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Abstract

This thesis delves into the application of artificial intelligence (Al) techniques for real-time fine-tuning of
dynamic models in surface vehicles for control purposes. In the initial stage of this investigation, two
baseline nonlinear models were conceived to capture the characteristics of a conventional boat and a
hydrofoil, respectively. The first model was designed to be simple, with small nonlinearities, while the
second was thought to be challenging with sharp nonlinearities. From those base models, the ground-
truth data were generated and used in the learning process of three Al methods for identification. Firstly,
the Sparse Identification of Nonlinear Dynamics (SINDy) technique was adopted to identify both the
simple and the challenging model. Secondly, a feed-forward Neural Network (NN) was trained to predict
a sequence of states of the hydrofoil model, revealing its potential for application in a reinforcement
learning structure. Finally, the hydrofoil model was identified offline and adjusted in real-time using a
Long Short Term Memory (LSTM), a Gate Recurrent Unit (GRU), and Vanilla Recurrent Neural Net-
works (RNN) combined with Extended Kalman Filter (EKF). The models were trained offline by applying
Backpropagation Through Time (BPTT), and later they were refined on-the-fly by the EKF. This novel
approach allowed adaptation and optimization of control systems during operation. Overall, this research
offers insights into the use of Al techniques, including SINDy, feed-forward NN, and RNN, to improve

control and model identification capabilities in surface vehicles, particularly hydrofoils.
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Resumo

Esta tese investiga a aplicagao de técnicas de inteligéncia artificial (IA) para ajuste fino em tempo real
de modelos de controlo em veiculos de superficie, com foco em hidrofélios. Inicialmente, dois mod-
elos nao lineares foram desenvolvidos com o objetivo de gerar os dados de referéncia para o treino
dos médulos de IA. O primeiro € um modelo mais simples que representa um barco convencional, en-
quanto o segundo é um modelo mais complexo para identificagado, que retrata a dindmica elaborada de
um hidrofélio. A partir dos dados gerados pelos dois modelos basicos, foram testados e comparados
trés métodos de aprendizagem para identificagdo. O primeiro método de aprendizagem emprega a
Identificacdo de Sistemas Dinamicos Nao Lineares Esparsos (SINDy) para identificar tanto o modelo
simples como o modelo mais complexo com o hidrofélio. O segundo consiste no uso de redes neuron-
ais para a identificacdo do modelo complexo, revelando o seu potencial de aplicagdo numa estrutura de
aprendizagem por reforgo. Por ultimo, este trabalho mostrou que, ao integrar o filtro de Kalman esten-
dido e as redes neuronais recorrentes (LSTM, GRU e Vanilla RNN), é possivel refinar, em tempo real,
modelos de hidrofélios identificados previamente com Backpropagation Through Time. Em geral, esta
pesquisa compara e descreve informagdes importantes sobre o uso de técnicas de aprendizagem, in-
cluindo SINDy, redes neuronais feed-forward e redes neuronais recorrentes, com o objetivo de melhorar

o desempenho da malha de controlo e identificagao para modelos de veiculos de superficie.

Palavras Chave

RNN; aprendizado em tempo real; Controlo; Identificagao; Dinamica de Veiculos Marinhos.
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1.1 Introduction

Autonomous or unmanned vehicles have been playing an important role in research and production
fields. Such devices can be used to perform tedious or dangerous tasks for people, reducing the risk of
accidents, human errors, and the cost of processes. Autonomy has been applied to self-driven street
cars, flying drones, manufacturing automation, and also to the marine and maritime industry.

For the marine field, specifically, Autonomous Surface Vehicle (ASV) has the potential to improve
ocean surveys, transportation, and sea security/defense [3]. The scientific community has been apply-
ing multiple efforts to overcome challenges related to Simultaneous localization and mapping (SLAM),
trajectory tracking, path following, and performance of manipulators, etc. [3]

The progress of autonomous marine vessels is directly related to the development of Control Theory
and artificial intelligence (Al). This master’s research is based on the combination of both, and the

following section will explore the motivation behind the connection of those two fields.

1.2 Motivation

1.2.1 Challenges in traditional Control Theory

The architecture for marine autonomy can be constituted by several layers, like communication, task
planning, mapping, etc. [3]. Three of those modules are important and present even in simpler au-
tonomous crafts, namely: navigation, guidance, and control. The navigation unit collects the sensed
information to provide a good state estimation. Guidance uses navigation information and mission ob-
jectives to produce references to the control module. The control drives the robot to the desired state. A

variety of control approaches may be used in this context. Some examples are:

* Proportional, Integral and Derivative Control (PID);

Linear Quadratic Regulator (LQR);

Linear Quadratic Gaussian (LQG);

Feedback Linearization;

Model Predictive Control (MPC).

Proportional, integral derivative feedback control has been widely applied and has been proven to be
effective, simple, and efficient in terms of computational power. Nevertheless, its simplicity is also the
cause of its limitation. For instance, Proportional, Integral Derivative Control (PID)’s are not suited for

Multi-input multi-output control (MIMO) problems with highly coupled states.



Linear control methods, such as LQR, handle MIMO systems, balance actuator stress, and output
precision through the Q, R matrices. However, LQR would not perform well under certain conditions
where linearization with Jacobian matrices yields numeric instability. A car steering system, for example,
is highly nonlinear due to trigonometric functions dependency and, when linearized around equilibrium
points, it can be non-controllable or non-observable.

Feedback linearization is a technique that allows one to obtain control inputs that precisely reach
complex trajectories. However, the requirement of relatively accurate time-invariant models is one of its
weaknesses. This fact will be explored more in Section 3.1. Natural phenomena are nonlinear, noisy,
time-variant, and uncertain. For some problems, these factors cannot be neglected. An example is a
hydrofoil, or water fly-board, that changes its drag, added mass, and Coriolis matrices drastically as
it changes its velocity. Similarly, the physical model of a simple ferry boat can be conditioned to the
random disturbance "number of people onboard”. More passengers means, in a nonlinear relationship,
more contact with the water, more added mass and drag, and a displacement in the center of gravity of
the vehicle [4].

There exist well-established control methods to manage the imperfections of actuators, sensors, plant
models, and disturbances. When it comes to practical implementation and control of those methods in
marine robots, a lot in terms of tuning and adjusting must be done manually. This is particularly true for
low-cost devices and also to carry out complex tasks, such as station-keeping for interventions with a

manipulator [3]. Some common manual procedures are:

1. tuning P, |, D coefficients;
2. defining the right equilibrium between cost — Q and R — matrices;
3. preparing meticulously specific tests under very precise (constrained) conditions;

4. executing carefully and repeatedly the tests to find the expert model.

1.2.2 Artificial Intelligence supporting Control Theory

The tuning process requires the work hours of experts, and the application of Al could reduce human
labor in those situations. Al and Control are not completely disconnected, though. Adaptive control has
been expanding the boundaries of traditional control. This is a "gray zone” that can be part of either the
Al or the control universe [5]. Al is known for extracting information from data (even from what could be
considered noise). It has the potential to support Control Theory, enhance its results, and fill some gaps
that still have been challenging engineers.

Al has observed a surge of research and applications in engineering within the past 20 years [6].

The exponential growth of integrated circuits powered the advent and practical use of learning-based
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Figure 1.1: Overall comparison between learning and expert-driven methods.

methods. Regressors and classifiers have been improving to support decision-making in a variety of
areas. Artificial Intelligence is a broad concept, and in this work, it will be referred to as the most
usual learning-based frameworks, which are Machine Learning, Deep Learning, and Reinforcement
Learning. There is no strict boundary that says whether an algorithm is classified as Machine, Deep, or
Reinforcement Learning, but Machine Learning can be considered a more general area of knowledge
that comprises Deep and Reinforcement Learning [1]. Figure 1.2 shows in more detail Al from general

to particular cases.

reinforcement
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deep
. reinforcement
learning
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supervised
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Figure 1.2: Machine Learning, Deep Learning, and reinforcement learning as study areas. [1]



Machine Learning (ML) has been widely used to boost businesses by exploring the statistical connec-
tions between different data features [7]. Deep Learning (DL) has been exhaustively applied in speech
recognition [8], image processing and classification, etc [9]. Reinforcement Learning (RL) has been suc-
cessfully applied to teach computers how to outperform humans in chess or go [10]. With RL, Robots
learn through experience to execute tasks. In fact, RL can be considered one of the many crossroads
where Control Theory and Al intersect.

Considering this scenario, the advantage of managing non-structured data of ML, DL, and RL should
be investigated to improve control for marine robots. This may be useful for a reliable identification
process or for robust control with real-time self-adjustment. In summary, the application of Al in control

can potentially:

reduces the repetitive and tedious labor of the engineer teams;

reduces the time spent during the experimental stage;
+ improves the performance of the robot;

* improves reliability.

1.3 Thesis outline

The following Chapters will present some of the main academic achievements and challenges to connect

Al and control theory, as well as the contribution of this work to the field of study. More specifically:

« Section 1.2 outlines the motivation to use Al as a complementary tool in control of marine vehicles;
» Chapter 2 is a literature review with recent and relevant references for this work;

» Chapter 3 is dedicated to bound the problem tackled, and to define the baseline for the methods

presented in Chapters 4 and 5;

» Chapter 4 presents an investigation over Sparse Identification of Nonlinear Dynamics (SINDy)

applied to surface vehicle identification, with advantages and drawbacks of this method;

» Chapter 5 is the main focus of investigation in this thesis, it describes how neural nets can be
trained to identify dynamical systems and how they can be refined in real-time with Extended
Kalman Filter (EKF);

finally, Chapter 6 summarizes and compare all the approaches presented in Chapters 4 and 5.
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The achievements and challenges that some of the most recent and praised works involving Marine
Robotics, Artificial Intelligence, and Control Theory will be presented in this Chapter 2. In addition,

Section 2.5 will provide the background for marine modeling that will be used in Chapters 3, 4, and 5.

2.1 Adaptive and stochastic control

Adaptive control is a versatile way of controlling devices by reacting properly to the uncertainties involved
in modeling and unpredictable environmental conditions that inflict the system [10].

MPC takes into consideration the provided model, sensors, and actuators, and runs an optimizer
cyclically. The optimizer should converge to a control sequence that minimizes a cost function with
terms related to the error along the trajectory and terms related to the stress applied to the actuators.
To find the optimized control, MPC predicts what the trajectory should be within the next steps given a
sequence of control commands that would be sent to the plant. In other words, MPC continuously uses
the current state and available model information to create a prognostic for future states and adjust the
sequence of control commands accordingly [11].

Since an optimizer runs frequently, MPC has the inherent advantage of dealing with trajectory, input
and output constraints. Due to its advantages, MPC has been widely applied to solve different prob-
lems in industrial processes and vehicle autonomy. [12] applied the concept of MPC ally with a set of
predefined rules to control the trajectory of a ship and avoid collisions.

[4] successfully applied the MPC concepts to control a surface vehicle. The aim of the authors was
to develop a control system for an autonomous transportation boat. The authors built a miniature of
an autonomous vehicle, applied nonlinear least squares to identify the model, and used MPC to track
the trajectory. Firstly, they used a simulation environment for preliminary tests. Afterward, the surface
vehicle miniature was used to conduct their experiments. Through the simulations and the experimental
tests, they showed that the prototype followed with time and space accuracy the desired trajectory.

[13] presented a methodology that might be considered in the domains of model predictive control,
and also a deep reinforcement learning algorithm. The authors built a data-driven module to control
the gait of a four-legged robot. They trained a feedforward NN to output the next 20 state variations
08¢, .., 08ty 11, Qiven a sequence of actions (ay, as, ..., ar) and the state s;. In other words, it learns how
to predict the behavior of the physical model, while the MPC takes care of planning the next optimal
sequence of actions to attain the control target. With a model capable of providing the 20 next system
states, it is relatively simple to optimize the sequence of actions through a sampling process. Therefore,
the MPC works by sampling different sequences of actions and fitting the population of sequences into
a distribution of the best sequences. The criterion for defining the best sequence is the Cross Entropy

Method (CEM), calculated between the result of the sequence and the desired trajectory.



Other adaptive methods in control, have also been proven to be effective. For instance, [14] uses
the Sequential Monte Carlo (SMC) arrangement to deal with uncertainty and to apply ML with Bayesian
assumptions. The authors used control concepts to find a proper model for the evolution of the disease
"Dengue Fever”. SMC is the stochastic framework behind the particle filter concept. The idea is to
estimate the state x(t) by optimization of the likelihood among random guesses of the current state.
Such guesses are known as particles.

The particles are compared with the data obtained from measurements in order to reach the identified
process. The more statistically consistent the trajectory of the particles with the measured trajectory of
the controlled system, the greater the chances that this particle is a good guess of the current state.
As time passes, the position of the particles converges to what should be the expected real state. The
advantage of using this method over Kalman Filter, for example, is that Kalman filters perform well when
the noise from measurements and the model errors can be approximated to Gaussian distributions. This

is not the case for a problem of simultaneous localization and mapping, for example.

2.2 Machine Learning associated with control methods

As shown in Section 2.1, [14] demonstrated how SMC could be a powerful tool to work with complex
models such as the progression of a disease. To some extent, their approach could be classified as ML.
Other methods are a more direct application of ML, one example is the methodology presented by [15].

[15] created an identification method based on machine learning, SINDy. The authors explained that
other approaches, such as symbolic regression or nonlinear least squares, expanded the capabilities of
identifying linear and nonlinear systems, but there are some caveats. For example, symbolic regression
is computationally expensive, works poorly with large systems, and is prone to overfitting. On the other
hand, ML is more flexible. The procedure presented by [15] tackles the control of sparse problems
to identify Ordinary Differential Equations (ODE)’s and Partial Differential Equations (PDE)’s. Sparse
means that each state variable derivative is a function of a few state variables. [15] claim that physical
problems with high dimensions are commonly sparse. This means that only some of the state variables
are dominant when coupled to other state variables. This is true for specific cases of the 6 degree-of-
freedom model of a marine vessel that will be presented in Section 2.5. In this case, if a surface or
underwater vehicle is symmetrical, slender, and designed to be stable, the cross dependency among
different states becomes weak, and the model becomes sparse.

SINDy uses time-stamped measurements to estimate the nonlinear coefficients of the state deriva-
tives with a regularization factor. This approach is equivalent to the machine learning regression analysis
known as Least absolute shrinkage and selection operator (LASSO).

The advantages of SINDy are its flexibility to fit nonlinear equations and the availability of python

10



libraries with “ready to use” functions [16]. Machine learning techniques are relatively simpler and,
therefore, faster than deep learning or reinforcement learning. The caveat is the necessity of adjusting
well the regularization hyperparameter A and the limitations imposed by the terms chosen to compose
the nonlinear system. Also, it is still necessary to prepare and clean the input data. The use of this

technique will be explored in depth in Chapter 4.

2.3 Deep Learning and vehicle control

Neural network graphs composed of several layers with linear or nonlinear transformations are known
as Deep Learning. Authors have been experimenting DL to improve control in complex environments.
For example, the work of [13] uses MPC and deep neural networks to drive a legged robot vehicle. More
details are explained in Section 2.1.

[17] is a bibliographical review of deep learning applied to control autonomous vehicles. The paper
focuses on street cars, but the concepts and conclusions can be extended to marine vessels. It shows
the potential and limitations of DL with respect to computational power, control objective, architecture
selection, generalization, and reliability. The authors of this paper state that raw control techniques
(the ones that do not use learned-based techniques) had to counterweight their stiffness to cope with
complexity by using expensive and accurate sensors, such as Laser imaging, detection, and ranging
(LIDAR). They explain that many parameters need to be precisely hand tuned in those cases because
of the limitations of the controllers based on a predefined set of rules. It is also elucidated in their paper
that DL appears as an alternative to those hindrances. Some of the advantages of deep learning are: it
self-optimizes through data; it is more flexible to deal with variability; it processes multidimensional large
inputs like images. The information generated by deep neural networks can be used, among others, in
the context of collision avoidance, SLAM and optimal path. Considering the marine environment, input
data coming from sonars, Acoustic Doppler current profiler (ADCP), lasers or cameras can be consumed
by deep neural networks to produce information for decision taking and control commands.

To evaluate the performance of the works in autonomous driving carried out with deep learning, [17]
divides the problem into two different control objectives: longitudinal speed and position control; lateral
(steering) control. The authors point out that most of the results obtained with deep learning applications
for robot control originate from simulated environments. There are some factors that justify this trend.
Real world experiments can increase the risks of accidents, they are more expensive and it is laborious
to assemble the experimental. Finally, the authors list important challenges in deep learning (it also

considers RL), some are:
« overfitting the solution;

« inability to test in all possible scenarios;

11



high cost of field testing;

finding the right DL architecture for the problem;
» designing a comprehensive reward function when deep learning is applied with RL;
+ safe training in the real-world.

Deep learning can also be trained to replicate the system dynamics. [18] and [19] apply deep neural
networks for identification of dynamical systems. [19] explain the similarities between deep nets and
control identification. The authors elucidate that both deep neural networks and identification methods
can be modeled and tuned with statistical apparatus like variance-bias, cross-validation, and residual
analysis. Through practical examples, they demonstrate the effectiveness of NN in playing the role of a
canonical control model. [19] also carried out some tests to check which type of deep neural networks
would be more suitable to be a replica of a dynamical system. They reached the conclusion that the
cascadeforwardnet presents the same performance of more complicated solutions.

In the matters of using Neural Network (NN) as a surrogate for dynamic systems, [20] uses EKF as an
alternative to Stochastic Gradient Descend (SGD) method to train Recurrent Neural Networks (RNN)’s
with loss functions that are convex. The proposed solution considers regularization terms like L1 and
L2. The authors show that the Kalman Filter method has a performance equivalent to SGD in a non-
linear system identification benchmark and in training a linear system for classification. Additionally,
the authors of the study investigate the application of a data-driven algorithm in nonlinear model pre-
dictive control. They analyze its relationship with disturbance models to achieve offset-free closed-loop

tracking.

2.4 Reinforcement Learning applied to robotics

Reinforcement Learning and Adaptive Control pursue similar objectives. As a matter of fact, [10] and [21]
shows that Adaptive Control is a wide area that could entail learning-based methods, such as Rein-
forcement Learning. Reinforcement Learning is one of the Al frameworks that allows learning through
experience. The idea of RL is having an agent that interacts with the environment and learns through the
interactions how to maximize rewards or to reach a goal. Commonly used RL and Deep Reinforcement
Learning (DRL) algorithms like State, action, reward, state, action (SARSA), QLearning, Monte Carlo,

Deep Deterministic Policy Gradient (DDPG) are modeled with the basic concepts:
* an environment;
» an agent capable of taking actions in the environment;

+ the current state (s), that encompasses the agent and environment;

12



the actions (a) that the agent can execute to go from state (s) to state (s’);

a final state that can be a goal, failure, etc;

 areward function that reflects how close the pair (a—s) is approaching the goal;
+ a policy that returns the action, given the state;

+ atrajectory from the initial state to final state.

[22] is one of the most emblematic applications of Reinforcement Learning. In this work, the authors
showed the power of model-based RL to learn from scratch how to play complex games like go, chess,
shogi, and even Atari games. Their approach is called MuZero. One of the ingenious features of the pro-
posed method is how the states are processed. Since Atari, shogi, chess, and go have 2D current state
representations, Convolutional Neural Networks (CNN)’s were used to synthesize the multidimensional
sequence of states before applying the RL algorithm. Their approach outperformed humans by far when
playing go, chess, and most of Atari games without knowing the rules previously. The algorithm is built
over a Monte Carlo tree search structure where each node is a state representation of the game and
the possible actions are the edges of the three. The algorithm should converge to reach two functions
— f and g — that describe the dynamics of the problem. The function s;+1 = g(s¢, a;) yields the state
transition from the node s; to the node s;. 1, given an action (a). f is equivalent to the policy and outputs
the optimal action a+ and the reward r. In a further publication, the authors added a new feature to
the model of [22] (Muzero). In [23], they included a module called "Reanalyse” capable of learning new
experiences online.

Despite the expressive results, RL has limitations that must be addressed whenever it is used for
physical systems. The sample inefficiency, issues with formal consensus of stability as well as risks
and limitations associated with real hardware defy RL applications for robotics. [17] described in their
survey how convergence to policy optimality can be inaccurate, slow, and how it can require a massive
number of simulations or real-world training steps. To avoid this difficulty with physical data, most of the
references trained their RL for robotics in a simulated reality. Nevertheless, for specific applications, RL
is already contributing to robotics.

RL can be applied to many different stages of autonomy of a marine vehicle. Some researchers
applied it directly in the control layer, others applied RL to do the path planning with the control. [24]
used RL in the guidance decision layer. The authors developed a method that learns to choose among
three different guidance modes to keep a safe but effective trajectory. The RL algorithm is trained to
decide whether guidance should be in the port collision avoidance mode, starboard collision avoidance
mode, or path-following mode. Each one of those guidance strategies supply a PID steering and speed

control layers with a target trajectory.
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[24] takes advantage of the neural networks power to attain features from images obtained from an
onboard camera. The collected surrounding images are inputs for the DRL algorithm. This means that
the RL method learns how to identify obstacles in the picture and choose the appropriate strategy. Since
the output of the DRL is discrete, the authors could use Deep-Q-Networks (DQN). The state is defined
by the position, heading, velocity, and a sequence of 4 images, so the network could recover information

regarding the approximation speed to obstacles.

[25] uses reinforcement learning to aim two targets simultaneously: tracking control and collision
avoidance. The authors use classical control in an autonomous surface vehicle and reinforcement learn-
ing works as a control supervisor that provides intelligence for adaptation in case of nearby obstacles.
The authors claim that the method is potentially more efficient than using pure RL and, because of the
classical control module, they could also prove mathematically the convergence of the method to the

desired trajectory. The method was only tested in a simulated environment.

[25] uses Soft actor critic deep reinforcement learning algorithm (SAC) as the reinforcement learning
method. SAC presents similarities with DDPG. However, it is an entropy regularized reinforcement
learning method, which means that a certain degree of randomness in the policy is rewarded in the
beginning of the training process, and it vanishes as convergence is reached. This procedure is directly
related to the trade-off of exploring/exploiting in RL [26]. The reward function used by [25] is based on
the current distance and estimated velocity between obstacle and vehicle. In the absence of obstacles,

the RL module does not add any adjustments to the thrusters, and solely traditional control is applied.

[27] used neural networks and a RL framework to control an Autonomous Underwater Vehicle (AUV).
The researchers developed a method that uses an action and critic network. The critic network manages
the long-term decisions to aim trajectory tracking, while the action network is trained to deal with the
dynamics. [27] obtained good simulated results, but no real world tests were carried out. The AUV
was capable of following a trajectory with better performances than conventional proportional derivative

uncoupled controllers. The authors claimed that their method is robust against noise and disturbances.

[28] presented a method with deep reinforcement learning, with a quality table Q, where an Unmanned
Surface Vehicle (USV) learns path following and collision avoidance by controlling its position and ve-
locity. The authors define a reward function based on the distance to the obstacle and the distance to
the desired path. The state is formed by: current position, current heading, current angular and linear
speed, previous propeller commands (previous action) and obstacle distance. [28] uses a sequence of
previous states as an input to a CNN that yields the next chosen action. As the action is taken and
the next state is achieved, the reward is calculated and the Q table is updated. The authors obtained
reasonable simulated results and they highlighted that an environment with disturbances requires much

more training episodes.

While all the results obtained by [28] were extracted solely from simulations, [29] simulated and tested
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their work with a real boat. [29] proposed a method that uses a DRL architecture derived from DDPG for
path following of an USV. The USV had a catamaran shape and was pushed by two parallel thrusters.
Since the action and state space in DDPG are continuous, the control commands sent to the propellers
were not discrete, as in [28]. [29] comprised guidance and control simultaneously with reinforcement
learning. They used the concept of vector field to build a reward function that penalizes the actions that
steer away the USV from the desired path. An effective training required thousands of episodes and for

practical reasons it was carried out in a simulated environment.

The works referred to so far in this section used RL to train their robots from scratch, without any
previous predefined policy. However, it is viable to take advantage of expert knowledge to accelerate
the convergence or to improve the performance. Some researchers used expert system strategies as a

starting point and the Al to add robustness and flexibility to the control loop.

[30] developed a structure to control robots with proportional-integral control and deep reinforcement
learning. In this approach, the Pl coefficients were manually set with theoretical values. The agent of
the deep reinforcement learning algorithm tuned the PI values as time passed. With this approach,
the authors could manage the coupling effects between different states and control a MIMO system.
The RL agent ensured that, independently of the state, a well adjusted control would bring the robot
to the targeted trajectory. Their method took care of the existent nonlinearities, variable coupling and

model deviations. The authors used an adapted DDPG to find a RL policy. The reward funcion was the

Vreq—Ut

V20
is the standard deviation. The algorithm was trained and tested in a simulated environment.

gaussian r = exp —| ]> — 1, where v, is the requested velocity, v, is the vehicle’s velocity and o

[31] used RL and classical control to steer a robotic arm to place objects in a specific position
considering uncertain environmental conditions. The control problem was mathematically addressed
as a state that is affected by precedent states and the control action u(t). The mathematical structure

adopted (2.1) has common ground with discrete control systems and with the description of RL.

[Bé(ﬁ; Ot’)t) c 80 J)] . Fm(ﬂ + m u(t). 2.1)

In (2.1), s,, is the state component impacted by the control u(t) and that is not dependent on s,.
A(sm,t) is the function that couples previous states with new states. s, represents the components of
the state that are impacted by s, but not directly by the action u(t). C(s,,t) update function for the
"hidden” state s,. (2.1) has a component s,, that is directly affected by the control u(t), and a component
s, that depends on s, but it cannot be controlled directly. By this approach [31] could use a DDPG to

learn through simulated training how to handle unexpected and not explicitly modeled conditions. The
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policy space is defined as
u(t) = 7-‘-H(Sm) + 7r9(3m> So) (22)

m(sm) is pre-defined by the control law and 7y (s, s) is learned by trial and error.

2.5 Marine robotics modeling

The definition of a model for marine robotics is crucial for the development of good simulators. It is also
essential to properly design classical control methods, such as PID, Feedback Linearization, etc. [32] is a
comprehensive handbook with theoretical and practical knowledge to describe the dynamics comprised
by marine vehicles. The methodologies to obtain a lumped dynamical model from this handbook will
serve as a reference in Chapters 3, 4 and 5.

The motion of a marine craft can be depicted by two complementary fields: kinetics and kinematics.
Kinematics is related to the studies of the geometrical parameters of the environment and vehicle. For
example, the frame of reference is in the domain of kinematics. Kinetics, on the other hand, is the study
of the forces that drive the motion of the physical parts involved. For a marine vessel, the representation

extracted from [32] that correlates acceleration, forces and torques is given by
T=Mv+C(v)v+ Dv)v, (2.3)

where: 7 are the external forces and torques applied to the vessel; C, M, and D are Coriolis, mass, and
drag matrices. v are the linear and angular velocities of the vessel in the body frame. Considering 6
degree-of-freedom,

v = [u,v,w,p,q,7]". (2.4)

In more detail, u, v, and w are the surge, sway, and heave (linear) velocities, while p, g, and r are the roll,
pitch, and yaw (angular) velocities. Since the velocity components v are expressed in the body frame, it

is convenient to transform it to the inertial (world) frame 7. The transformation can be done with

1= R(n)v, (2.9)

where 7 are the world frame coordinates and R is a transformation matrix (from body to world).

The mass matrix (M) in (2.3) is formed by two terms, the rigid body mass plus another component
known as the added mass. The added mass is the portion of water that is conveyed by a rigid body
immersed in movement that contributes to the total mass/inertia properties of the system. The drag

coefficients (D) in (2.3) are compounded by skin and pressure drags. The skin component can be
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compared to the friction between the robot’s surface and the water. The pressure drag occurs due to the
pressure differences generated during the movement of a robot part in the water.

With few exceptions, surface vehicles are designed with their center of gravity below their center of
buoyancy. This feature yields a natural stability that allows some simplifications in (2.3). [32] mentions
that if the impact of roll is negligible and the vessel is designed to be stable, the model can be shortened
to a 3 Degree-of-Freedom (DOF), [z, y, ¢]. [33] neglected roll, pitch, and heave and their couplings for
control purposes and still obtained good results. So, considering the 3 DOF model, n, v and R in (2.5)
and (2.3) are denoted by

n= [»’va,w]Tv v= [uavar]Ta (2.6)
cos(¢) —sin(yp) 0
sin(v)  cos(vp) 0] .

0 0 1

R=

In the 3 DOF model, considering that the part of the boat that is in contact with the water is a slender
body —the size along the x axis is considerably longer than y —and considering the symmetry in the
x-z plane, the mutual interactions between x-i» and x-y can be neglected. So, the coupling occurs only
between yaw and sway for mass and drag matrices, as it can be seen in (2.8). In addition, for small
velocities, the drag can approximated as a linear function of velocity. Mass, drag, and Coriolis matrices

— M, D, C — from (2.3) can be approximated

mi1 0 0 d11 0 0
M=1|0 ma me|, DWw)=|0 dy ds

0  m32 ma33 0 ds» dss
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3.1 Problem statement

Section 1.2 briefly addressed the problems that might arise in control when a model is not a good
representation of the real dynamics. Deviations are prone to occur in highly complex, time-changing
environments or when low-cost sensors and actuators are used.

This is the case for surface vehicles and hydrofoils are especially subjected to model complexity and
unpredictability. This section is dedicated to describing the problems that arise in hydrofoil modeling and

where learning methods could be applied.

3.1.1 The complexity and difficulties of marine robotics models

Modeling errors are particularly relevant in marine robotics because the dynamics occur in a fluid. For
robotics applications, water can be considered an incompressible Newtonian fluid. This means that
underwater or surface crafts have models with components that depend on the differential equations,
so-called Navier-Stokes.

The Navier-Stokes equations are a challenge for engineering because they produce complex phe-
nomena that are hard to predict, and to be completely represented. Consequently, in some cases
simplified submarine and boat models can miss important dynamical features. (2.3) extracted from [32]
of Section 2.5 is an ingenious way of contouring the complexities of hydrodynamics by inferences of
empirical knowledge and applied physics. Despite the solid foundations behind the equations presented
by [32] and their vast applicability, the contrast between theory and reality can build up significant errors.
One of the differences between reality and theory in surface vehicle models is the calculations of added
mass and drag coefficient.

Firstly, added mass and drag are hard to calculate because they depend on geometry — distance
from center of buoyancy to center of gravity rg and shape of the vehicle—, change of frame references,
physical properties, and numerical partial integrals. Second, these calculations are subject to present
differences with the real dynamics even if they are carefully carried out. This occurs because the concept
of added mass and drag are inherently an approximation of real-world dynamics.

Similarly, rigid body masses and Coriolis are also strongly related to the shape and will impose un-
certainties in the model development. Other model simplifications can also produce differences between

model and plant, like the 3 degree-of-freedom simplification cited in Section 2.5.

3.1.2 Problem statement - extreme dynamics of hydrofoils

The estimation of a lumped model with matrices becomes even more complicated for a hydrofoil, as
briefly mentioned in Section 1.2. Hydrofoils change the surface of contact with the water, more dras-

tically than conventional boats, as the velocity increases. Figure 3.1 illustrates this behavior. Fitting a
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dynamical representation for a hydrofoil is a burdensome task, and it will serve as a baseline for the

investigation of this thesis. In summary, the tackled problems are:
1. the limitations and problems for conventional identification with lumped model for hydrofoils;

2. the application of Machine Learning and Neural Networks as an alternative to create a model that

adapts well;

3