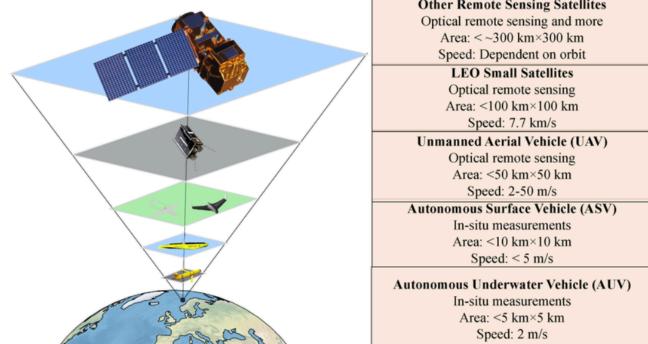


Co-funded by the Erasmus+ Programme of the European Union

Optimizing Autonomous Operations for underwater and Surface vehicles

Philopateer AKHNOOKH

University of Toulon


Norwegian University of Science and Technology

Overview

This topic aims to develop reliable and efficient methods for autonomous high-level mission planning, replanning, and control execution of Autonomous Underwater Vehicles (AUVs) supported by ships and other robotic platforms for long-range operations through the observational pyramid developed by NTNU.

The observational pyramid integrates multiple platforms to provide comprehensive ocean data:

- 1. Small Satellites (e.g., HYPSO-1): Capture high-resolution images with hyperspectral imagers, providing detailed information beyond traditional RGB cameras.
- 2. Aerial Drones (UAVs): Collect high-resolution data at lower altitudes using hyperspectral imagers.
- 3. Autonomous Surface Vehicles (USVs): Carry sensors for acoustic properties and CTD profiles.
- 4. Autonomous Underwater Vehicles (AUVs): Navigate underwater, collecting multi-depth data with various sensors.
- 5. Ground Truthing by Biologists: Physical water samples to validate and complement remote data

Other Remote Sensing Satellites

state of the art

- 1. Deep Reinforcement Learning (DRL): Advanced DRL models like Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization (PPO) are used for adaptive mission planning and realtime decision-making in dynamic underwater environments.
- 2. Multi-Agent Systems: Multi-Agent Deep Reinforcement Learning (MADRL) facilitates the coordination and task allocation among multiple AUVs, enhancing cooperative control and mission efficiency.
- 3. Advanced Sensing Technologies:
- Active Sonar: High-resolution mapping and obstacle detection.
- IMUs: Precise orientation and motion tracking.
- **DVLs**: Accurate underwater navigation.
- Environmental Sensors: Monitoring water conditions like temperature and depth.
- 4. **Optimization Algorithms:**Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are employed for efficient path planning and mission optimization, considering various constraints and objectives.
- 5. Dynamic Risk Management: Developing and updating spatiotemporal risk maps to ensure safe operations, incorporating realtime risk assessment and mitigation strategies.
- 6. Simultaneous Localization and Mapping (SLAM): SLAM techniques allow AUVs to build and update maps while tracking their location,

Fig 1(the observational pyramid/SmallSat Lab/NTNU)

Objectives

- Risk Management: Creating methodologies for dynamic management of spatio-temporal risk maps and optimizing control actions through advanced risk models.
- Adaptive Mission Planning: Utilize Deep Reinforcement Learning for adaptive mission planning, enabling AUVs to react to changing conditions and data inputs effectively.
- Choosing the right sensors along with the Deep Reinforcement Learning model for the best performance between the different platforms.

Refences

TOULON

1. L. Wang, Y. Zhao, Z. Wang, and Q. Wei, "AUV Obstacle Avoidance Planning Based on Deep Reinforcement Learning," in *Sensors*, vol. 21, no. 3, pp. 1-18, 2021. 2.Y. Wei, Q. Wang, W. Zhao, and J. Shi, "Reinforcement Learning-Based Multi-AUV Adaptive Trajectory Planning for Under-Ice Field Estimation," in *Sensors*, vol. 18, no. 5, pp. 1-15, 2018. 3.Yu and Y. Li, "A Multi-AUV Maritime Target Search Method for Moving and Invisible Objects Based on Multi-Agent Deep Reinforcement Learning," in *IEEE Access*, vol. 10, pp. 121-134, 2022. 4.Y. Li, X. Liu, and W. Wang, "Dynamic Navigation and Area Assignment of Multiple USVs Based on Multi-Agent Deep Reinforcement Learning," in *Sensors*, vol. 20, no. 4, pp. 1-12, 2020. 5. The Norwegian University of Science and Technology. "Observational Pyramid." Accessed June 2, 2024. https://www.ntnu.edu/smallsat/observational-pyramid.

TÉCNICO LISBOA

essential for navigating complex environments.

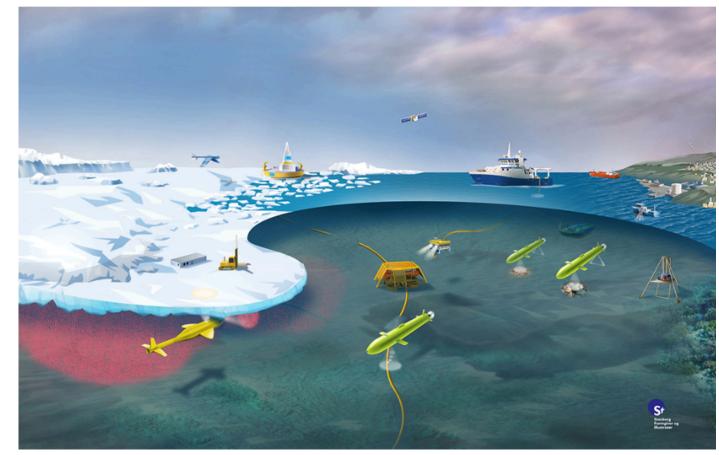


Fig2(NTNU/AMOS/Stenberg The technology in the observation pyramid)

philopateer-akhnookh@etud.univ-tln.fr

MIR Symposium June 2024

UNIVERSITAT

https://www.master-mir.eu/