navigation information and mission ob-

jectives to produce references to the control module. The control drives the robot to the desired state. A

variety of control approaches may be used in this context. Some examples are:

• Proportional, Integral and Derivative Control (PID);

• Linear Quadratic Regulator (LQR);

• Linear Quadratic Gaussian (LQG);

• Feedback Linearization;

• Model Predictive Control (MPC).

Proportional, integral derivative feedback control has been widely applied and has been proven to be

effective, simple, and efficient in terms of computational power. Nevertheless, its simplicity is also the

cause of its limitation. For instance, Proportional, Integral Derivative Control (PID)’s are not suited for

Multi-input multi-output control (MIMO) problems with highly coupled states.

3



Linear control methods, such as LQR, handle MIMO systems, balance actuator stress, and output

precision through the Q, R matrices. However, LQR would not perform well under certain conditions

where linearization with Jacobian matrices yields numeric instability. A car steering system, for example,

is highly nonlinear due to trigonometric functions dependency and, when linearized around equilibrium

points, it can be non-controllable or non-observable.

Feedback linearization is a technique that allows one to obtain control inputs that precisely reach

complex trajectories. However, the requirement of relatively accurate time-invariant models is one of its

weaknesses. This fact will be explored more in Section 3.1. Natural phenomena are nonlinear, noisy,

time-variant, and uncertain. For some problems, these factors cannot be neglected. An example is a

hydrofoil, or water fly-board, that changes its drag, added mass, and Coriolis matrices drastically as

it changes its velocity. Similarly, the physical model of a simple ferry boat can be conditioned to the

random disturbance ”number of people onboard”. More passengers means, in a nonlinear relationship,

more contact with the water, more added mass and drag, and a displacement in the center of gravity of

the vehicle [4].

There exist well-established control methods to manage the imperfections of actuators, sensors, plant

models, and disturbances. When it comes to practical implementation and control of those methods in

marine robots, a lot in terms of tuning and adjusting must be done manually. This is particularly true for

low-cost devices and also to carry out complex tasks, such as station-keeping for interventions with a

manipulator [3]. Some common manual procedures are:

1. tuning P, I, D coefficients;

2. defining the right equilibrium between cost — Q and R — matrices;

3. preparing meticulously specific tests under very precise (constrained) conditions;

4. executing carefully and repeatedly the tests to find the expert model.

1.2.2 Artificial Intelligence supporting Control Theory

The tuning process requires the work hours of experts, and the application of AI could reduce human

labor in those situations. AI and Control are not completely disconnected, though. Adaptive control has

been expanding the boundaries of traditional control. This is a ”gray zone” that can be part of either the

AI or the control universe [5]. AI is known for extracting information from data (even from what could be

considered noise). It has the potential to support Control Theory, enhance its results, and fill some gaps

that still have been challenging engineers.

AI has observed a surge of research and applications in engineering within the past 20 years [6].

The exponential growth of integrated circuits powered the advent and practical use of learning-based
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Figure 1.1: Overall comparison between learning and expert-driven methods.

methods. Regressors and classifiers have been improving to support decision-making in a variety of

areas. Artificial Intelligence is a broad concept, and in this work, it will be referred to as the most

usual learning-based frameworks, which are Machine Learning, Deep Learning, and Reinforcement

Learning. There is no strict boundary that says whether an algorithm is classified as Machine, Deep, or

Reinforcement Learning, but Machine Learning can be considered a more general area of knowledge

that comprises Deep and Reinforcement Learning [1]. Figure 1.2 shows in more detail AI from general

to particular cases.

Figure 1.2: Machine Learning, Deep Learning, and reinforcement learning as study areas. [1]
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Machine Learning (ML) has been widely used to boost businesses by exploring the statistical connec-

tions between different data features [7]. Deep Learning (DL) has been exhaustively applied in speech

recognition [8], image processing and classification, etc [9]. Reinforcement Learning (RL) has been suc-

cessfully applied to teach computers how to outperform humans in chess or go [10]. With RL, Robots

learn through experience to execute tasks. In fact, RL can be considered one of the many crossroads

where Control Theory and AI intersect.

Considering this scenario, the advantage of managing non-structured data of ML, DL, and RL should

be investigated to improve control for marine robots. This may be useful for a reliable identification

process or for robust control with real-time self-adjustment. In summary, the application of AI in control

can potentially:

• reduces the repetitive and tedious labor of the engineer teams;

• reduces the time spent during the experimental stage;

• improves the performance of the robot;

• improves reliability.

1.3 Thesis outline

The following Chapters will present some of the main academic achievements and challenges to connect

AI and control theory, as well as the contribution of this work to the field of study. More specifically:

• Section 1.2 outlines the motivation to use AI as a complementary tool in control of marine vehicles;

• Chapter 2 is a literature review with recent and relevant references for this work;

• Chapter 3 is dedicated to bound the problem tackled, and to define the baseline for the methods

presented in Chapters 4 and 5;

• Chapter 4 presents an investigation over Sparse Identification of Nonlinear Dynamics (SINDy)

applied to surface vehicle identification, with advantages and drawbacks of this method;

• Chapter 5 is the main focus of investigation in this thesis, it describes how neural nets can be

trained to identify dynamical systems and how they can be refined in real-time with Extended

Kalman Filter (EKF);

• finally, Chapter 6 summarizes and compare all the approaches presented in Chapters 4 and 5.
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The achievements and challenges that some of the most recent and praised works involving Marine

Robotics, Artificial Intelligence, and Control Theory will be presented in this Chapter 2. In addition,

Section 2.5 will provide the background for marine modeling that will be used in Chapters 3, 4, and 5.

2.1 Adaptive and stochastic control

Adaptive control is a versatile way of controlling devices by reacting properly to the uncertainties involved

in modeling and unpredictable environmental conditions that inflict the system [10].

MPC takes into consideration the provided model, sensors, and actuators, and runs an optimizer

cyclically. The optimizer should converge to a control sequence that minimizes a cost function with

terms related to the error along the trajectory and terms related to the stress applied to the actuators.

To find the optimized control, MPC predicts what the trajectory should be within the next steps given a

sequence of control commands that would be sent to the plant. In other words, MPC continuously uses

the current state and available model information to create a prognostic for future states and adjust the

sequence of control commands accordingly [11].

Since an optimizer runs frequently, MPC has the inherent advantage of dealing with trajectory, input

and output constraints. Due to its advantages, MPC has been widely applied to solve different prob-

lems in industrial processes and vehicle autonomy. [12] applied the concept of MPC ally with a set of

predefined rules to control the trajectory of a ship and avoid collisions.

[4] successfully applied the MPC concepts to control a surface vehicle. The aim of the authors was

to develop a control system for an autonomous transportation boat. The authors built a miniature of

an autonomous vehicle, applied nonlinear least squares to identify the model, and used MPC to track

the trajectory. Firstly, they used a simulation environment for preliminary tests. Afterward, the surface

vehicle miniature was used to conduct their experiments. Through the simulations and the experimental

tests, they showed that the prototype followed with time and space accuracy the desired trajectory.

[13] presented a methodology that might be considered in the domains of model predictive control,

and also a deep reinforcement learning algorithm. The authors built a data-driven module to control

the gait of a four-legged robot. They trained a feedforward NN to output the next 20 state variations

δst, .., δst+H , given a sequence of actions (a1, a2, ..., aH ) and the state st. In other words, it learns how

to predict the behavior of the physical model, while the MPC takes care of planning the next optimal

sequence of actions to attain the control target. With a model capable of providing the 20 next system

states, it is relatively simple to optimize the sequence of actions through a sampling process. Therefore,

the MPC works by sampling different sequences of actions and fitting the population of sequences into

a distribution of the best sequences. The criterion for defining the best sequence is the Cross Entropy

Method (CEM), calculated between the result of the sequence and the desired trajectory.
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Other adaptive methods in control, have also been proven to be effective. For instance, [14] uses

the Sequential Monte Carlo (SMC) arrangement to deal with uncertainty and to apply ML with Bayesian

assumptions. The authors used control concepts to find a proper model for the evolution of the disease

”Dengue Fever”. SMC is the stochastic framework behind the particle filter concept. The idea is to

estimate the state x(t) by optimization of the likelihood among random guesses of the current state.

Such guesses are known as particles.

The particles are compared with the data obtained from measurements in order to reach the identified

process. The more statistically consistent the trajectory of the particles with the measured trajectory of

the controlled system, the greater the chances that this particle is a good guess of the current state.

As time passes, the position of the particles converges to what should be the expected real state. The

advantage of using this method over Kalman Filter, for example, is that Kalman filters perform well when

the noise from measurements and the model errors can be approximated to Gaussian distributions. This

is not the case for a problem of simultaneous localization and mapping, for example.

2.2 Machine Learning associated with control methods

As shown in Section 2.1, [14] demonstrated how SMC could be a powerful tool to work with complex

models such as the progression of a disease. To some extent, their approach could be classified as ML.

Other methods are a more direct application of ML, one example is the methodology presented by [15].

[15] created an identification method based on machine learning, SINDy. The authors explained that

other approaches, such as symbolic regression or nonlinear least squares, expanded the capabilities of

identifying linear and nonlinear systems, but there are some caveats. For example, symbolic regression

is computationally expensive, works poorly with large systems, and is prone to overfitting. On the other

hand, ML is more flexible. The procedure presented by [15] tackles the control of sparse problems

to identify Ordinary Differential Equations (ODE)’s and Partial Differential Equations (PDE)’s. Sparse

means that each state variable derivative is a function of a few state variables. [15] claim that physical

problems with high dimensions are commonly sparse. This means that only some of the state variables

are dominant when coupled to other state variables. This is true for specific cases of the 6 degree-of-

freedom model of a marine vessel that will be presented in Section 2.5. In this case, if a surface or

underwater vehicle is symmetrical, slender, and designed to be stable, the cross dependency among

different states becomes weak, and the model becomes sparse.

SINDy uses time-stamped measurements to estimate the nonlinear coefficients of the state deriva-

tives with a regularization factor. This approach is equivalent to the machine learning regression analysis

known as Least absolute shrinkage and selection operator (LASSO).

The advantages of SINDy are its flexibility to fit nonlinear equations and the availability of python
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libraries with ”ready to use” functions [16]. Machine learning techniques are relatively simpler and,

therefore, faster than deep learning or reinforcement learning. The caveat is the necessity of adjusting

well the regularization hyperparameter λ and the limitations imposed by the terms chosen to compose

the nonlinear system. Also, it is still necessary to prepare and clean the input data. The use of this

technique will be explored in depth in Chapter 4.

2.3 Deep Learning and vehicle control

Neural network graphs composed of several layers with linear or nonlinear transformations are known

as Deep Learning. Authors have been experimenting DL to improve control in complex environments.

For example, the work of [13] uses MPC and deep neural networks to drive a legged robot vehicle. More

details are explained in Section 2.1.

[17] is a bibliographical review of deep learning applied to control autonomous vehicles. The paper

focuses on street cars, but the concepts and conclusions can be extended to marine vessels. It shows

the potential and limitations of DL with respect to computational power, control objective, architecture

selection, generalization, and reliability. The authors of this paper state that raw control techniques

(the ones that do not use learned-based techniques) had to counterweight their stiffness to cope with

complexity by using expensive and accurate sensors, such as Laser imaging, detection, and ranging

(LIDAR). They explain that many parameters need to be precisely hand tuned in those cases because

of the limitations of the controllers based on a predefined set of rules. It is also elucidated in their paper

that DL appears as an alternative to those hindrances. Some of the advantages of deep learning are: it

self-optimizes through data; it is more flexible to deal with variability; it processes multidimensional large

inputs like images. The information generated by deep neural networks can be used, among others, in

the context of collision avoidance, SLAM and optimal path. Considering the marine environment, input

data coming from sonars, Acoustic Doppler current profiler (ADCP), lasers or cameras can be consumed

by deep neural networks to produce information for decision taking and control commands.

To evaluate the performance of the works in autonomous driving carried out with deep learning, [17]

divides the problem into two different control objectives: longitudinal speed and position control; lateral

(steering) control. The authors point out that most of the results obtained with deep learning applications

for robot control originate from simulated environments. There are some factors that justify this trend.

Real world experiments can increase the risks of accidents, they are more expensive and it is laborious

to assemble the experimental. Finally, the authors list important challenges in deep learning (it also

considers RL), some are:

• overfitting the solution;

• inability to test in all possible scenarios;
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• high cost of field testing;

• finding the right DL architecture for the problem;

• designing a comprehensive reward function when deep learning is applied with RL;

• safe training in the real-world.

Deep learning can also be trained to replicate the system dynamics. [18] and [19] apply deep neural

networks for identification of dynamical systems. [19] explain the similarities between deep nets and

control identification. The authors elucidate that both deep neural networks and identification methods

can be modeled and tuned with statistical apparatus like variance-bias, cross-validation, and residual

analysis. Through practical examples, they demonstrate the effectiveness of NN in playing the role of a

canonical control model. [19] also carried out some tests to check which type of deep neural networks

would be more suitable to be a replica of a dynamical system. They reached the conclusion that the

cascadeforwardnet presents the same performance of more complicated solutions.

In the matters of using Neural Network (NN) as a surrogate for dynamic systems, [20] uses EKF as an

alternative to Stochastic Gradient Descend (SGD) method to train Recurrent Neural Networks (RNN)’s

with loss functions that are convex. The proposed solution considers regularization terms like L1 and

L2. The authors show that the Kalman Filter method has a performance equivalent to SGD in a non-

linear system identification benchmark and in training a linear system for classification. Additionally,

the authors of the study investigate the application of a data-driven algorithm in nonlinear model pre-

dictive control. They analyze its relationship with disturbance models to achieve offset-free closed-loop

tracking.

2.4 Reinforcement Learning applied to robotics

Reinforcement Learning and Adaptive Control pursue similar objectives. As a matter of fact, [10] and [21]

shows that Adaptive Control is a wide area that could entail learning-based methods, such as Rein-

forcement Learning. Reinforcement Learning is one of the AI frameworks that allows learning through

experience. The idea of RL is having an agent that interacts with the environment and learns through the

interactions how to maximize rewards or to reach a goal. Commonly used RL and Deep Reinforcement

Learning (DRL) algorithms like State, action, reward, state, action (SARSA), QLearning, Monte Carlo,

Deep Deterministic Policy Gradient (DDPG) are modeled with the basic concepts:

• an environment;

• an agent capable of taking actions in the environment;

• the current state (s), that encompasses the agent and environment;
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• the actions (a) that the agent can execute to go from state (s) to state (s’);

• a final state that can be a goal, failure, etc;

• a reward function that reflects how close the pair (a—s) is approaching the goal;

• a policy that returns the action, given the state;

• a trajectory from the initial state to final state.

[22] is one of the most emblematic applications of Reinforcement Learning. In this work, the authors

showed the power of model-based RL to learn from scratch how to play complex games like go, chess,

shogi, and even Atari games. Their approach is called MuZero. One of the ingenious features of the pro-

posed method is how the states are processed. Since Atari, shogi, chess, and go have 2D current state

representations, Convolutional Neural Networks (CNN)’s were used to synthesize the multidimensional

sequence of states before applying the RL algorithm. Their approach outperformed humans by far when

playing go, chess, and most of Atari games without knowing the rules previously. The algorithm is built

over a Monte Carlo tree search structure where each node is a state representation of the game and

the possible actions are the edges of the three. The algorithm should converge to reach two functions

— f and g — that describe the dynamics of the problem. The function st+1 = g(st, at) yields the state

transition from the node st to the node st+1, given an action (a). f is equivalent to the policy and outputs

the optimal action a∗ and the reward r. In a further publication, the authors added a new feature to

the model of [22] (Muzero). In [23], they included a module called ”Reanalyse” capable of learning new

experiences online.

Despite the expressive results, RL has limitations that must be addressed whenever it is used for

physical systems. The sample inefficiency, issues with formal consensus of stability as well as risks

and limitations associated with real hardware defy RL applications for robotics. [17] described in their

survey how convergence to policy optimality can be inaccurate, slow, and how it can require a massive

number of simulations or real-world training steps. To avoid this difficulty with physical data, most of the

references trained their RL for robotics in a simulated reality. Nevertheless, for specific applications, RL

is already contributing to robotics.

RL can be applied to many different stages of autonomy of a marine vehicle. Some researchers

applied it directly in the control layer, others applied RL to do the path planning with the control. [24]

used RL in the guidance decision layer. The authors developed a method that learns to choose among

three different guidance modes to keep a safe but effective trajectory. The RL algorithm is trained to

decide whether guidance should be in the port collision avoidance mode, starboard collision avoidance

mode, or path-following mode. Each one of those guidance strategies supply a PID steering and speed

control layers with a target trajectory.
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[24] takes advantage of the neural networks power to attain features from images obtained from an

onboard camera. The collected surrounding images are inputs for the DRL algorithm. This means that

the RL method learns how to identify obstacles in the picture and choose the appropriate strategy. Since

the output of the DRL is discrete, the authors could use Deep-Q-Networks (DQN). The state is defined

by the position, heading, velocity, and a sequence of 4 images, so the network could recover information

regarding the approximation speed to obstacles.

[25] uses reinforcement learning to aim two targets simultaneously: tracking control and collision

avoidance. The authors use classical control in an autonomous surface vehicle and reinforcement learn-

ing works as a control supervisor that provides intelligence for adaptation in case of nearby obstacles.

The authors claim that the method is potentially more efficient than using pure RL and, because of the

classical control module, they could also prove mathematically the convergence of the method to the

desired trajectory. The method was only tested in a simulated environment.

[25] uses Soft actor critic deep reinforcement learning algorithm (SAC) as the reinforcement learning

method. SAC presents similarities with DDPG. However, it is an entropy regularized reinforcement

learning method, which means that a certain degree of randomness in the policy is rewarded in the

beginning of the training process, and it vanishes as convergence is reached. This procedure is directly

related to the trade-off of exploring/exploiting in RL [26]. The reward function used by [25] is based on

the current distance and estimated velocity between obstacle and vehicle. In the absence of obstacles,

the RL module does not add any adjustments to the thrusters, and solely traditional control is applied.

[27] used neural networks and a RL framework to control an Autonomous Underwater Vehicle (AUV).

The researchers developed a method that uses an action and critic network. The critic network manages

the long-term decisions to aim trajectory tracking, while the action network is trained to deal with the

dynamics. [27] obtained good simulated results, but no real world tests were carried out. The AUV

was capable of following a trajectory with better performances than conventional proportional derivative

uncoupled controllers. The authors claimed that their method is robust against noise and disturbances.

[28] presented a method with deep reinforcement learning, with a quality table Q, where an Unmanned

Surface Vehicle (USV) learns path following and collision avoidance by controlling its position and ve-

locity. The authors define a reward function based on the distance to the obstacle and the distance to

the desired path. The state is formed by: current position, current heading, current angular and linear

speed, previous propeller commands (previous action) and obstacle distance. [28] uses a sequence of

previous states as an input to a CNN that yields the next chosen action. As the action is taken and

the next state is achieved, the reward is calculated and the Q table is updated. The authors obtained

reasonable simulated results and they highlighted that an environment with disturbances requires much

more training episodes.

While all the results obtained by [28] were extracted solely from simulations, [29] simulated and tested
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their work with a real boat. [29] proposed a method that uses a DRL architecture derived from DDPG for

path following of an USV. The USV had a catamaran shape and was pushed by two parallel thrusters.

Since the action and state space in DDPG are continuous, the control commands sent to the propellers

were not discrete, as in [28]. [29] comprised guidance and control simultaneously with reinforcement

learning. They used the concept of vector field to build a reward function that penalizes the actions that

steer away the USV from the desired path. An effective training required thousands of episodes and for

practical reasons it was carried out in a simulated environment.

The works referred to so far in this section used RL to train their robots from scratch, without any

previous predefined policy. However, it is viable to take advantage of expert knowledge to accelerate

the convergence or to improve the performance. Some researchers used expert system strategies as a

starting point and the AI to add robustness and flexibility to the control loop.

[30] developed a structure to control robots with proportional-integral control and deep reinforcement

learning. In this approach, the PI coefficients were manually set with theoretical values. The agent of

the deep reinforcement learning algorithm tuned the PI values as time passed. With this approach,

the authors could manage the coupling effects between different states and control a MIMO system.

The RL agent ensured that, independently of the state, a well adjusted control would bring the robot

to the targeted trajectory. Their method took care of the existent nonlinearities, variable coupling and

model deviations. The authors used an adapted DDPG to find a RL policy. The reward funcion was the

gaussian r = exp−[
vreq−vt√

2σ
]2 − 1, where vreq is the requested velocity, vt is the vehicle’s velocity and σ

is the standard deviation. The algorithm was trained and tested in a simulated environment.

[31] used RL and classical control to steer a robotic arm to place objects in a specific position

considering uncertain environmental conditions. The control problem was mathematically addressed

as a state that is affected by precedent states and the control action u(t). The mathematical structure

adopted (2.1) has common ground with discrete control systems and with the description of RL.

[
sm(t+ 1)
so(t+ 1)

]
=

[
A(sm, t) 0

B(sm, so, t) C(so, t)

]
·
[
sm(t)
so(t)

]
+

[
D
0

]
u(t). (2.1)

In (2.1), sm is the state component impacted by the control u(t) and that is not dependent on so.

A(sm, t) is the function that couples previous states with new states. so represents the components of

the state that are impacted by sm but not directly by the action u(t). C(so, t) update function for the

”hidden” state so. (2.1) has a component sm that is directly affected by the control u(t), and a component

so that depends on sm but it cannot be controlled directly. By this approach [31] could use a DDPG to

learn through simulated training how to handle unexpected and not explicitly modeled conditions. The
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policy space is defined as

u(t) = πH(sm) + πθ(sm, so) (2.2)

πH(sm) is pre-defined by the control law and πθ(sm, s) is learned by trial and error.

2.5 Marine robotics modeling

The definition of a model for marine robotics is crucial for the development of good simulators. It is also

essential to properly design classical control methods, such as PID, Feedback Linearization, etc. [32] is a

comprehensive handbook with theoretical and practical knowledge to describe the dynamics comprised

by marine vehicles. The methodologies to obtain a lumped dynamical model from this handbook will

serve as a reference in Chapters 3, 4 and 5.

The motion of a marine craft can be depicted by two complementary fields: kinetics and kinematics.

Kinematics is related to the studies of the geometrical parameters of the environment and vehicle. For

example, the frame of reference is in the domain of kinematics. Kinetics, on the other hand, is the study

of the forces that drive the motion of the physical parts involved. For a marine vessel, the representation

extracted from [32] that correlates acceleration, forces and torques is given by

τ =Mν̇ + C(ν)ν +D(ν)ν, (2.3)

where: τ are the external forces and torques applied to the vessel; C, M, and D are Coriolis, mass, and

drag matrices. ν are the linear and angular velocities of the vessel in the body frame. Considering 6

degree-of-freedom,

ν = [u, v, w, p, q, r]T . (2.4)

In more detail, u, v, and w are the surge, sway, and heave (linear) velocities, while p, q, and r are the roll,

pitch, and yaw (angular) velocities. Since the velocity components ν are expressed in the body frame, it

is convenient to transform it to the inertial (world) frame η. The transformation can be done with

η̇ = R(η)ν, (2.5)

where η are the world frame coordinates and R is a transformation matrix (from body to world).

The mass matrix (M) in (2.3) is formed by two terms, the rigid body mass plus another component

known as the added mass. The added mass is the portion of water that is conveyed by a rigid body

immersed in movement that contributes to the total mass/inertia properties of the system. The drag

coefficients (D) in (2.3) are compounded by skin and pressure drags. The skin component can be
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compared to the friction between the robot’s surface and the water. The pressure drag occurs due to the

pressure differences generated during the movement of a robot part in the water.

With few exceptions, surface vehicles are designed with their center of gravity below their center of

buoyancy. This feature yields a natural stability that allows some simplifications in (2.3). [32] mentions

that if the impact of roll is negligible and the vessel is designed to be stable, the model can be shortened

to a 3 Degree-of-Freedom (DOF), [x, y, ψ]. [33] neglected roll, pitch, and heave and their couplings for

control purposes and still obtained good results. So, considering the 3 DOF model, η, ν and R in (2.5)

and (2.3) are denoted by

η = [x, y, ψ]T , ν = [u, v, r]T , (2.6)

R =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.7)

In the 3 DOF model, considering that the part of the boat that is in contact with the water is a slender

body —the size along the x axis is considerably longer than y —and considering the symmetry in the

x-z plane, the mutual interactions between x-ψ and x-y can be neglected. So, the coupling occurs only

between yaw and sway for mass and drag matrices, as it can be seen in (2.8). In addition, for small

velocities, the drag can approximated as a linear function of velocity. Mass, drag, and Coriolis matrices

— M, D, C — from (2.3) can be approximated

M =

m11 0 0
0 m22 m23

0 m32 m33

 , D(ν) =

d11 0 0
0 d22 d23
0 d32 d33

 , C(ν) =

 0 0 c13
0 0 c23
c31 c32 0

 . (2.8)
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3.1 Problem statement

Section 1.2 briefly addressed the problems that might arise in control when a model is not a good

representation of the real dynamics. Deviations are prone to occur in highly complex, time-changing

environments or when low-cost sensors and actuators are used.

This is the case for surface vehicles and hydrofoils are especially subjected to model complexity and

unpredictability. This section is dedicated to describing the problems that arise in hydrofoil modeling and

where learning methods could be applied.

3.1.1 The complexity and difficulties of marine robotics models

Modeling errors are particularly relevant in marine robotics because the dynamics occur in a fluid. For

robotics applications, water can be considered an incompressible Newtonian fluid. This means that

underwater or surface crafts have models with components that depend on the differential equations,

so-called Navier-Stokes.

The Navier-Stokes equations are a challenge for engineering because they produce complex phe-

nomena that are hard to predict, and to be completely represented. Consequently, in some cases

simplified submarine and boat models can miss important dynamical features. (2.3) extracted from [32]

of Section 2.5 is an ingenious way of contouring the complexities of hydrodynamics by inferences of

empirical knowledge and applied physics. Despite the solid foundations behind the equations presented

by [32] and their vast applicability, the contrast between theory and reality can build up significant errors.

One of the differences between reality and theory in surface vehicle models is the calculations of added

mass and drag coefficient.

Firstly, added mass and drag are hard to calculate because they depend on geometry — distance

from center of buoyancy to center of gravity rbg and shape of the vehicle—, change of frame references,

physical properties, and numerical partial integrals. Second, these calculations are subject to present

differences with the real dynamics even if they are carefully carried out. This occurs because the concept

of added mass and drag are inherently an approximation of real-world dynamics.

Similarly, rigid body masses and Coriolis are also strongly related to the shape and will impose un-

certainties in the model development. Other model simplifications can also produce differences between

model and plant, like the 3 degree-of-freedom simplification cited in Section 2.5.

3.1.2 Problem statement - extreme dynamics of hydrofoils

The estimation of a lumped model with matrices becomes even more complicated for a hydrofoil, as

briefly mentioned in Section 1.2. Hydrofoils change the surface of contact with the water, more dras-

tically than conventional boats, as the velocity increases. Figure 3.1 illustrates this behavior. Fitting a
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dynamical representation for a hydrofoil is a burdensome task, and it will serve as a baseline for the

investigation of this thesis. In summary, the tackled problems are:

1. the limitations and problems for conventional identification with lumped model for hydrofoils;

2. the application of Machine Learning and Neural Networks as an alternative to create a model that

adapts well;

3. the restrictions of ML and NN;

4. the application of real-time learning to overcome some of the limitations of ML and NN;

5. concerns and measures when real-time learning is applied.

Figure 3.1: Two different modes of a hydrofoil. The normal mode is characterized by low-speed/high-drag while the
flying is high-speed/low-drag.

3.2 Baseline for the investigation

One way to represent a hydrofoil is by creating 2 different models and establishing a continuous (but

steep) transition between the two modes. Each one of the 2 models can follow the modeling defined by

(2.3), (2.6) and (2.5). Considering a hypothetical model of a hydrofoil with a propeller and a rudder, the
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state variables X are:

X = [x, y, ψ, u, v, r, Pf ]
T . (3.1)

In (3.1): x, y are the coordinates in the world frame; u, v, r are the velocities in the body frame, already

defined in (2.4); ψ is the yaw angle; Pf is the actual force provided by the propeller. For a hydrofoil

propelled by a DC motor, it is more realistic to consider first-order dynamics between the control signal

and the actual force obtained with a time constant in the order of 0.1 to 1s. In this case, 1 s is assumed

for the propeller motor.

The control variable µ can be defined as

µ = [PPcmd, RDcmd]
T ; (3.2)

RDcmd = KRD sin(RDang), (3.3)

with PPcmd being the control reference for the propeller force, and RDcmd being a variable that yields

the rudder torque when multiplied by the surge velocity u. The constant KRD represents the relation

between the physical properties of the rudder, such as size and shape, and the torque produced. RDang

is the angular position of rudder that goes from −π
2 to π

2 .

If the drag is linear, the nonlinear dynamical system of a boat in its canonical form becomes

f(X) + g(X)µ =



ẋ
ẏ

ψ̇
u̇
v̇
ṙ

Ṗf


=



u cos(ψ)− v sin(ψ)
v cos(ψ) + u sin(ψ)

r
(Pf+r (m22 v+m23 r xg)−d11 u)

m11
−r u xg m2

23+(RDcmd u−d33 r−d23 v)m23+d23 m33 r+d22 m33 v+m11 m33 r u

m2
23−m22 m33

m23 (d22 v+r (d23+m11 u))−m22 [u (m11 v+m23 r xg)−RDCmd+d33 r+v (d23−m11 u)]

(m22 m33−m2
23)

PPcmd − Pf


.

(3.4)

In (3.4), dij are mij are the dissipative and mass terms from matrices D and M in (2.8). xg is the

displacement between the gravity and buoyancy center of the boat in the x coordinate. This term appears

in (3.4) due to the Coriolis effect and the added mass. Coriolis also affects the system equations by

adding quadratic velocity terms and mass-dependent terms.

To represent the ”flying” and ”normal” dynamics of a hydrofoil, 2 different models based on (3.4)

may be combined. One model would have higher drag and added mass coefficients (low-speed mode)

whereas the other would have lower drag and added mass coefficients (high-speed or fly mode). The

two models should operate separately in different velocities and there should be a continuous transition

between them as velocity crosses a threshold. If the combination of the 2 modes is carried out with
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sigmoid functions, the system

f(X) + g(X)µ = σ(u− u0) [ffly(X) + gfly(X)µ] + σ(−u+ u0) [flow(X) + glow(X)µ] (3.5)

defines the hydrofoil dynamics. In (3.5), the subscript ”low” refers to the low-speed mode, while ”fly”

refers to the hydrofoil flying mode. σ is the sigmoid function and it is given by

σ(x) =
1

exp (−12 s
m x) + 1

. (3.6)

The greater is the number that multiplies x in the exponential, the steeper is the transition yielded by the

sigmoid function. All the simulations that refer to (3.5) in Chapters 4 and 5 use the value of 12 s
m shown

in (3.6).

Figure 3.2: Example of how the dissipative terms of a hydrofoil can be modeled. The chart shows the drag as a
function of the surge velocity. As velocity increases and the hydrofoil enters into the ”fly” mode, the drag
reduces.

For the cases where it is necessary to express the non-linear behavior of the drag, it can be more

convenient to express it in a quadratic form. In this situation, the function that maps the derivatives of
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the states becomes

f2(X) + g2(X)µ =



u cos(ψ)− v sin(ψ)
v cos(ψ) + u sin(ψ)

r
Pf−(d11u)+(m23xgr

2)+(m22rv)−(d11a|u|u)
m11

Pf−(d11u)+(m23xgr
2)+(m22rv)−(d11a|u|u)
m11

C1rr−(RDcmdm23u)+C1vv−(m11m33ru)+C1|r||r|r+C1|v||v|v+(m2
23xgru)

(−m2
23+m22m33)

(RDcmdm22u)+C2rr+C2vv+(m11m23ru)+C2|r||r|r+C2|v||v|v−(m22m23xgru)

(−m2
23+m22m33)

PPcmd − Pf


, (3.7)

with

C1|r| = (d33am23 − d23am33), C1|v| = (d32am23 − d22am33), C1v = (d23m23 − d22m33);

C1r = d33m23 − d23m33, C2|r| = (d23am23 − d33am22), C2|v| = (d22am23 − d32am22),

C2v = (d22m23 − d23m22), C2r = (d23m23 − d33m22).

The subscript ”a” in the drag coefficients of (3.7) is just to differentiate quadratic drag and linear drag

coefficients.

3.2.1 Applying Feedback Linearization to control the hydrofoil and generate

datasets for the learning methods

To generate data input for the learning methods that will be investigated, a variety of trajectories must be

extracted from the fictitious system outlined at the beginning of this section. Specific trajectories, such as

a lawnmower, can be generated from the hydrofoil dynamical system (3.5) with Feedback Linearization.

To apply this technique, the dynamical model of the surface vessel should be represented in the form

Ẋ = f(X) + g(X)µ, (3.8)

Y = h(X), (3.9)

with h(X) mapping the state variables X to the desired output Y, f(X) representing the nonlinear dynamics

and g(X) the nonlinear relation of the input µ and the state variables.

The linearizing feedback applies a transformation into the system, such that the nonlinear system

with nonlinear control feedback from (3.8) can be represented by the transformed state variables vector

ξ and transformed feedback control ũ with linear relations. The transformed model can be represented
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as

ξ̇ = A(X)ξ + b(X)ũ, (3.10)

w = Cξ, (3.11)

µ(X, e) = A(X)−1(e− b(X)). (3.12)

A(X) and b(X) are matrices built from the differential relations between f(X) and Y. µ will be finite if A(X)

is non-singular (invertible). e is the feedback error that will be linearized.

The intuitive idea behind Feedback Linearization is to add terms in the feedback that compensate

the nonlinear effects of f(X) and g(X) to produce a command µ to track a certain trajectory. (3.10) is the

linear representation of the nonlinear system error. If ξ gradually approaches 0, the difference between

the desired trajectory τ and Y(t) will also be reduced to zero. Errors in the estimation of functions f(X)

and g(X) from (3.8) will propagate to the transformation in (3.10). Hence, model errors will arise as

distortions in the control law.

The control objective under analysis will be trajectory tracking. To simplify the problem, the controlled

variables will only be the coordinates x and y. The output Y is given by

Y = [x, y]T . (3.13)

To generate the linearization feedback, it is necessary to find the differential delays matrix with re-

spect to (3.5). The differential delay matrix provides the number of integrals necessary to obtain the

controlled state variables starting from the control command. This matrix is used to verify if any output

delays would be required to avoid an ill-conditioned feedback system. The column with the smallest

derivative degree should be chosen to establish the relations of the feedback control. For this problem,

the differential delay matrix is given by

R =

[
3 3
3 3

]
.

Since the number of integrations to reach the two controlled variables (x, y) starting from the two

control commands (PPcmd, RDcmd) is 3 in all the cases, two columns can be chosen independently to

develop the feedback expressions. Hence, it is not necessary to add a delay to control the output. The

resulting expression for the feedback is

[ ...
x...
y

]
=

[
a11(X) a12(X)
a21(X) a22(X)

] [
PPcmd

RDcmd

]
+

[
b1(X)
b2(X)

]
, (3.14)

with aij being the coefficients of matrix A mentioned in (3.10), bij being the coefficients of matrix b

mentioned in (3.10).
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The complete expressions found for A and b are not trivial (more than 20 terms for each matrix

element) and they will not be expressed in this document for better readability. The linearization feedback

should reduce to 0 the errors of X up to the second derivative and provide the feedback that is dependent

on the third derivative. It is given by

µ = A · (
[
α0(xref − x) + α1(ẋref − ẋ) + α2(ẍref − ẍ) + α3

...
xref

α0(yref − y) + α1(ẏref − ẏ) + α2(ÿref − ÿ) + α3
...
yref

]
−

[
b1(X)
b2(X)

]
). (3.15)

xref (t) and yref (t) are the time-variant references applied to the surface vehicle control loop. The α

coefficients are the gains of the equivalent linear representation that drives the trajectory error to 0.

If the determinant of matrix A is zero, it characterizes a singularity, where the effectors will not be

capable of driving the robot to the desired trajectory. Because the system has many different parameters,

it’s not a simple task to define all the conditions that might cause singularities, but, for instance, a

singularity happens, when all the linear velocities u, v, the angular velocity r, and current force provided

by the propeller Pf is 0. So, to start the boat, a forward force command should be applied before the

control starts.

The expression (3.15) shows that: the equations for A and B are long and complex; this complexity

may lead to a system that is highly sensitive to model errors. The parameters used to determine the

nonlinear feedback will influence heavily in the performance of the controller. In some situations, an

ill-conditioned matrix A could yield an infinite feedback µ.

This control technique is very powerful for theoretical models, and to generate a baseline dataset to

train AI models. Additionally, its vulnerability to inaccuracies highlights again the motivation for applying

data-driven methods for model identification.

27



28



4
Identification with Machine Learning -

SINDy

Contents

4.1 SINDy applied to a simplified USV model . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 SINDy limitations - the method applied to a complex hydrofoil model . . . . . . . . . 34

29



30



This Chapter is dedicated to the identification technique grounded on machine learning a.k.a. SINDy.

In this Chapter, it will be discussed:

• the accuracy of SINDy to identify simple USV dynamics;

• the accuracy of SINDy to identify complex USV dynamics;

• limitations and disadvantages SINDy for identification.

As introduced in Chapter 2, SINDy uses the concept of sparse regression to fit a linear combination

of functions or terms (that can be linear or nonlinear) in order to represent a dynamical system. The

minimization problem

y ≈ Ẋ;

ξ = argmin(ξ′)(||Θ(X)ξ′ − y||2 − λ||ξ||1) (4.1)

summarizes the method, with ξ being the matrix of coefficients to be found, and Θ being the feature

library. The feature library Θ is a set of functions of the states X that will be multiplied by ξ to form

the nonlinear system. Those functions are usually polynomials, but a variety of other functions may

be applied, for example, trigonometric terms, exponential functions, and absolute value. λ||ξ||1 is the

regularization term. The factor λ is a hyperparameter that should be properly set to avoid overfitting. It

penalizes an overfitting solution that presents too many coefficients.

To assess Sparse Identification of Nonlinear Dynamics (SINDy) for surface marine vehicles, the

Python package ”PySINDy” was used. PySINDy has ”ready-to-use” sparse identification libraries of

features and optimizers to solve the problem stated by (4.1). The built-in feature libraries contain the

terms Θ from (4.1) that must be multiplied by coefficients ξ. Some of the built-in optimizers are the least

squares regression, LASSO, and a specific method called Sparse relaxed regularized regression (SR3)

[34] that allows the user to include equality constraints.

In this section, a 2nd degree polynomial library with 4 features (u, v, r, PPf ), which are the 4 last

state variables from 3.1, merged with a control input library with the 2 control commands (PPcmd, RDcmd)

defined in (3.2) were used to fit the model. This combination contains 45 coefficients (ξ) per state,

ξ =


C1−1, C1−2, ... , C1−44, C1−45

C2−1, C2−2, ... , C2−44, C2−45

C3−1, C3−2, ... , C3−44, C3−45

C4−1, C4−2, ... , C4−44, C4−45

 , (4.2)
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that are multiplied by the terms

Θ = [1, u, v, r, Pf , u
2, uv, ur, uPf , v

2, vr, vPf , r
2, rPf , P

2
f , PPcmd, PPcmdu, PPcmdv, PPcmdr,

PPcmdPf , PPcmdu
2, PPcmduv, PPcmd, ur, PPcmduPf , PPcmdv

2, PPcmdvr, PPcmdvPf ,

PPcmdr
2, PPcmdrPf , PPcmd, P

2
f , RDcmd, RDcmdu, RDcmdv, RDcmdr, RDcmdPf , RDcmdu

2, RDcmduv,

RDcmdur, RDcmduPf , RDcmdv
2, RDcmdvr, RDcmdvPf , RDcmdr

2, RDcmdrPf , RDcmdP
2
f ]

T .

(4.3)

The 2nd order degree was chosen in this case due to the nature of the original dynamical system

described by (3.4) and (3.7). The optimizer applied here was the standard least squares.

Tests with SINDy were carried out with 2 different approaches. In the first approach, the data for

identification was generated from the reference dynamical system with linear drag (3.4) and data from

all the 4 state variables (u, v, r and the Pf ) were used to fit the model. The second test was conducted

under more challenging conditions, which are:

• the data for identification was extracted from the reference dynamical system with quadratic drag

(3.7);

• the model has 2 modes, low and high-speed (hydrofoil) weighted by sigmoid functions;

• Gaussian noise (σ = [1 cm/s, 1 cm/s, 1 deg/s]) was added to the data system;

• only data from 3 state variables were considered (it assumes that a direct measurement of the

propeller force would not be available);

• the relation between the rudder control variable and the torque produced is a trigonometric func-

tion.

Table 4.1 summarizes the 2 test conditions.

Table 4.1: Tests with SINDy

Test Drag Presence of Noise State Representation Number of modes Rudder torque
Simplified Linear No u, v, r and Pf single mode u(KRD)

Challenging Quadratic Yes u, v, r 2 modes u(KRD sin(RDang))

Three steps were carried out to achieve both tests results, first, it was necessary to collect the data.

The second step consisted of removing spurious data cleansing (control and state variables). Finally, it

was necessary to tune the sparsity parameter lambda. Section 4.1 and 4.2 give more details about the

methodology and results for both tests.
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4.1 SINDy applied to a simplified USV model

This section details the ”Simplified” test mentioned in Table 4.1. The ground-truth model used was based

on (3.4) for a boat miniature with a mass of 2 kg and 1 m in length. The ground-truth uses linear drag

and 4 state variable model representation. The data provided to fit the model was the expression in

(3.2), which is the torque produced by the rudder divided by u (surge). The dynamic system


u̇
v̇
ṙ

Ṗf

 =


0.4000Pf − 2u+ 0.0800 r (r + 10 v)

0.2211 r − 4.9704 v − 0.1693 r u+ 0.0099RDcmd u
0.8876 v − 5.8681 r − 0.0789 r u+ 0.2959RDcmd u

PPcmd − Pf

 (4.4)

was used to generate the input data.

Two different trajectories were selected to verify the sensitivity and robustness of the generated

models. Figure 4.1 shows both control sequences. The first trajectory (Control Seq. 1) lasted (60 s) and

presented lower variability. The second simulation (Control Seq. 2) extended itself to 200 seconds with

a wider range of model excitation.

To find a stable model that fits properly to the collected data, it was necessary to adjust the hyperpa-

rameter λ. A too high lambda would disregard too many terms of (4.3) leading to a poor representation,

on the other hand, a too low lambda would include overfitting terms. A strategy to adjust λ is to contrast

the model with a realistic operation of marine vehicles. It is known that for an USV, if the actuators are

subjected to bounded control inputs, the states and derivatives yielded should also be bounded. This

means that the SINDy identified model with well-tuned λ should not generate a trajectory with huge

values (smaller than 103 for this context). From Figure 4.3 it can be seen that values of λ above 0.15

will produce a bounded system for ”Control Seq. 1”. ”Control Seq. 2” produces bounded results for all

values tested of lambda.

The sparse regression with the Control sequence 1 led to the dynamical system


u̇
v̇
ṙ

Ṗf

 =


−1.520u+ 0.348Pf + 0.878 vr

−4.387 v + 0.659uv
26.451 v +−6.109 r +−2.431u v +−0.263 v2 + 0.280uRDcmd

−0.993Pf +−0.378 v2 + 0.994PPcmd

 . (4.5)

While the sparse regression with the Control sequence 2 led to


u̇
v̇
ṙ

Ṗf

 =


0.4000Pf − 2u+ 0.0800 r (r + 10 v)

0.426 r − 4.625 v − 0.159 r u
0.996 v − 5.804 r − 0.075 r u+ 0.293RDcmd u

−0.998Pf + 0.999PPcmd

 . (4.6)

”Control Seq. 2”, which excites more the system, produces an identified model much closer to the refer-
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Figure 4.1: Control Sequences used to identify the model. In the simplified model, the multiplication of the rudder
command RDcmd (unit N.s) by the surge velocity (unit m/s) yields the yaw torque (unit N.m).

ence than ”Control Seq. 1”. Both identified models were used as a reference for Feedback Linearization

with a trajectory of a circle of 10 m radius and period of 40 s. The second sequence presented a

smoother control and more accurate trajectory when compared with sequence 1. This can be seen in

Figure 4.3 and 4.2.

Both (4.5) and (4.6) presented significant differences between ground truth and identified expressions

for the state ”v” (sway). However, these differences did not impose considerable losses on the control

process, because the rudder and the propeller do not act directly in this direction.

4.2 SINDy limitations - the method applied to a complex hydrofoil

model

In the previous section, the observed results in the simulations showed that for simple dynamical sys-

tems, SINDy can be suitable for control identification. This section will investigate whether SINDy per-

forms well under the ”Challenging” conditions summarized in Table 4.1. The tests performed in this

section do not use a direct measurement of the propeller force, and the torque yielded by the rudder

comes from a trigonometric function of its angle position. Besides that, the drag behaves as a quadratic

function, and the system will be composed by the linear combination of two modes weighted by sigmoids

as illustrated in the chart in Figure 4.5 and defined by
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Figure 4.2: Tracking a circular trajectory using Feedback Linearization with the model identified with ”Control Seq.
1”, (4.5), and model identified with ”Control Seq. 2”, (4.6).

σ(u− u0) [flow(X) + glow(X)µ] =


u̇
v̇
ṙ
Pf

 =


(0.4000Pf+0.0800r(r+10v)−0.4000u(|u|+3))

exp (12u−12u0)+1
−(3.9665v−0.2211r+0.1693ru+0.0099|r|r+0.8366|v|v−0.0099RDcmdu)

exp (12u−12u0)+1
−(5.8681r−1.0060v+0.0789ru+0.2959|r|r+0.0986|v|v−0.2959RDcmdu)

exp (12u−12u0)+1

PPcmd − Pf

 ,
(4.7)

σ(u0 − u) [ffly(X) + gfly(X)µ] =


u̇
v̇
ṙ
Pf

 =


(0.4444Pf+0.0889r(r+10v)−0.2667u(|u|+3))

exp (12u0−12u)+1
−(4.0947v−0.3383r+0.2874ru+0.0045|r|r+0.8578|v|v−0.0076RDcmdu)

exp (12u0−12u)+1
−(6.3206r−1.3683v+0.1208ru+0.3172|r|r+0.0453|v|v−0.5286RDcmdu)

exp (12u0−12u)+1

PPcmd − Pf

 ,
(4.8)

fhydrofoil = σ(u− u0) [flow(X) + glow(X)µ] + σ(u0 − u) [ffly(X) + gfly(X)µ].
(4.9)

The control sequence applied can be seen in Figure 4.6. For the tests in this section, the control

sequence imposed on the system for identification excited it much more than what was used in 4.1.

Despite that fact, the model representations found with SINDy were not good in this case. The identified

models either did not represent the force applied by the propeller well or they produced trajectories that
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Figure 4.3: Error tracking a circular trajectory using Feedback Linearization with the model identified with ”Control
Seq. 1”, (4.5), and model identified with ”Control Seq. 2” (4.6). The data used were generated with the
model (4.4). The maximum error at the beginning of both sequences is around 10 m, the value in the
chart was clipped in 4 m for better resolution in the steady state error.

Figure 4.4: Maximum values of X and Ẋ given a bounded input for different λ, given the state sequence generated
by control sequence 1.

escalated to large errors with a few control commands. To exemplify those cases, the systemu̇v̇
ṙ

 =
1

100

 50.9v2 + 0.4RDcmduv + 1.5RDcmdv
2

0.000
−9v − 4.4r + 3.4uv + 2v2 + (6.5u+ 2.3u2 + 134v2 − 7vr − r2)RDcmd

 (4.10)
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Figure 4.5: Modes described by the expressions (4.7) and (4.8).

Figure 4.6: Control input sequence applied for model (4.9).

was obtained with λ = 0.6 (more sparse), whereasu̇v̇
ṙ

 =
1

100

 3 + ...+ 84r2 + (0.7 + ...− 0.8r2)PPcmd + (−1.5 + ...+−26.5r2)RDcmd

−0.1u...+ 1.2r2 + (3.7v + ...− 0.3vr)PPcmd + (0.1 + ...− 1.7r2)RDcmd

−0.3 +−0.7u+ ...+ 2.6r2 + (−20.1v...+−0.2r2)PPcmd + (−1.5...− 105r2)RDcmd


(4.11)

was obtained with λ = 0.06 (less sparse). The expression in (4.11) is exceptionally long, and some

terms were omitted for better readability. (4.10) did not have a direct term of the propeller in the surge

equation, and (4.11) produced large errors with few control commands.

The poor performance of the identified models precluded their use for Feedback Linearization with

the simple circular trajectory in Figure 4.2. The difficulties to fit a good model with SINDy for the ”Chal-

lenging” conditions can be explained by the limited degrees of freedom provided by 2nd order polynomi-

als. A 2nd order polynomial SINDy library is not enough to cover simultaneously:

• the steep nonlinearity devised by the hydrofoil high-low speed transitions;

• the trigonometric, highly nonlinear, relation between the rudder angle and the torque/force applied;

• the quadratic drag.
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It is still possible to improve results by using equality constraints or increasing the complexity of func-

tions in Θ(X) or identifying two different models — one for high and another for low speeds. However,

setting up those suggestions can be cumbersome, requires more in-depth knowledge of the problem,

and can undermine the flexibility and freedom offered by data-driven methods.

Section 4.1 showed a successful use of SINDy, while this section demonstrated some of the method

limitations. In the next Chapter, it will be verified that the identification of the complex dynamical system

described in this section can be improved with neural networks. The next Chapter will also demonstrate,

with examples, the advantages and disadvantages of this approach for offline or real-time learning of

surface vehicle dynamics.
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In the previous Chapters, it was shown that Machine Learning can be applied to identify dynamic

systems. In this Chapter, a similar investigation will be conducted, but instead of using SINDy, feed-

forward and recurrent neural networks will be trained for prediction or identification of hydrofoils. Section

5.1 will describe the methodology and results obtained with feed-forward neural networks trained offline

with SGD for trajectory prediction. Section 5.2 presents the methodology and the results obtained to train

and fine-tune in real time recurrent neural networks using Extended Kalman Filter (EKF) for identification.

5.1 Offline Training of Neural Networks for Identification

To contour the limitations with SINDy described in Chapter 4, an NN fθ can be trained to identify USV

dynamics. With the NN as the representation of the system, it is possible to control the future trajectory

by applying an optimizer in an MPC framework, similar to what [13] proposes. Figure 5.1 is a workflow

that explains this approach. The tests and simulations conducted in this section are focused on the

offline NN training process (the steps inside the yellow square in Figure 5.1).

Figure 5.1: A NN plays the role of the dynamic system and forecasts the next 20 steps. With the next 20 steps
available, it is possible to apply MPC associated with the Sample-efficient Cross Entropy Method to
drive the robot to a desired state.

In this work, the inputs of the NN predictor fθ were specified as the 4 latest states, expressed by

st(k) = {X(k − 3), X(k − 2), X(k − 1), X(k)}, (5.1)
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alongside the latest 3 command steps concatenated with the next 20 command steps, expressed by

at(k) = {µ(k − 3), µ(k − 2), ... µ(k + 19)}. (5.2)

It is assumed that the next 20 commands are known in advance. For instance, they can be extracted

from the Data Efficient CEM to drive the vehicle to a desired trajectory of 20 steps ahead in time. As

seen in Figure 5.1, the neural network and its state predictions are defined as

ŝt+1 = fθ(st, at). (5.3)

The output of fθ(st, at) are the estimated states of the future 20 steps, given by

ŝt+1(k) = {X̂(k + 1), X̂(k + 2), ... X̂(k + 20)}. (5.4)

The reason to consider the 4 past states instead of just 1 is to cope with noise. If trained properly, an

NN is able to handle noisy measurements from a set of past inputs. As it was done in the challenging

conditions for SINDy in Section 4.2, the stateX is composed only by the velocities (u, v, r) from (3.1), and

the control inputs µ are composed by PPcmd, RDang from (3.2). This means that the learning process

will have to account internally for the propeller dynamics and the trigonometric relations between the

rudder angle and the actual torque yielded.

To improve the learning capabilities of neural networks, the data consumed in the training and testing

stages should be normalized. This step is distinctly important for the dynamic systems defined by (3.4)

and (3.8) due to the differences in magnitude among surge, sway, yaw, PPcmd and RDang. Conse-

quently, Z-Score normalization was applied to the training and testing data, as described by

µnorm(k) = [
PPcmd(k)− PP cmd

σPPcmd

,
RDang(k)−RDang

σRDang

]T ,

Xnorm(k) = [
u(k)− u

σu
,
v(k)− v

σv
,
r(k)− r

σr
]T . (5.5)

The variables accompanied by the overwritten bar in (5.5) are the mean values of each feature from the

training dataset. For example, considering that the training dataset has N terms, the mean value of u

would be

u =
1

N

N∑
k=1

u(k).

On the other hand, σ refers to the standard deviation of the training dataset. For example, the standard
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deviation of the feature u is

σu =

√√√√ 1

N

N∑
k=1

(u(k)− u)2.

This way, the mean of each feature from the training dataset becomes centered in 0, and the variance

becomes 1.0. After Z score normalization, before forwarding the data to the neural net, the inputs are

flattened and concatenated. The NN is formed by linear layers followed by hyperbolic tangent (tanh)

activation functions. Figure 5.2 shows the arrangement adopted. For training, the loss function chosen

was the mean square error, given by

L =

20∑
n=1

||Xnorm(k + n)− X̂norm(k + n)||
2

2, (5.6)

and Adam Optimizer was selected for the Stochastic Gradient Descent process.

Figure 5.2: Neural Network design for system identification and MPC.
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Figure 5.3: ”Error NN” is the test dataset error between the NN prediction for either u, v, or r and the hydrofoil
model. Similarly, ”Error C0” is the error between an ideal low-speed-only model and the complete
hydrofoil model. ”u[m/s]” is the surge velocity of the boat for the test dataset, and ”Transition” indicates
the borderline between low and high-speed modes.
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The dataset summed up approximately 2 hours of simulation with a step of 10 ms (around 72000

steps). The training data was generated with Matlab Simulink simulations. The inputs for training were

carefully chosen to excite the system dynamics in a variety of ways. To fulfill this objective, the com-

mands sent to the actuators were a composition of: random variables; constant 0.0 values (to train the

natural decaying effect, and excite independently each actuator); chirp functions; triangular functions,

etc. The system excitation was also designed in a way that the hydrofoil would operate in low and high-

speed modes. In this case, the transition between low and high-speed modes of the hydrofoil occurred

when u crossed 2.5 m/s.

To verify the accuracy of the NN, its results were compared with an ideal model using only the

low-speed mode of the hydrofoil (”C0” in Figure 5.3). With this, the test dataset error between the

ground-truth and ”C0” is expected to increase every time the surge speed exceeds 2.5 m/s (from where

the hydrofoil enters the flying mode). Conversely, the test dataset error between the ground-truth and

the trained NN should remain stable and smaller than ”C0” in all velocity conditions.

Figure 5.3 shows the test dataset error after training the NN. As expected, the errors of the reference

”C0” grow as the speed goes above the transition point of 2.5 m/s, while for the neural networks, the

error remains very small, regardless if the surge velocity is below or above the threshold of 2.5 m/s. This

result shows that the NN effectively learned to predict the next 20 states of the hydrofoil. The error seen

in Figure 5.3 is calculated using

Erroru(k)Errorv(k)
Errorr(k)

 =

 1
200

∑9
m=0

∑20
n=1 ||u(k + 20m+ n)− û(k + 20m+ n|st(k + 20m), at(k + 20m))||1

1
200

∑9
m=0

∑20
n=1 ||v(k + 20m+ n)− v̂(k + 20m+ n|st(k + 20m), at(k + 20m))||1

1
200

∑9
m=0

∑20
n=1 ||r(k + 20m+ n)− r̂(k + 20m+ n|st(k + 20m), at(k + 20m))||1

 ,
(5.7)

with [û(k + n|st(k), at(k)) v̂(k + n|st(k), at(k)) r̂(k + n|st(k), at(k))]T being the velocities predicted

by the neural network or the reference model ”C0”, given the inputs st(k) and at(k).

Since the dynamical system to be identified is not presented in the canonical form of Ẋ = f(X) +

g(X)µ, with the control variables µ only multiplying g(X), Feedback Linearization or Backstepping can-

not be used with the NN. Nevertheless, as mentioned at the beginning of this section, the identified

system can be associated with an optimization method in order to apply MPC. [13] and [35] provided

comprehensive evidence that the MPC trajectory optimization can be achieved in real-time problems

with the Sample-Efficient CEM.

The NN predictor presented in this section has proven capable of learning dynamics very accurately

when a rich training dataset is provided. However, its results can be deficient when real conditions are

not covered by the training data. For example, if unexpected disturbances, measurement problems, or

physical damages occur, the trained neural networks can present considerable inaccuracies. Section

5.2 will describe a methodology with EKF and RNN’s that can be explored to overcome this difficulty.
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5.2 Real-time Learning of Neural Networks for Identification with

EKF

In the previous section, a feed-forward neural network was used to learn the dynamics of a hydrofoil.

In this section, instead of traditional feed-forward NN’s, RNN’s will be employed for a similar purpose.

Additionally, this section will cover the real-time (online) training of recurrent neural nets. By means

of a technique proposed by [20], EKF may be applied to adjust or fine-tune recurrent neural networks

”on-the-fly”.

RNN’s are appropriate for sequential data, where it is necessary to find a chain of outputs that

depends on previous states, and on external inputs. This is the case for the context of dynamical

systems. Figure 5.4 elucidates how data flows through recurrent neural networks.

Figure 5.4: The recurrent neural network, represented by A, uses the previous hidden state ht−1 and input xt to
yield the current hidden state ht. Image extracted from [2].

Following the presentation of [20], the state transition and output prediction with RNN are expressed

by

h(k + 1) = fh (h(k), µ(k), θh(k)) + ξ(k)

y(k) = fy (h(k), µ(k), θy(k)) + ζ(k)

θ(k + 1) = θ(k) + η(k), θ(k) ≜

[
θh(k)
θy(k)

]
, (5.8)

where fh and fy are recurrent neural networks, and θh and θy are, respectively, their parameters. [2]

and [20] use different notations, h(k) for [20] is equivalent to the hidden state ht in Figures 5.4, 5.13,

5.10, and 5.8, given a time step k. µ(k) is equivalent to xt−1 in Figures 5.4, 5.13, 5.10, and 5.8. ζ(k),

ξ(k), η(k) are Gaussian noises, and y(k) is the estimated output state. For The hydrofoil dynamic system

with 2 modes defined by (3.5), y(k) are the surge, sway, and yaw velocities,

y(k) = X(k) = [u(k), v(k), , r(k)]T . (5.9)

Initially, the RNN hydrofoil model can be trained offline with Backpropagation Through Time (BPTT),
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similarly to what has been done in Section 5.1 with SGD. Afterward, the model learned offline can

be put into operation and improved or fine-tuned by the EKF technique. EKF is a modification of the

traditional Kalman Filter used for estimating states and process parameters of a dynamic system. It’s

particularly helpful to handle nonlinearities. Besides h, y, fh, fy and θ, the terms that appear in an EKF

are the state covariance P, the process noise covariance Q, the measurement noise covariance Qy, and

the Kalman Gain M .

The state Covariance (P ) represents the uncertainty associated with the state estimate. It expresses

quantitatively how precise is the estimate. This matrix is impacted by Q and is weighted by A, a matrix

composed of Jacobians. Process Noise Q is the uncertainty or noise associated with transitions of the

state. It considers the distortions between the real system and the predicted state transition function. It

depends on terms related to h (Qh) and terms related to θ (Qθ). Measurement Noise (Qy) represents

the noise or uncertainty related to the y. It accounts for imprecision in the sensors and other sources

of measurement error. The Kalman Gain (M ) defines how much relevance to give to the state estimate

and the most recent observation when updating the state estimate. It’s calculated based on P and Qy

and weights measurements and predicted states.

In the Prediction Step, the function fx predicts a new state, and its associated uncertainty P is

refreshed. In the Update Step, the predicted output ŷ is obtained from the predicted state ĥ and fy. The

difference between the actual observations and ŷ is weighted by the Kalman Gain (M ) and added to the

state estimate ĥ. P is also adjusted with M .

Every iteration, the EKF predicts and updates the state, as new observations are detected. The

method continuously adjusts the results and their uncertainty. The most challenging step in EKF is

coping with nonlinearities in fx and fy, which requires linearizing these functions regularly around the

current estimate. This procedure is implicitly executed when matrices A and C are calculated and used

to update P and M .

The Linearization combined with the Update and Prediction Step allow the EKF to operate even

under nonlinear conditions, making it a solid resource in different areas, such as marine robotics.

47



The EKF is summarized by the sequence

C(k) =
[

∂fy
∂h 0

∂fy
∂θy

]∣∣∣
θ̂(k|k−1),ĥ(k|k−1),µ(k)

M(k) = P (k | k − 1)C(k)′ [C(k)P (k | k − 1)C(k)′ +Qy(k)]
−1

e(k) = y(k)− fy

(
ĥ(k | k − 1), µ(k), θ̂y(k | k − 1)

)
[
ĥ(k | k)
θ̂(k | k)

]
=

[
ĥ(k | k − 1)

θ̂(k | k − 1)

]
+M(k)e(k)

P (k | k) = (I −M(k)C(k))P (k | k − 1)[
ĥ(k + 1 | k)
θ̂(k + 1 | k)

]
=

[
fh

(
ĥ(k | k), µ(k), θ̂h(k | k)

)
θ̂(k | k)

]

A(k) =

 ∂fh
∂h

∂fh
∂θh

0

0 I 0
0 0 I

∣∣∣∣∣∣
θ̂(k|k)ĥ(k|k),µ(k)

P (k + 1 | k) = A(k)P (k | k)A(k)′ +
[
Qh(k) 0

0 Qθ(k)

]
. (5.10)

Low 
Mode
Low 

Mode

Fly 
Mode

Fly 
Mode

collect 5000s of 
data only in low-

speed mode

Train RNN with 
Adam and 

backpropagation.

Adjust pre-trained 
model with real-
time EKF learning

Collect 200s data in 
both low and high-

speed mode

Pre-trained 
Model

Pre-trained 
Model

EKF CorrectionEKF Correction

Figure 5.5: Process to verify the performance of the EKF real-time learning in comparison with offline learning.

To avoid numerical distortions and computational inefficiencies, the Jacobian’s of the RNN with re-

lation to the parameters θ and the hidden states h(k) should be calculated analytically in advance with

the chain rule. In this work, the Python library PyTorch was used to train the RNN’s offline with SGD
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and to adjust them in real time with EKF. With PyTorch, matrix and gradient operations can be carried

out in graphics processing unit (GPU)’s. Moreover, with PyTorch, Jacobians are easily and efficiently

calculated through graph gradients.

To assess the performance of the EKF method to adapt to unknown conditions in real time, the RNN

models were initially trained offline through backpropagation with Adam Optimizer. The offline training

dataset had only trajectories in low speed. This means that the models are expected to perform poorly

when exposed to high-speed hydrofoil mode. For real-time learning, the dataset used contained both

low and high-speed modes. Figure 5.5 has a visual description of this process. Three different variants

of RNN were tested, which are:

• Vanilla Recurrent Neural Networks (RNN);

• Long Short Term Memory (LSTM);

• Gate Recurrent Unit (GRU).

In Sections 5.2.3, 5.2.2, 5.2.4, the results for GRU, LSTM and Vanilla RNN configuration will be

presented. For a better understanding, Figure 5.6 depicts the notation used in Figures 5.13, 5.10 and

5.8. In the next 3 situations, the models were trained with noisy data. The same noise used in Section

4.2, which is a Gaussian noise with σ = [1 cm/s, 1 cm/s, 1 deg/s], will be used here. Moreover, the

same time step used in Section 5.1 and in Chapter 4 (10 ms) will be used in the tests with GRU, LSTM,

and Vanilla RNN. The tests were obtained from a vehicle traveling along a trajectory that resembles a

lawnmower with different turning angles, as shown in Figure 5.7.

Figure 5.6: Notation to describe the RNN structures in Figures 5.13, 5.10 and 5.8. Image extracted from [2].

5.2.1 Vanilla RNN applied for system identification in real time

The results presented in this section were produced by a Vanilla RNN formed by 2 subsequent layers.

This is the most basic structure of RNN’s, and each layer consists of a linear combination followed by a

hyperbolic tangent (tanh) activation function as shown in Figure 5.8. It reduced slightly the average and

maximum error with the EKF for all the steps ahead, except the average and maximum prediction error

for the sway velocity. As explained in Chapter 4, this error in the sway is less critical than surge and yaw

for the hydrofoil dynamics studied here.
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Figure 5.7: Example of a lawnmower trajectory with different turning angles and different velocities. The horizontal
color bar is the surge velocity profile in m/s.

Figure 5.8: RNN structure with a linear layer followed by a hyperbolic tangent (tanh) activation function. Source [2].

In spite of the modest improvement achieved with the EKF corrections in real time, when compared

with GRU and LSTM, Vanilla RNN took 4 times longer to be trained offline. Moreover, Sections 5.2.2 and

5.2.3 will show that GRU and LSTM present much better accuracy for offline identification, and much

better performance for corrections in real time with EKF.
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Figure 5.9: Error comparison between the pre-trained and the EKF real-time adjusted model for the Vanilla RNN
predicting 20 steps ahead the reference.

5.2.2 LSTM applied for system identification in real time

Figure 5.10: LSTM architecture. σ represents a layer with a sigmoid activation function. In this work, xt is equivalent
to µ(k) and ht corresponds to ĥ(k) in (5.8). Image extracted from [2]

.

In this section, an LSTM was applied to identify the hydrofoil dynamics. As seen in Figure 5.10, the

LSTM has a cell state Ct and a hidden state ht. The cell state is less affected by the inputs xt, thus

its output is more resilient against changes and works as a memory structure. Conversely, the hidden

states ht are more flexible because they are directly affected by the inputs. The tests in this section

were carried out with a cell state of size 18 and a hidden state of size 3. The hydrofoil velocities (u, v, r)

coincide with the hidden state ht.
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Figure 5.11: Comparison of the errors for a prediction of 20 steps ahead, between the pre-trained LSTM and the
EKF real-time adjusted LSTM. The model had a cell size of 18 and a hidden size of 3.
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Figure 5.12: Overall results for an LSTM with a cell state size 18. The first row of charts shows the average
prediction error as more simulation steps are given. The second row shows the maximum prediction
error obtained as the model progresses without a reference.

The results of the LSTM are shown in Figures 5.11 and 5.12. The transition velocity from low-speed

mode to high-speed mode was 2.5 m/s. With the EKF real-time correction, the average error was

reduced in all the cases, for all velocities.

When compared with the pre-trained, the maximum error in the whole trajectory was also reduced

in all predictions tested for u and v velocities, except from step 97 to 99 for u. For yaw velocity, the

maximum prediction error for the real-time was below the pre-trained up to 42 steps ahead, after 40

steps the model presented a greater maximum error than the pre-trained. The explanation for this

comes from the fact that, during more dramatic velocity changes, peaks of error pop out, indicating that

it takes some time to adapt to the new conditions. This behavior is seen in Figure 5.11 when t is close

to 115 s, for example. Near this instant of time, the EKF error is clearly higher than the pre-trained.

Despite the errors, the LSTM trained in real time can be used to predict the next 20 steps and seems

to be reasonable to be applied as a predictor in an MPC framework.

5.2.3 GRU applied for system identification in real time

As seen in Figure 5.13, the GRU architecture is a modified version of the LSTM, where the cell state

is agglutinated with the hidden state. In this section 2 different arrangements of GRU were applied to

identify the hydrofoil dynamics. The first arrangement has a hidden layer with size 18 and the 3 vehicle

velocities (u, r, v) are obtained from a linear combination of those 18 internal state variables, fy in (5.10)

is a matrix. The second arrangement is similar to the first but with a hidden layer of size 9. The training

set used here was a lawnmower trajectory similar to the one used with the LSTM, the transition velocity
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from low-speed mode to high-speed mode was 2.0 m/s.

Figure 5.13: GRU architecture. σ represents a layer with a sigmoid activation function. In this work, xt is equivalent
to µ(k) and ht corresponds to ĥ(k) in (5.8). Image extracted from [2]

.

The results of the GRU arrangement with a hidden layer of size 18 and 9 are displayed in Figures

5.14, 5.15, 5.16. The accuracy was improved with EKF real-time learning. As happened with LSTM, in

regions with sharper nonlinearities, errors increased, indicating that time is necessary to adapt to new

conditions. GRU models also presented more difficulties in correcting the yaw velocity. If the model is

used to predict the next 20 steps and apply MPC, the learned model seems to be capable of choosing a

good control trajectory. The GRU model with a hidden layer with dimension 9 is simpler and lighter than

the model with size 18. However, the accuracy and adaptation capacities are higher for the 18-sized

model.
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Figure 5.14: Comparison between the pre-trained and the EKF real-time corrected model for the GRU, with a
hidden layer of size 18, predicting 20 steps ahead the reference.
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Figure 5.15: Error comparison between the pre-trained and the EKF real-time corrected model for the GRU, with 9
hidden states, predicting 20 steps ahead the reference.

5.2.4 Challenges to apply real-time training with EKF

There are 3 challenges with the EKF real-time learning that must be highlighted.

Firstly, [20] clarifies that the EKF method does not guarantee a convergence to global optima. Since

this method inherits properties from Newton’s optimization, it works better in functions that have a strictly
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Figure 5.16: Overall results for a GRU’s with hidden layers of size 18 and 9. The first column of charts shows the
average prediction error as more simulation steps are given. The second column shows the maximum
prediction error obtained as the model progresses without a reference.

convex loss. If the dynamical system associated with the regularization factors yields a loss that does

not resemble strictly convex, this method is expected to present a poor performance.

Secondly, from Figures 5.14 and 5.11, it can be seen that the EKF can lead the model to be ”greedy”

with respect to the current conditions. It can ”forget” what was learned previously, especially if the NN

does not have enough degrees of freedom to represent the actual system. Due to the greediness of

EKF in real time, the model is subjected to become degraded by the method. Thorough tests carried out

with the same networks from Sections 5.2.3, 5.2.2, 5.2.4 showed that if the EKF training is repeated for

several epochs, the model can diverge. To avoid degeneration over time, strategies to preserve stability
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Figure 5.17: Workflow for a safe self-learning process with RNN models.
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Figure 5.18: Workflow for an efficient self-learning process with RNN models.

can be applied. Figure 5.17 shows a workflow with a procedure to have a safer but also heavier and

slower online learning process. If memory constraints and speed of convergence are more critical than

maintaining a safe convergence, the EKF can be applied directly, as shown in Figure 5.18. It has the
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disadvantage of being a ”greedy” strategy that can lead the model to degenerate or become fit only

locally.

Finally, as the third challenge, this method requires extra attention to memory usage. It is necessary

to be careful with the depth and width of the RNN’s fine-tuned with the EKF. This occurs because

matrices P , A, and Q from (5.10) grow quadratically with the number of parameters θ. In addition, P

and A are multiplied in (5.10), which requires even more memory to be allocated during this operation.

Thus, models that are lean in parameters, like the LSTM or GRU, are advantageous over deep and fully

connected NN’s.
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6.1 Overview and final considerations for the identification learn-

ing methods

The learning methods studied in this research can facilitate or contribute to control identification for

marine dynamic systems. Nevertheless, it is necessary to comprehend under which conditions their

maximum potential can be exploited. The outcome from Chapters 4 and 5 provides the basis to under-

stand how those approaches can be harnessed. Table 6.1 sums up a comparison among SINDy, Offline

NN training, Vanilla RNN, GRU and LSTM.

Table 6.1: Relative comparison between methods studied in Chapters 4 and 5.

Chapter 4 showed that SINDy is suitable for identifying nonlinear marine vehicle dynamics. This

method is the simplest learning method, when compared with Offline NN training, Vanilla RNN, GRU

and LSTM. It learns quickly, does not require a large amount of memory, and consumes less data for

training. Because the identified model is in the canonical form, Feedback Linearization or Backstepping

can be applied directly with this method. The Python library PySINDy allows a design with polynomial

terms or other nonlinear terms that can be easily customized. The more it is known about the nonlinear

system, the more SINDy can be shaped with constraints and proper nonlinear terms to fit better the

marine craft dynamics. In opposition to this, if the system to be modeled has sharp nonlinearities, like

the hydrofoil model (3.5), or if not much information is available beforehand, the performance can be

poor. For the case where SINDy fails, Chapter 5 showed that neural networks can be trained to predict

the dynamic states of marine vessels.

Section 5.1 showed that with enough data, the identification with NN’s do not require much knowledge

from the control designers beforehand and the predictions are very accurate when it is properly trained.

This is the most complex learning method, when compared with SINDy, Vanilla RNN, GRU and LSTM,

though. It learns slowly, requires a large amount of memory, and consumes more data for training. It

is possible to use EKF real-time learning with this method, and the arrangements for that were left as
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future work.

Unlike the Offline Predictor presented in Section 5.1, Section 5.2 showed that RNN’s are apt to

be trained in real-time with EKF. This learning structure is simpler, and learns much quicker, when

compared with the offline NN predictor. However, it is slightly slower than SINDy. The predictions can

be very accurate when it is properly designed and trained, which makes it appropriate to identify complex

systems, such as the hydrofoil method in (3.5). With enough data, the identification does not require

much knowledge from the control designers beforehand. Feedback Linearization or Backstepping can

be applied if the RNN structure is designed to be in the canonical form f(X) + g(X)µ. This was left as

a future exercise.

6.2 Limitations for real-time learning with EKF

The focal point of this research was harnessing the use of NN for identification and control. From Table

6.1, it can be drawn that LSTM’s and GRU’s, from Section 5.2 present advantages over the other Offline

NN, presented in Section 5.1. Perhaps the most prominent advantages are derived from the capacity to

be easily fine-tuned in real time with EKF. In spite of that, there are 2 major limitations in the real-time

adjustment.

The first limitation is the risk of degrading the model when real-time learning is applied. The EKF

real-time fine-tune can lead to a degenerated RNN model because the dynamics are nonlinear and the

error (loss function) is not necessarily strictly convex. This means that some real-time adjustments can

diverge the identification instead of improving the accuracy. Figure 5.17 is a workaround for this issue,

but not a final solution.

The second limitation comes from the high computational power required to effectuate operations

with big matrices that are dense. This is distinctly relevant in the robotics environment, due to the

limited resources used in embedded systems. To work with the EKF it is necessary to multiply matrices

and extract gradients. The number of terms in P , Q and A matrices are equal to the square of their

dimension, which is (nh + nθh + nθy). This means that the memory consumption grows quadratically

with the dimension of the inner state h, and the model parameters. Analogously, the deeper and wider

the NN the heavier the calculations to get the gradients.

Being aware of those two major issues, real-time learning seems to be a promising approach for

control identification.
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6.3 Future work

Chapters 4 and 5 showed evidence that SINDy or NN’s model-based can be used for identification.

Chapter 5 also showed that real-time adjusting can be applied for marine surface vehicles with EKF.

Nevertheless, this research can be improved, extended, or even completely reinvented. Considering

this, five possible future works are suggested:

1. designing and testing a structure with real-time learning for the NN predictor from Section 5.1;

2. applying RNN real-time learning to predict the nth step ahead, instead of the first;

3. designing and testing RNN structures that support Backstepping or Feedback Linearization;

4. applying RNN real-time learning under the RL framework;

5. applying regularization terms to improve performance for real-time learning.

The first suggestion is a combination of the work presented in Section 5.1 and Section 5.2. The

EKF can be adapted to train the predictor described in Section 5.1. The NN shown in Section 5.1

estimates 20 steps ahead, given 19 future command steps, 4 past command steps, and 4 past states.

This arrangement could be replaced with an RNN, where the previous states could be the last 20 states

acquired, and the inputs could be at = {µ(k), µ(k + 1), ... µ(k + 19)}. For 20 estimates ahead, the

corrector should be on standby during the first 20 steps. The second suggestion is very similar to the

first, except that instead of predicting the entire trajectory for n steps ahead, just the ultimate one would

be predicted. This strategy can reduce the complexity and size of the RNN. Due to the higher magnitude

of the changes between step k and step k + n, the impact of noise would be less relevant.

The first and the second propositions, as they are presented, still depend on an MPC framework to

find a control sequence from the identified dynamics. The third and fourth suggestions were thought to

eliminate this requirement. To carry out the third suggestion, an RNN architecture can be built with a

structure similar to xk+1 = fx(xk) + gx(xk) · µ, instead of encapsulating the control µ and X in a single

nonlinear RNN fx(X,µ). The implementation should be with an architecture composed by two separate

NN, the first being fx(X, k), and the second being gx(X). fx(X, k) and gx(X, k) could be a simple Vanilla

RNN model or a customized arrangement. The third suggestion can be applied in conjunction with the

first and second suggestions, or it can be applied independently. Conversely, the fourth suggestion

eliminates the necessity of a MPC optimizer by employing an RNN directly as a controller, instead of as

an identifier. In this case, the inputs of the RNN, xt+1 (see Figure 5.4), should be the current dynamic

state, x(k) concatenated with the future desired dynamic state x̂(k + n) and ht could be the sequence

of commands µ to reach x̂(k + n). This modification puts the RNN with EKF real-time learning under

the RL paradigm. Because of the frequent update of the RNN, this approach could yield smooth control

sequences.
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The last suggestion can be applied in conjunction with all the others. It is feasible because the EKF

enables the application of regularization terms. Regularization terms have the potential of maximizing

the accuracy and enhancing the capacity of NN to generalize. In this thesis, regularization functions

were not explored for real-time NN adjustments and it could be further investigated.
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