
Segmentation of Maritime Vehicles from

Video Sequences

Maximilian J. Vieweg

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Advisor(s)/Supervisor(s): Prof. Alexandre José Malheiro Bernardino
Prof. Maria Margarida Campos da Silveira

Examination Committee

Chairperson:
Members of the Committee:

Prof. João Manuel de Freitas Xavier
Prof. Alexandre José Malheiro Bernardino
Prof. Bruno Duarte Damas

July 2024

DECLARATION

I declare that this document is an original work of my own authorship and that it fulfills all the require-
ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i

Abstract

The monitoring of maritime vessels is of great importance due to the significance of shipping in global
trade. While shore-based systems, e.g. coastal radar or imaging, are effective for static scenarios,
such as for ports, sensor-carrying vehicles, e.g. UAVs or aerial vehicles, are of great value in off-shore
scenarios. The use of video sequences for segmentation on these mobile sensor-carrying platforms
is promising given the advantages in power, weight, and space of RGB cameras. The additional in-
formation obtained from the video segmentation masks offers advantages in identifying the heading of
maritime vehicles, as well as for improved human-machine interfaces during monitoring.

The variation in imaging conditions, due to weather, sun, glare, waves, and foreshortening, makes this
a nontrivial problem. Some of these conditions depend on the motion of the camera. Information about
the position and orientation of a vehicle’s camera is often available through its navigational systems.
The availability of data, as well as motion correlations, suggests that the inclusion of camera pose infor-
mation could aid in the performance of computer vision methods. In this master thesis, three methods
for including camera pose information to enhance video segmentation quality are investigated. First, a
transformer-based model is extended to estimate camera motion parameters in addition to video seg-
mentation masks. Next, two 3D U-Net networks were modified to predict either specific camera pose
parameters or the motion field. After extensive experimentation and statistical analysis, we were able to
demonstrate that knowledge of camera pose and motion does not improve the segmentation quality of
the model when including them as additional tasks during training. Experimentation with different repre-
sentations of camera movement, different loss functions, and network types showed that there were no
statistically significant improvements during segmentation in a multitask learning framework.

Keywords: Video Segmentation, Multitask Learning, Remote Monitoring, Maritime Vehicles

iii

Contents

List of Tables v

List of Figures vi

Acronyms x

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 1

1.3 Challenges . 2

1.4 Aims and Objectives . 3

1.5 Contribution . 3

2 Background 4

2.1 Convolutional Neural Networks . 4

2.2 Transformers . 5

2.2.1 Architecture . 6

2.3 Object Detection . 6

2.3.1 Faster - RCNN . 7

2.3.2 YOLO . 7

2.4 Image Segmentation . 7

2.4.1 YOLACT++ . 8

2.5 Video Segmentation . 8

2.6 Multitask Learning . 9

2.7 Projection Matrix . 9

2.8 Motion Field . 10

2.9 Evaluation of Segmentation Methods . 10

2.9.1 Intersection over Union . 10

2.9.2 Dice Score . 11

iv

2.9.3 Precision and Recall . 11

2.9.4 AP Score . 12

2.9.5 Bayesian Testing — Region of Practical Equivalence 12

3 State-of-the-Art 14

3.1 Video Segmentation . 14

3.2 Detection and Segmentation of Marine Vessels . 15

3.3 Learning of Movement . 16

3.4 Maritime Video Segmentation Datasets . 17

3.5 Literature Gaps . 18

4 Methodology 19

4.1 MarSyn Dataset . 19

4.1.1 Extracting the Camera Pose from the MarSyn Dataset 20

4.2 Mask2Former and Camera Pose Regression . 25

4.3 Multitask Learning Approach . 28

4.4 Camera Pose Regression as an Additional Task . 29

4.5 Motion Flow as an Additional Task . 34

5 Results and Evaluation 39

5.1 Experimental design . 39

5.2 Results . 39

5.3 Evaluation . 40

5.3.1 Mask2Former Evaluation . 40

5.3.2 Comparison between the 3D U-Net and the Mask2Former 41

5.3.3 3D U-Net Models Evaluation and Comparison - Pose regression and Original Models 42

5.3.4 Bayesian t-Testing . 43

6 Conclusion and Future Work 46

6.1 Conclusion . 46

6.2 Future Work . 47

6.3 Resources . 47

Bibliography 48

A Appendix chapter 53

A.1 Camera Trajectories . 53

v

List of Tables

3.1 Comparison of Video Segmentation Methods . 14

3.2 Comparison between detection and segmentation approaches for marine scenarios. . . . 15

3.3 Neural networks that include movement in their training. 16

3.4 Datasets for maritime object detection and segmentation. A focus is set on datasets for
marine contexts. 17

4.1 The camera pose parameters that were extracted from the synthetic dataset are shown. . 22

4.2 Mask2Former Training Parameters . 27

4.3 The parameters used for the segmentation path of the 3D U-Net architecture. 28

4.4 The values of the chosen parameters during training are shown in the table. 29

5.1 No Pose: Cross-validation results for cross-validation runs and five folds 41

5.2 Pose: Cross-validation results for four cross-validation runs and five folds 44

5.3 No Pose: Cross-validation results for cross-validation runs and five folds 44

vi

List of Figures

1.1 The aerial vehicle used for recording the Seagull dataset [1] (left). An example of an
image recorded with the aerial vehicle [1] (right). 2

1.2 Two images from the Seagull dataset depict challenges during segmentation [2]. Glare
and sea foam stemming from ship motion improve the difficulty of obtaining accurate
results. 2

2.1 An example of a two-dimensional convolution is shown, along with explanations for the
padding, kernel, and pooling layers [3]. 4

2.2 The architecture of the original U-Net is shown [4]. 5

2.3 Transformer Architecture [5]: The Encoder block on the left generates embeddings that
are passed to the Decoder block on the right. Each block consists of Multi-Head Attention
layers, feed-forward networks and normalisation functions. To obtain a positional depen-
dence, a positional embedding is added to the input. 6

2.4 An example for the object detection of a ship. The detected object is depicted, surrounded
by a bounding box in black [1]. 7

2.5 An example for the image segmentation of a surfer. The segmentation map is overlaid on
the image in orange [6]. 8

2.6 This figure shows a graphical depiction of the IoU: The intersection between the predicted
and the ground-truth (gt) areas is divided by their union [7]. 11

2.7 This figure shows a graphical depiction of the dice score: The doubled size of the intersec-
tion between the predicted and the ground-truth (gt) areas is divided by their respective
sizes [8]. 11

2.8 Example of a posterior distribution of the difference in classifier accuracies. The yellow
bars define the region of practical equivalence. An integral over the probability density
function gives the probability for the accuracy difference of the respective region. 13

4.1 Three exemplary images of the MarSyn dataset are shown. Different lighting conditions,
diverse background variations due to sea color and shore, as well as multiple ships are
found in the dataset. 20

4.2 Example of an image (left) with the corresponding ground truth mask (right). The quality of
the annotation is due to the automatic generation of the ground truth through the simulator. 20

4.3 Relevant coordinate systems from left to right: The world coordinate system, the blender
camera coordinate system, the standard computer vision coordinate system. 21

vii

4.4 Trajectory of the camera for the second video of the dataset. The location over each of
the thousand frames is shown in blue, while the camera view is indicated as a camera
frustum in red. 23

4.5 To illustrate the images taken along the trajectory, three images from the trajectory from
Fig. 4.4 are shown. From left to right the images correspond to the third, eighth, and tenth
camera view shown in red. 23

4.6 Three camera trajectories are shown from the simulations 5, 8, and 9 respectively. A
variety of movement patterns is observed. 24

4.7 Histogram of the absolute velocity values of all the trajectories. 24

4.8 Histogram of the absolute angular velocity difference values of all the trajectories. 25

4.9 Change in linear velocities for selected videos over time in m/s. Each video starts from
a resting state and then accelerates. Note, that the velocities are smooth. Due to the
generation of the videos in a simulation, and the decision against adding noise to the
camera movement, additional filtering is not necessary. 25

4.10 Histogram of the absolute value of the linear velocity, shown for every video. 26

4.11 Mask2Former Architecture: (left) A backbone encodes a video volume and a decoder
scales it to different sizes. These are fed into a transformer decoder, which then outputs
the segmentation masks and class probabilities. (right) The transformer decoder block.
Query features, describing the possible instances in the frame, and image features from
the decoder are both sent into a masked attention module. 27

4.12 Loss curves for the Mask2Former architecture. The cross-entropy loss is shown on the
upper left, along with the dice loss to its right. The lower left shows their sum, named the
mask sum. On the lower left the pose loss, here denominated motion loss due to the use
of the angular velocities, is shown. 28

4.13 Simplified model of the pose regression approach. A series of input images is transformed
into a latent representation z using a video encoder. This representation z is then both
used to generate a series of segmentation maps and for camera pose regression, by the
corresponding decoder blocks. 30

4.14 The effect of dice loss factors on the average dice score of the model over training 31

4.15 Loss Curve of the binary cross-entropy and dice losses. 32

4.16 Loss Curve of the adapted PoseNet loss: Linear Scale (left), Logarithmic scale (right) . . 32

4.17 A comparison between different camera pose configurations during training. Including all
investigated parameters seems to perform the worst, while only including angular velocity
values is the best. The models are evaluated every 50 iterations on the test set. 33

4.18 The evaluation of the dice score during training is shown above, for the camera pose
regression model predicting angular velocities. 33

4.19 The average angular velocity difference is shown during training. The shown model uses
the camera pose regression predicting angular velocities as an additional task. 34

viii

4.20 Simplified model of the motion flow prediction approach. A series of input images is
transformed into a latent representation z using a video encoder. This representation z

is then both used to generate a series of segmentation maps and motion fields, by the
corresponding decoder blocks. 34

4.21 Backprojecting the camera pixels: The trajectory of the camera, along with sampled cam-
era orientations are shown. The corresponding backprojection of camera frame pixels
into three-dimensional space is indicated by the blue/green pixels. Pixels get progres-
sively lighter, throughout the whole trajectory. The location of pixels in space is projected
into the next state of the camera, allowing for the calculation of motion flow throughout a
video. 35

4.22 The trajectories of videos 10, 12, and 15 are shown above. In addition, the backprojection
of pixels from the camera view onto the ocean plane is indicated by the blue/green dots.
Dark pixels indicate the backprojection towards the beginning of the trajectory, whereas
lighter colors indicate a later projection. 36

4.23 Example of Motion Flow: The first image shows the difference between pixels at time t�1

and t for video 3, frame 591. The next two images show the movement of the camera;
note that for visibility, frames 591 and 620 are shown. 37

4.24 Loss curve during motion field prediction: The loss has a large variance, while not de-
creasing throughout the training process, as seen on the left. 38

4.25 An example of the prediction, with the corresponding ground truth, is shown to the right. 38

5.1 Results showing the prediction and ground truth for the first image of a prediction us-
ing the pose model trained with angular velocities. From left to right: Logits, predicted
segmentation mask, input image, and ground truth. 40

5.2 An image depicting the results from the video segmentation of the Mask2Former with the
additional task of camera pose regression of angular velocity values. 41

5.3 Comparison between the original Mask2Former and the modified one for the first 2000
training iterations for semantic segmentation. The difference in evaluation accuracy is
negligible. The IoU scores are evaluated every 50 iterations on the test set. 41

5.4 Comparison between the original Mask2Former and a 3D-U-Net. The IoU scores are
evaluated every 50 iterations on the test set. 42

5.5 Comparison between the unmodified 3D U-Net model and the model including pose re-
gression during training. 42

5.6 Evaluation runs over training for different models. 43

5.7 Bayesian T Test comparing the average dice scores between the 3D-Unet with and with-
out the added pose loss. The yellow bars indicate the region of practical equivalence.
A probability density function of the difference between the NoPose and Pose model is
shown. The probability of an improvement is low, as indicated by the the small area on
the left of the orange vertical line. 45

ix

Acronyms

AP Average Precision. 12, 40

AVOS Automatic Video Object Segmentation. 8

bpy Blender Python API. 20, 22

CNN Convolutional Neural Network. 4, 8

FFN Feed Forward Neural Network. 29

IoU Intersection over Union. 10

ISR Lisboa Institute for Systems and Robotics. 18, 19

IVOS Interactive Video Object Segmentation. 8

KNN K-Nearest Neighbors. 15

LSTM Long-Short-Term Memory Network. 15, 47

NLP Natural Language Processing. 5

SVM Support Vector Machine. 16

SVOS Semi-automatic Video Object Segmentation. 8

UAV Unmanned Aerial Vehicle. 16

USV Unmanned Surface Vehicle. 17

VOS Video Object Segmentation. 8

VSS Video Semantic Segmentation. 8

x

Chapter 1

Introduction

Given the importance of shipping in global trade, the monitoring of maritime vessels is of great impor-
tance. The surveillance of ships in ports, during the transport of goods and for the purpose of managing
marine traffic, underlines the need for ship detection systems. This master’s thesis aims to improve the
segmentation of maritime vessels from video data, due to the additional information obtained from the
ship contours. To this end, a neural network-based computer vision approach is used.

1.1 Motivation

Currently, approximately 80% of global trade is based on shipping [9]. This results in the need for
an accurate way to monitor marine traffic. Additionally, maritime surveillance, law enforcement, and
environmental objectives are a concern. Given the increasing automation of ports, there is a constant
need for autonomous systems for their surveillance [10]. Similarly, the sustained threat of maritime
piracy leads to increased costs for shipping companies, resulting from ransom payments, as well as the
cost of armed guards on the ship [11]. This leads to the need of automated solutions, freeing personnel
from the manual task of holding lookout.

1.2 Problem Definition

Currently, coastal radar is frequently used to monitor marine traffic. Although it has long-range sensing
ability and is good at detecting large metallic bodies, they are susceptible to adverse weather conditions.
Nevertheless, large bodies with a small radar cross-section, may still remain undetected [12].

Similarly, approaches that are derived from remote sensing can provide very detailed monitoring of ship
positions. However, the low temporal resolution of satellite imagery requires the use of more time-
sensitive methods [13].

Monitoring marine traffic using image and video data offers advantages in the form of high temporal and
spatial resolution [14]. Although stationary approaches are suitable for applications in ports and harbors,
there is a need for mobile surveillance in situations that involve monitoring environmental parameters,
law enforcement, and piracy [10]. Aerial vehicles offer the advantage of a large field of view while being
able to be readily deployed in a variety of operational scenarios. Fig. 1.1 shows an example of an aerial
vehicle designed and manufactured by the Portuguese Air Force Research Center [1], as well as an

1

exemplary image recorded using the same vehicle.

Figure 1.1: The aerial vehicle used for recording the Seagull dataset [1] (left). An example of an image
recorded with the aerial vehicle [1] (right).

Segmentation is a computer vision problems that requires image data. Since in this case, the sensor-
carrying platform is an aerial vehicle, it is assumed that information on the current altitude, attitude and
heading can be paired with the images taken from an RGB video camera. This sequence of images is
assumed to be temporally correlated, i.e. previous images help in predicting the following ones. Similarly,
a certain frame rate can be taken as given (e.g. 30fps for a regular camera), as well as approximate
continuity in the movement of the camera platform.

1.3 Challenges

The problem of segmenting ships from aerial images has several challenges. First and foremost, while
the problem may seem trivial during perfect conditions, changes in weather and lighting significantly im-
pact the performance of computer vision approaches. Similarly, phenomena such as ocean waves, white
hats, and glare make segmentation more difficult [2]. Fig. 1.2 shows an example of glare encountered
in images, as well as the sea foam created during the movement of a boat.

Figure 1.2: Two images from the Seagull dataset depict challenges during segmentation [2]. Glare and
sea foam stemming from ship motion improve the difficulty of obtaining accurate results.

Current methods for creating image-based ship segmentation models are based on learning from data.
Providing an adequate amount of data is therefore important for the model to work well with previously
unseen images. While there are many datasets available, which provide images of ships from an aerial
point of view, there may be a need for additional videos for the computer vision model to perform well.
This underlines the need to generate an artificial data set for training [2].

2

1.4 Aims and Objectives

The aim of this thesis is to create a computer vision model, to segment maritime vessels from video data
taken by an aerial vehicle. Changes in imaging conditions, due to e.g. weather and glare, are sometimes
dependent on the movement of the vehicle’s camera. Improvements in segmentation performance to
current state-of-the-art models are sought, by incorporating data stemming from the camera pose. Ad-
ditionally, the creation of synthetic training data might be necessary due to the limited availability of
scenario-specific datasets.

1.5 Contribution

The contribution of this master’s thesis lies in the creation of a new neural network architecture for the
segmentation of image sequences that can incorporate information stemming from the aerial vehicle’s
attitude and heading, as well as their changes in time.

The research question to be explored is the following:

RQ: Does including camera pose information during the training of a neural network improve

segmentation quality in a multitask learning framework?

To this end, multiple methods of including the additional information are explored in the multitask learning
framework. They are then extensively evaluated according to statistical tests.

3

Chapter 2

Background

This chapter gives an introduction to the theoretical background of the proposed thesis. First, neural
network architectures, such as convolutional neural networks and transformers, are described. Then
two computer vision tasks are introduced, namely object detection, image-, and video segmentation. A
background on multitask learning, as well as projection matrices, and motion field is given. Finally, the
evaluation of segmentation methods is described.

2.1 Convolutional Neural Networks

As the name suggests, convolutional neural networks (CNNs) mainly consist of convolutional layers: A
kernel is convolved on the input, resulting in a feature map that is passed to the next layer. The layers are
locally connected, allowing for the sharing of weights in their computation. This weight-sharing results
in a reduction in the necessary parameters that need to be learned, making the training process more
efficient. Similarly, due to the sliding of the kernel in the convolution operation, the exact location of
features becomes proportionally translated between layers, making their representation independent of
the position in the initial input. In addition, non-linearities and pooling layers, as well as fully connected
layers, are introduced into the model structure. For example, in the case of image segmentation, the
input and output of the model consist of a matrix representation of the image. The learned kernels of the
model perform convolutions on the input. The final layer then represents the segmentation map [15].

Figure 2.1: An example of a two-dimensional convolution is shown, along with explanations for the
padding, kernel, and pooling layers [3].

Fig. 2.1 shows an example of the two-dimensional convolution operation. The input consists of a two-
dimensional matrix that represents one channel of the input. The kernel, shown in blue, is convoluted

4

on the input matrix to create an output matrix of different dimensions. The dimensions depend on the
dimensions of the padding, stride, and kernel. The intermediate result, shown in green, is then max-
pooled; that is, according to the size of a preset box, the maximum value of each box is used for the
final output matrix. Multiple arrangements of these layers result in a network, whose weights, i.e. the
parameters in the kernels, are trained to perform specific tasks, such as segmentation.

Some of these models are based on an encoder-decoder architecture which consists of two parts. In
the first, the encoder, successive convolutional layers compress the input into a dense feature repre-
sentation. This vector is then passed to the decoder, which generates the segmentation map [16]. By
obtaining a semantically high-level representation of the object, important aspects about the input are
hoped to be preserved and should aid in the decoding steps. Examples of these types of neural network
are the U-Net [4], the V-Net [17], and SegNet [18].

The U-Net architecture is popular for image segmentation due to its performance and simplicity. It
consists of several convolutional layers that compress an initial RGB image into a smaller semantic
core. This core is then upsampled using deconvolutions to the original image size. To preserve details
in the original image, skip connections are used that connect earlier parts of the model to the end. The
initial implementation of the U-Net was taken from the following GitHub project1.

Figure 2.2: The architecture of the original U-Net is shown [4].

Fig. 2.2 shows the process graphically. The U-shape is given by the compression of the initial image
tensor with subsequent upsampling through the deconvolutional layers.

2.2 Transformers

The performance of the Transformer architecture in natural language processing (NLP) tasks has led to
its use in other domains, such as computer vision [19]. Considering that it is a sequence-to-sequence
model, its application to image sequences is natural. Since many of the current state of the art models,
as described in Sect. 3.1 are transformer-based, this section will give a brief discussion of the trans-
former architecture. The Transformer architecture is a sequence-to-sequence neural network, using
attention mechanisms [5]. The following section gives a summary of the original transformer paper, as

1https://github.com/milesial/Pytorch-UNet

5

proposed by [5].

2.2.1 Architecture

The architecture is shown in Fig. 2.3 and consists of an encoder and a decoder block. The former con-
verts its inputs into a multidimensional vector, which captures information about the whole sequence.
These are information-rich representations of the input data that help to represent the underlying infor-
mation in a way that makes it easier for the model to learn. Since the main objective of the model is
to learn sequences, an input sequence is passed to the encoder one by one, generating embeddings
that are used by the decoder. Past outputs of the model are used in addition to the input to obtain new
sequences. The model generates the next probable output symbol in the sequence. In the case of
language models, these are words; for video segmentation, segmentation masks are built.

The encoder and decoder are composed of multiple layers, represented as a gray box in Fig. 2.3. Each
layer consists of two parts. In the first part, an embedding is fed into a Multi-Head attention block. The
output of this block is then added to the original embedding and normalized. The normalized output
is fed into the following part, where it passes through a feed-forward network. Its result is added to
the original normalized input and then is further normalized itself. As indicated in Fig. 2.3, this process
repeats Nx times. In the original paper Nx = 6 was chosen.

Figure 2.3: Transformer Architecture [5]: The Encoder block on the left generates embeddings that are
passed to the Decoder block on the right. Each block consists of Multi-Head Attention layers, feed-
forward networks and normalisation functions. To obtain a positional dependence, a positional embed-
ding is added to the input.

2.3 Object Detection

Object detection is concerned with the classification and localization of objects in an image. Taking
images as input, a bounding box is obtained, characterized by its width, height, and location (x, y).

6

Fig. 2.4 shows a ship, with its surrounding bounding box.

Figure 2.4: An example for the object detection of a ship. The detected object is depicted, surrounded
by a bounding box in black [1].

Although traditional methods manually determine significant points in the frame based on predefined
rules, they struggle with more complex image understanding. Modern approaches use deep learning-
based approaches, which use neural networks and huge amounts of data for detection. The following
section describes commonly used approaches [20].

2.3.1 Faster - RCNN

The Faster RCNN network is an end-to-end object detection architecture, which is faster and more accu-
rate than previous approaches [21]. Earlier versions — such as RCNN [22] or Fast RCNN [23] — relied
on multistage processes, which were comparatively slow and did not allow for the sharing of information
between those stages. Subsequent versions, such as Fast RCNN, aggregate the extraction of features
rather than recalculating them for each proposed region, thus saving time. Faster RCNN’s integrate the
region proposal network with the convolutional feature extraction layers. By sharing information between
these elements, the network is significantly faster.

2.3.2 YOLO

YOLO is a neural network approach that frames object detection as a regression task [24]. This results in
fast performance, leading to real-time object detection. An image is divided into a grid S⇥S. From each
of these cells, the bounding boxes B are predicted, each of which consists of the following parameters:
(x, y, w, h, confidence), where x and y refer to the coordinates of the center point and w and h to the
width and height of the bounding box, respectively. In addition, a conditional class probability C is
returned. The network is implemented as a CNN, where successive convolutional layers extract features
and the final feed-forward network is responsible for the regression. Due to the success of the original
architecture, many revisions have been made to the original architecture [25].

2.4 Image Segmentation

The goal of image segmentation is to identify objects in images. Unlike object detection, a pixel-wise
correspondence is sought, called a segmentation map [16]. Objects can either be identified semantically,

7

i.e. to what category of object does the pixel belong to, or by instance, i.e. also discriminating between
specific objects in the frame. Fig. 2.5 shows an example of the image segmentation: A surfer is identified,
and an orange segmentation mask is displayed.

Figure 2.5: An example for the image segmentation of a surfer. The segmentation map is overlaid on
the image in orange [6].

This section first describes convolutional neural networks (CNNs). Next, two different types of CNNs are
introduced; U-Nets, and the YOLACT++ architecture.

2.4.1 YOLACT++

YOLACT++ is a real-time instance segmentation method that splits the image segmentation task into
two simpler parallel tasks. In the first branch, instance-independent prototype masks are generated,
which act as base vectors for the final mask generation. A second branch creates coefficients to linearly
combine these masks for specific instances. These detections are then cropped and pass through
a threshold, to obtain segmentation maps. The main advantage of the YOLACT++ architecture is its
speed: Compared to other approaches, it maintains high performance, while achieving real-time results
[26].

2.5 Video Segmentation

Video segmentation extends the field of image segmentation by considering not only single images but
successive frames in a sequence. The field can be categorized very broadly into video object segmen-
tation(VOS) and video semantic segmentation (VSS). While the former is concerned with discerning
which objects in a scene belong to the foreground or background, the latter tries to detect categories of
objects in the form of segmentation maps [27].

Video segmentation methods can also be categorized by the amount of human intervention needed.
Automatic Video Object Segmentation (AVOS) does not require any human input and automatically
chooses the objects in the frame. Semi-automatic Video Object Segmentation (SVOS) usually uses
some human input in the first frame to determine which object is being segmented. Finally, Interac-
tive Video Object Segmentation (IVOS) uses continuous user guidance throughout the segmentation
process to obtain higher-quality results [27].

An additional categorization lies in the operating principle of the model. Video instance segmentation
tasks can be divided into online and offline methods. The former performs instance segmentation on
an image level and then tries to associate those instance masks along time. Offline methods directly
predict 3D masks, which consist of two-dimensional image space over time [28].

8

2.6 Multitask Learning

In the multitask learning paradigm, the performance of a deep learning network is improved by learning
similar tasks in parallel. Due to their similarity, internal representations of the input might complement
each other, leading to an improved quality of output. Multitask learning is thus a method to achieve
inductive transfer, that is, the transfer of knowledge between several sources of information [29].

For example, in [29], the primary task consists in predicting the steering direction of a vehicle, given an
image. Several additional tasks are added, such as predicting the location of the edge of the road or the
intensity of the road surface. Training the network with additional tasks yielded improvements between
15-30% in the steering task.

2.7 Projection Matrix

Projection matrices describe the transformation between three-dimensional points to a two-dimensional
frame, as seen by, e.g. a camera. To obtain the pixels in a frame, the following transformation is carried
out:

�

2

64
u

v

1

3

75 = P

2

66664

x

y

z

1

3

77775
, (2.1)

where (u, v) describes the location of a pixel in the image frame and (x, y, z) describes the location of an
image point in the three-dimensional space. The factor � refers to a scaling factor to normalize the final
row of (u, v, 1) due to the representation in homogeneous coordinates. This representation simplifies
the calculation by making it possible to write them in one transformation [7].

The projection matrix P can be described as follows:

P = [K] [R | T] =

2

64
f 0 cx

0 f cy

0 0 1

3

75

2

64
r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

3

75 . (2.2)

The matrix K describes the intrinsic properties of the perspective model. These normally stay constant
throughout the scene and can be estimated using camera calibration methods or from reading from the
appropriate datasheets. The second entry [R | T] describes the extrinsic properties of the camera, i.e.
its attitude with respect to an inertial world frame. Throughout a video sequence, these naturally change
over time as the camera moves [7].

The entries rij describe the rotation matrix between the world and camera frame, ti the translation vector
between the world and camera origin. The parameter f describes the focal length, i.e. the amount the
incoming image is scaled. The entries cx and cy translate the image in the camera frame, to align
off-center coordinate systems in the resulting image [7].

9

2.8 Motion Field

In computer vision, the description of object motion is important for scene understanding. Motion fields
give a description of the velocities of points in a three-dimensional space with respect to the camera [30].
They represent an ideal match between the movement in space and the resulting image in a camera
frame. Mathematically, they can be described as two corresponding point velocities,

vo =
@

@t
ro

vi =
@

@t
ri ,

(2.3)

where vo describes the velocity of in three-dimensional space and vi in the image frame. The point ri
refers to the location of a point in the image and the point ro is expressed in three-dimensional space.
Their relationship is given by the following perspective transformation:

1

f
ri =

1

rTo ẑ
ro , (2.4)

where f is the focal distance, and ẑ is a unit vector on the optical axis of the camera. The movement of
these points with respect to the camera can be described with a derivative with respect to time.

These changes in location of object points give rise to differences in intensity, when capturing images
with a camera, called optical flow. Although the motion field and the optical flow are closely related,
effects such as lighting, (non)-Lambertian surfaces, and shadows greatly influence intensity changes,
even if objects have similar motion fields.

2.9 Evaluation of Segmentation Methods

To evaluate the performance of video segmentation methods, multiple metrics have been proposed.
Although storage requirements and speed play a crucial value, this section focuses on model accuracy,
that is, the raw performance of a model [16].

2.9.1 Intersection over Union

The intersection over union (IoU) is a metric used to determine the quality of a detection or segmentation
[27]. The comparison between the areas of a given ground truth and a system’s estimation is calculated
as follows:

IoU =
|A \B|
|A [B| , (2.5)

where A and B correspond to the areas that are being compared. Generally, a value of IoU > 50% is
considered sufficient for detection [27]. For video input this metric can be extended by comparing the
IoU values over time, or by giving the mean IoU (mIoU). Given some adaptations, an IoU loss function
may be constructed [31].

10

Figure 2.6: This figure shows a graphical depiction of the IoU: The intersection between the predicted
and the ground-truth (gt) areas is divided by their union [7].

Fig. 2.6 shows a graphical depiction of the IoU metric. The intersection A \ B| is obtained between the
predicted area and the ground truth and is divided by their union |A [B|. It gives a useful metric to
compare the accuracy of detection and segmentation models.

2.9.2 Dice Score

The dice score measures the similarity of two sets, similar to the IoU score. It is defined as follows:

Dice =
2 |A \B|
|A|+ |B| , (2.6)

The advantage in using the dice score lies in its differentiability [17]. Therefore, it is possible to utilize
the dice score as part of a loss function to increase the measured overlap between two segmentation
masks and the commonly used for biomedical imaging tasks [32].

Figure 2.7: This figure shows a graphical depiction of the dice score: The doubled size of the intersection
between the predicted and the ground-truth (gt) areas is divided by their respective sizes [8].

Fig. 2.7 shows a visualization of the dice score. First, the respective areas are intersected and doubled,
to obtain a score of dice(A,A) = 1.0 for complete overlap. The resulting area is divided by the overall
sum of the areas.

2.9.3 Precision and Recall

Precision and recall are two fundamental metrics for image segmentation [16]. The following two equa-
tions are used:

Precision =
TP

TP + FP
, (2.7)

and

Recall =
TP

TP + FN
. (2.8)

11

where TP , FP and FN refer to true positive, false positive and false negative respectively. Thus, preci-
sion is a measure for the amount of correctly identified samples, given all the positively identified ones,
i.e. given the current sample, how many of those are correctly classified. In the case of segmentation,
a sample corresponds to one pixel, whereas in detection it would refer to a detected object. Recall
refers to the overall percentage of correctly classified samples, including those which were mistakenly
identified to be negative.

These measures can be used in an object detection setting, where the quality of detection is impor-
tant. For applications in segmentation, a threshold for overlap between the ground truth mask and the
prediction is defined. Segmentation predictions can then be sorted into the upper categories.

2.9.4 AP Score

The average precision AP gives a measure of the quality of an object detection algorithm. During the
calculation of the precision score, as seen in Eq. 2.7, the IoU threshold needed for a true positive
detection is raised in a set number of steps between (0.5, 1.0). For each value, the precision of the
method is evaluated and saved. They are then averaged, to obtain a more descriptive metric that takes
differing amounts of overlap into account. For example, the COCO Evaluator 2 is a popular tool that
provides a unified interface to evaluate object detection data sets. Although the AP score is used mainly
for object detection, its use in video segmentation methods is popular.

2.9.5 Bayesian Testing — Region of Practical Equivalence

Although null hypothesis significance testing is a common procedure to evaluate the baseline perfor-
mance of a new model, it can sometimes be inadequate to determine statistical significance. A thorough
analysis is provided by [33] along with an alternative approach.

In essence, they propose a shift from a frequentist perspective to a Bayesian one in the context of the
classification problem. The former asks the following question: Given a hypothesis, how likely are you
to encounter the following data? The null hypothesis is that the classifiers used are of the same per-
formance. Since few classifiers are of equal quality, the null hypothesis is rejected most of the time.
However, defying the null hypothesis does not give an estimate of the magnitude of the effect. Deter-
mining whether and by how much a new approach improves on the current state-of-the-art is, therefore,
less certain.

Benavoli et al. therefore adopt the correlated Bayesian t-Test [34]. They give an expression for the prior
p(x|µ,⌃), i.e., what is the likelihood of obtaining the data, given the parameter to be estimated µ and its
covariance ⌃. The parameter µ describes the difference in accuracy between the two classifiers.

The calculation of the posterior p(µ|x, . . .), allows the generation of a graph of equivalence, as shown in
Fig. 2.8

2https://cocodataset.org/

12

Figure 2.8: Example of a posterior distribution of the difference in classifier accuracies. The yellow bars
define the region of practical equivalence. An integral over the probability density function gives the
probability for the accuracy difference of the respective region.

The ”region of practical equivalence” (ROPE), indicated by the yellow bars and usually defined as being
in the interval of [�0.01,+0.01], shows the probability of whether the difference in precision between
the classifiers is 1%. In simple terms: Fig. 2.8 plots the probability distribution of whether classifier
A improves on classifier B. The integral over the distribution to the left/right of the ROPE gives the
probability that A performs worse than B/B performs worse than A. Integrating in-between the two yellow
bars, gives the probability of equal performance.

13

Chapter 3

State-of-the-Art

In this chapter, different methods for video segmentation in general are discussed. Then, specific meth-
ods for segmentation in maritime scenarios are explored. The inclusion of movement information is
included next, as well as viable datasets for the training of neural networks.

3.1 Video Segmentation

Table 3.1 shows the main approaches in the literature to video segmentation in general:

Name Type Method Notes

MaskTrack R-CNN [35] Online Mask R-CNN tracking head Created YouTube-VIS
Mask2Former [36] Offline Extension from image segmentation Directly predicts 3D segmentation volumes
MaskFreeVIS [37] Online Temporal KNN based loss Only uses bounding box annotations
VisTR [6] Offline CNN embeddings for transformer Includes instance sequence matching module
SeqFormer [38] Offline Deformable attention block Aggregates box queries

Table 3.1: Comparison of Video Segmentation Methods

Each element is further explained in the following paragraphs.

MaskTrack R-CNN [35] is an extension of Mask R-CNN [39] for video instance segmentation. The origi-
nal two-stage procedure, consisting of a region proposal network and features extractors, is extended by
adding a tracking head, which assigns instance labels to the segmentations obtained on an image level.
Its purpose is to match objects in-between the images and is thus an online method for video instance
segmentation. Additionally, the paper proposes a new benchmark, the YouTube-VIS dataset, consisting
of 2883 videos, along with instance masks for 40 categories.

The Mask2Former [36] is an architecture originally used for image segmentation that was extended
to work with video data. Video sequences are treated as 3D spatio-temporal volumes of dimension
(T,H,W), which describe the number of frames, height and width, respectively. To allow the model to
differentiate between frames, a temporal positional encoding is added, similar to the positional encoding
described in Sect. 2.2.1. To enforce causality, a masked attention mechanism is introduced into the
image sequence. Therefore, the model is unable to use future images in a sequence to predict the
current one during the training process. The result is a direct prediction of a whole 3D volume of two-
dimensional images over time.

In MaskFreeVIS [37], only the annotations of the bounding box are used to predict the segmentations of

14

instances in the video. Since labelling segmentations for video are time-consuming, image patches are
matched across frames. A temporal k-nearest-neighbors based loss (KNN TK-Loss) is developed, which
first identifies patches in the image that can be matched across frames. These are matched according
to a one-to-many correspondence by selecting the lowest distance between patches. A final consistency
loss between the found correspondences enforces the temporal stability of the masks across frames.

In the VisTR model [6], the sequences of images are first encoded into features by a CNN backbone,
specifically a ResNet-50. Then, a positional and temporal encoding is added which encodes the position
of pixels in each frame and in the image sequence. These representations are fed into a transformer
encoder and decoder in order. The sequence of instance predictions is matched using an FFN, where
the loss function encodes a pair-wise matching cost. Additionally, the final mask sequences are output
by performing self-attention on the encoder-decoder output.

The SeqFormer [38], first creates embeddings from each frame. Along with an initial instance query,
each frame passes through a deformable attention block. Note that each frame is processed individually
at this point in the process. The output of each frame, called box queries, is aggregated and used by the
mask, class, and box head for the final output.

Transformer-based models seem to be the current state-of-the-art for video segmentation tasks. Al-
though their performance on general video segmentation datasets is well documented, an investigation
into a specific application, namely the segmentation of aerial marine vessels, along with the inclusion of
additional task-specific data, such as camera movement information, seems unexplored.

3.2 Detection and Segmentation of Marine Vessels

Table 3.2 shows a comparison of the methods applied in the marine use case.

Name Modality Type Scenario Method Notes

[40] Images Segm. Shore Visual attention detection Low-level features
[13] Videos Det. Air Convolutional LSTM Task-specific loss
[2] Videos Segm. Air YOLACT++ MarSyn creation, real-time, 3D Cond. Rand. Field
[41] Images Det. Shore CNN + Saliency Map Coastline prior, contrasts map corrects CNN
[42] Images Det. Air Convolutional SVM Needs less training data due to SVM
[43] Images Det. / Segm. Air U-Net Cascade model performing segmentation on detected regions

Table 3.2: Comparison between detection and segmentation approaches for marine scenarios.

A more comprehensive explanation of each method is given in the following section.

In [40] a framework for visual attention detection in maritime scenes is proposed. Low-level features,
such as edge density and contrast density, are combined with a sea/sky classifier. These features are
used to train a Naive Bayes classifier.

In [13], a long-short-term memory network (LSTM) [44] is combined with a pre-trained convolutional
neural network for object detection. Thus, not only spatial, but also temporal features are used. Ad-
ditionally, domain-specific knowledge on the average size is used to improve the modeling of the loss
function, to finally improve performance.

The contributions of [2] are two-fold: First, an instance segmentation network, YOLACT++, provides
frame-level instance masks. Their quality is improved by post-processing with 3D fully connected con-
ditional random fields, to use information on the temporal correlation of the frames. For evaluation, a
synthetic dataset, the MarSyn dataset, is created. It contains videos of maritime surveillance scenarios,
namely, of ships from the air, along with accurate segmentation masks.

15

In [41], convolutional neural networks are used for object detection. First, information on the coast line
is extracted using image processing methods, as well as with a saliency map obtained from a contrast-
based saliency extraction algorithm. These priors are used together with the CNN for obtaining bounding
boxes.

In [42], a method for object detection of maritime vessels, involving unmanned aerial vehicles (UAVs) is
found. The model is built from successive layers of convolutional layers, reduction layers, which operate
similarly to the pooling layers in CNNs, and ending with a classification layer. The main contribution is
an architecture that needs relatively few data, due to the use of a forward supervised learning strategy
for the support vector machine (SVM).

The detection and segmentation of marine vessels benefit from domain-specific assumptions taken
when processing the respective images and videos. Information on coastlines, horizons, and average
target sizes helps to improve model performance. It seems that the use of camera movement information
has not yet been explored for the scenario of moving aerial cameras.

3.3 Learning of Movement

Table 3.3 compares the different approaches outlined below:

Name Modality Pretext Type Network Type Notes

[45] Video / CNN Unsupervised Learning
[46] Video / CNN Segm. from Optical Flow
[47] 2 Images Image Transforms CNN Predict camera transform
[48] Video Rotation of Video 2DCNN Pretrain on video rotation
[49] Video Label Prediction CNN Predict Motion characteristics on grid

Table 3.3: Neural networks that include movement in their training.

In [45] the motion of objects in an image sequence is used to learn object segmentation in an unsuper-
vised manner, since single objects that move in between frames display similar characteristics regarding
the optical flow of an image. They create motion cues, that is, superpixels based on motion, through
non-local consensus voting [50], and use these to train a convolutional neural network to predict seg-
mentation maps from single images.

In [46] an encoder-decoder model is trained on synthetic video data to obtain segmentation maps from
optical flow models. They use a convolutional neural network that learns a representation of the optical
flow and then upsamples it to generate high-resolution segmentation maps. The results are conse-
quently improved using conditional random fields.

In [47], egomotion is used as a self-supervision signal to generate useful features for downstream tasks.
A Siamese convolutional neural network is used to predict image transformations. This approach is
applied once to random translations and rotations applied to the MNIST dataset as a proof-of-concept
and then refined on the KITTI dataset. They find that training networks on predicting egomotion before
subsequent fine-tuning on the target task improve model performance for specific tasks due to better
feature representations.

In [48], a network is trained to recognize the degree of rotation applied to videos. By recognizing the se-
mantics of the video, a spatio-temporal representation of the video content is achieved, which helps with
subsequent fine-tuning on small datasets. They demonstrate this by achieving up to 20% improvements
in relevant evaluation scores.

16

Wang et al. propose a method for video representation learning to create spatio-temporal features [49].
They divide each frame into partitions, such as grids, and let a network predict labels, such as the tile
with the most amount of motion, etc. Pre-training on these unlabeled videos improves the performance
of a three-dimensional convolutional neural network when fine-tuning the model for action recognition
problems.

The literature review shows that CNNs are the preferred type of network, when attempting to include
camera movement information in a neural network operating on video data. Some of the works try
to directly predict motion parameters through the degree of rotations or image transformations applied
between multiple images. Others use the movement of objects in the images as an indicator of either
scene or camera movement. It seems that the direct inclusion of the camera movement of a mobile
vehicle in the training of a neural network has not been extensively explored.

3.4 Maritime Video Segmentation Datasets

A summary of the main existing datasets for maritime video segmentation is shown in Table 3.4:

Name Total No. Frames No. Videos Type Scenario Camera Pose

YouTube-VIS 2019 [35] ⇠ 400,770 4,453 Segm. Varied ⇥
Seagull [1] 150,000 19 Det. Air ⇥
MarSyn [2] 25,000 25 Segm. Air ⇥
MarDCT [51] 12,547 25 Det. Ground ⇥
SeaDronesSee [52] 54,000 208 Det. Air ⇥
Airbus Ship [53] 192,556 0 Det. Satellite ⇥
MODv1 [54] 4,454 12 Segm. USV D
MODv2 [55] 11,675 28 Det. / Segm. USV D

Table 3.4: Datasets for maritime object detection and segmentation. A focus is set on datasets for
marine contexts.

There are several datasets for the detection of objects and the segmentation of maritime vehicles, how-
ever, only some of them include camera pose information. For example, the Airbus Ship dataset [53],
includes ship images taken from satellite imagery. The Seagull dataset [1] contains images and videos
of maritime vessels taken from a UAV. It is annotated for object detection and contains a varied number
of scenarios and perspectives. MarDCT [51], provides videos of ships passing canals in Venice, as well
as information for the detection, classification, and tracking of these ships. The SeaDronesSee dataset
[52], includes maritime imagery taken from UAVs, including information on altitude and angle of the cam-
era. MarSyn, a synthetic dataset created by simulating ships in a 3D rendering environment, consists of
video sequences of ships taken by a UAV, as well as segmentation masks [2]. The MODv1 dataset [38]
includes camera pose information for the detection of marine vessels to avoid obstacles from the point
of view of an unmanned surface vehicle (USV). Similarly, MODSv2 [55] includes video data, along with
camera pose information for object detection and segmentation.

To my knowledge, there exists no dataset for video segmentation of maritime vehicles from aerial images
that specifically includes camera pose data. In this work, the focus is on datasets depicting maritime
scenes from an aerial point of view with annotations for the segmentation of videos. Although videos
from different scenarios, such as videos taken from USVs, might improve the recognition of maritime ve-
hicles, the bias originating from points of view close to the water surface does not reflect the operational
scenario. Given these observations, Seagull [1] and MarSyn [2] seem the most promising. However, the
former only provides ground truth for the object detection task, that is, detection boxes. MarSyn meets all

17

the requirements, while not containing information on the camera pose. Due to the development of this
artificial dataset at the Institute for Systems and Robotics (ISR Lisboa), the metadata derived from the
simulations is still available. This offers a way to extend the dataset to contain all relevant parameters.

3.5 Literature Gaps

From the literature review, it is clear that the video segmentation field is a relatively new field. Only with
the proposition of large-scale datasets, as in [35], advances in the field are accelerated. Given the small
corpus of research that applies object detection and segmentation techniques to the domain of maritime
vessels, a research gap is found in applying video segmentation to aerial maritime vehicles. One of
the main problems in applying segmentation to maritime scenarios comes from weather, the sun, glare,
waves, and foreshortening. The application of models using video sequences as input is expected to
reduce errors caused by periodic phenomena, such as waves. Similarly, there exists a correlation be-
tween the position and pose of the camera, and factors such as waves and foreshortening. A model that
takes into account these error sources may improve segmentation performance for maritime scenarios.
Additionally, due to the imminent availability of navigational information in these scenarios, the use of
camera pose information is a natural way to obtain more information on the scene, potentially increasing
the performance of previous approaches.

18

Chapter 4

Methodology

During this master thesis, a new approach to video segmentation will be created to improve the quality
of segmentation of maritime vehicles from an aerial vehicle. Specifically, the integration of camera pose
information during training from a synthetic dataset is expected to increase the quality of segmentation
maps. Assuming that objects move slowly compared to the camera, knowing the position of the object
in one frame, as well as the movement between the next frame, helps in predicting the next segmenta-
tion map. Building an internal representation of movement information should then allow the model to
simultaneously improve its segmentation predictions.

First, additional ground truth information for camera movement must be extracted from existing segmen-
tation datasets. This information is then used during the training of several types of neural networks,
namely one based on transformers and 3D-CNNs. During training, each model predicts the relevant
camera pose parameters to build an internal representation, in an effort to improve segmentation per-
formance. This prediction is performed either as part of a regression task based on representations of
respective networks or as the prediction of the motion flow of the scene.

In this chapter, first the dataset is described, along with additional data that was extracted from previous
simulations. Next, different approaches to the problem, based on transformers and multitask learning
are outlined.

4.1 MarSyn Dataset

The existence of a dataset with segmentation maps and camera pose information for videos taken
onboard aerial vehicles is necessary to train a network on the desired scenario. Therefore, data for
training and evaluation purposes will be synthetically generated. Given the proximity of MarSyn to the
task, it is reasonable to extend the dataset with the desired parameters.

Therefore, the first phase of this master thesis consists of associating camera pose information from
an aerial vehicle with each image in the video sequence. Given the availability of the MarSyn project
code, due to its development at the ISR Lisboa, movement data from the aerial vehicle are obtained.
Although the parameters describing the camera motion are not explicitly available in the dataset, they
are contained in the files used to generate the simulation.

The MarSyn dataset consists of 25 video sequences, each having a length of 1000 frames [1]. The frame
rate of the video is 24 fps. The data creation process includes the modeling of three-dimensional ship

19

models, as well as their positioning and movement in Blender1, an open-source 3D modeling software.
Vessels of different types and sizes are simulated to move in an artificial ocean. A synthetic camera
then captures images from a set trajectory in heights ranging from 150 to 1000 m. Fig. 4.1 shows
a variety of weather, lighting, and operational scenarios that can be configured to capture a diverse
range of images. The simulation environment allows highly precise segmentation masks to be obtained,
compared to human annotations, without the annotation burden [2].

Fig. 4.1 shows three exemplary images of the dataset. The first image shows three separate maritime
vessels sailing in the ocean. The Sun creates strong reflections on the waves, changing with the position
of the camera. The second image shows a container ship, whose color closely matches the color of the
ocean in some of the training videos. In the last image, a boat and the ocean are seen, as well as parts
of the shore.

Figure 4.1: Three exemplary images of the MarSyn dataset are shown. Different lighting conditions,
diverse background variations due to sea color and shore, as well as multiple ships are found in the
dataset.

Since the ground truth segmentation masks were obtained automatically through a simulator and not
hand-annotated, their quality is high. Fig. 4.2 shows an input image on the left, with the corresponding
segmentation mask on the right. The details of the masks are seen clearly: The mast and piping, as
well as an antenna, stand out from the background.

Figure 4.2: Example of an image (left) with the corresponding ground truth mask (right). The quality of
the annotation is due to the automatic generation of the ground truth through the simulator.

4.1.1 Extracting the Camera Pose from the MarSyn Dataset

The original MarSyn dataset does not contain any information about the pose of the camera. However,
these data can be extracted from the blender simulation files, through the blender Python API (bpy)2.
This interface allows for the extraction of additional simulation information after run-time. For every frame
of the video, information on the location and rotation angles of the camera is extracted. To obtain the
linear and angular velocity between two frames, the corresponding values were calculated as follows:

1https://www.blender.org/
2https://docs.blender.org/api/current/index.html

20

vlin =

w2

64
vx,t

vy,t

vz,t

3

75 = f ·

w2

64
xt+1 � xt

yt+1 � yt

zt+1 � zt

3

75 , (4.1)

where f = 24 fps is the frame rate of the video, (vx, vy, vz) and (x, y, z) are velocities and locations
in the world frame w, calculated at time t. The conversion to m/s using f was chosen not only to
obtain metrics in conventional SI units, but also due to scale. During experiments, it was observed that
the network learned these numerically larger values more easily. Finally, the vector is converted to the
camera coordinate system.

Similarly, the angular velocity is obtained in the following way:

vang = Tang((
w
Rt+1 · w

R
�1
t)f) , (4.2)

where R describes the rotation matrix at timestep t, again in the world frame. The factor f again
describes the frame rate and therefore the conversion to rad/s. The function Tang is a transformation
between different representations of angles. There are three ways to represent rotations in the following
context: via Euler angles, unit quaternions, or rotation matrices. Although the calculations for deriving
these quantities are obtained with rotation matrices, due to their ease of use, the quantities are saved
as Euler angles and unit quaternions. It is experimented with which angular representation is easier for
the network to learn.

To obtain the angular velocity represented in Euler angles, as well as in quaternions, the function Tang

is used, similar to the case of rotation angles. Although a manual conversion is trivial given the relevant
identities, libraries such as scipy

3 were used to obtain the changes in representation.

Since the videos obtained from each simulation are filmed from the reference frame of the camera, it is
beneficial to perform a change of coordinates of the camera pose values to match this representation.
This transformation takes place as follows:

c
Rw =

2

64
r11 r12 r13

r21 r22 r23

r31 r32 r33

3

75 , (4.3)

where rij describes the entries of a three-dimensional rotation matrix. The transformation is performed
between the world and the camera frame.

In blender a coordinate system convention is predefined, as can be seen in Fig. 4.3.

Figure 4.3: Relevant coordinate systems from left to right: The world coordinate system, the blender
camera coordinate system, the standard computer vision coordinate system.

3https://scipy.org/

21

Fig. 4.3 shows the different coordinate systems that were used. The locations of the boats and the
camera are described in the world coordinate system on the left. When extracting values to generate
the rotations and projection matrices from the camera object using bpy, they are represented using the
custom blender coordinate system shown in the middle. The z axis points in the inverse direction of
the camera view, as indicated by the position of the boat on the right. In this thesis, the conventional
computer vision coordinate system is used, where this coordinate usually points in the positive direction.
To conserve right-handedness, the y coordinate is similarly inversed, to obtain the camera coordinate
system to the right.

The data are modified in a few ways to more accurately represent the camera movement for the specific
situation. For example, the absolute (x, y) world coordinates are arbitrarily chosen. Similarly, the initial
yaw angle depends on the choice of the coordinate system. To establish a baseline in-between multiple
videos, the relevant values are initialized to zero, to align the initial camera position and attitude. Other
information, such as height, roll, and pitch angles, is independent of the coordinate representation. For
example, the camera pitch includes additional information on the horizon line. The chosen camera pose
parameters are shown on Tab. 4.1. Although not all of them are used in the subsequent steps, the
extraction of many potentially relevant features allows for experiments.

Parameter Notation Reference Frame

Name / /
Frame / /

Location X x World
Location Y y World
Location Z z World

Pitch rx Camera
Yaw ry Camera
Roll rz Camera

Linear velocity X vx Camera
Linear velocity Y vy Camera
Linear velocity Z vz Camera

Pitch velocity ṙx Camera
Yaw velocity ṙy Camera
Roll velocity ṙz Camera

Quaternion w w Camera
Quaternion i i Camera
Quaternion j j Camera
Quaternion k k Camera

Quaternion velocity w ẇ Camera
Quaternion velocity i i̇ Camera
Quaternion velocity j j̇ Camera
Quaternion velocity k k̇ Camera

Table 4.1: The camera pose parameters that were extracted from the synthetic dataset are shown.

The upper parameters were extracted for each video in the data set. This allows for a visualization of
the camera trajectory. Similarly, the orientation of the camera can be shown, to verify the accuracy of
the data. The following figure shows one of the trajectories:

Fig. 4.4 shows a visual representation of the camera trajectory in the second video of the dataset over
time. The taken path is marked in blue and shows a circular path, which rises towards the middle and
then dives back towards the initial height. An arrow indicates the direction of the camera movement.
During a constant sampling in time, the orientation of the camera is shown in red as a camera frustum.
In this specific sequence, the vehicle, positioned approximately at (0, 0, 0), is overflown, while the cam-

22

Figure 4.4: Trajectory of the camera for the second video of the dataset. The location over each of the
thousand frames is shown in blue, while the camera view is indicated as a camera frustum in red.

Figure 4.5: To illustrate the images taken along the trajectory, three images from the trajectory from
Fig. 4.4 are shown. From left to right the images correspond to the third, eighth, and tenth camera view
shown in red.

era consistently points in the direction of the boat. Although the camera views are shown in uniform
time steps, the camera velocity changes. Slower velocities can thus be seen when camera views are
clustered more closely in the graphic.

To verify the trajectories, three examples of camera trajectories are shown in Fig. 4.6. It can be seen
that the trajectories are smooth and free of sudden changes in movement. Additionally, the camera
mostly focuses towards a set point, to capture the boats in the video. In the simulation, the location of
the boats is not static; they move throughout the sequence. However, this movement is small relative to
the velocity of the camera. The full range of trajectories is shown in App. A.1.

A histogram of camera velocities is shown in Fig. 4.7. Linear velocities values are clustered around a
mean of µv = 48.1m/s with a standard deviation of �v = 38.51m/s. There appears to be a collection of
values around zero that stem from sequences with slow acceleration towards the beginning of the videos,

23

Figure 4.6: Three camera trajectories are shown from the simulations 5, 8, and 9 respectively. A variety
of movement patterns is observed.

Figure 4.7: Histogram of the absolute velocity values of all the trajectories.

specifically mostly stemming from video 11. In Fig. 4.8, the angular velocity, measured in rad/s, is shown
to be spread farther out: The mean is µa = 0.09rad/s and the standard deviation is �a = 0.07rad/s.

Fig. 4.9 shows the change in linear velocity over time for the first three videos. The camera starts without
any initial velocity and then accelerates throughout the flight. Importantly, the velocities are noise-free.
In datasets obtained from real-life scenarios, noise stemming from sensors and uneven flight paths can
be a limiting factor, which requires denoising with e.g. Kalman filters. In this artificial dataset, noise was
not added, facilitating data processing.

Fig. 4.10 shows a histogram of the absolute velocities of the first eight videos of the dataset. As can be
seen, the range of velocity values ranges up to almost 200 m/s, which could be verified by looking at
the timestamped locations of the camera. Values around zero are mostly due to the camera starting out
from a resting position and slowly accelerating over the course of multiple seconds.

24

Figure 4.8: Histogram of the absolute angular velocity difference values of all the trajectories.

Figure 4.9: Change in linear velocities for selected videos over time in m/s. Each video starts from
a resting state and then accelerates. Note, that the velocities are smooth. Due to the generation of
the videos in a simulation, and the decision against adding noise to the camera movement, additional
filtering is not necessary.

4.2 Mask2Former and Camera Pose Regression

Transformer-based models show good performance in video segmentation tasks because of their per-
formance in modeling sequences. The Mask2Former module was chosen because of its performance
on video segmentation benchmarks. Additionally, the model architecture is modular: Different backbone
and pixel decoder modules may be used in the original model, which allows versatility in the represen-
tation of the video object.

Fig. 4.11 shows the architecture of Mask2Former on the left and the transformer decoder in detail on
the right. First, a video of variable length is encoded using a backbone, such as a ResNet-50. This
representation is then decoded to different scales, using a pixel decoder. The transformer decoder takes
these different scales as an input and outputs the final segmentation masks and class probabilities. On
the right, the input of the image feature and the query features, vectors representing image classes, are

25

Figure 4.10: Histogram of the absolute value of the linear velocity, shown for every video.

taken as input to the masked attention model. Masked attention represents an additional term in the
usual attention block and focuses on regions where previous masks were placed.

The proposed change in the architecture is shown as a red arrow in Fig. 4.11: In addition to predicting
the segmentation masks, the current pose of the camera in the camera frame is also predicted. It is
hoped that this additional information creates a representation in the layers that the segmentation block
can utilize to create improved segmentation. To this end, an additional loss term, an adaptation of the
PoseNet loss [56] is introduced. It is adapted by adding additional terms, such as velocities, in addition
to the absolute location and rotation of the pose. It is implemented as follows:

Lpose =
X

i

�1 kx̂i � xik2 + �2 kqi �
q̂i

kq̂ik
k2 (4.4)

where x̂i and q̂i describe the predicted linear and angular positions with respect to the initial reference
frame, respectively. The index i is used to iterate between stationary quantities, such as locations and
rotations, and velocities, such as linear and angular velocities. These values are summed over the
respective camera pose values to be considered, such as location, rotation, and linear/angular velocity
vectors. The term q̂i requires normalization to preserve rotational qualities, such as length. The ground
truth values are shown without the accent, and k · k2 indicates the L2-norm. The factors �i describe the
factors used to scale the respective norms to a similar range. They are chosen to be �i = 1., except for
camera locations in three-dimensional space, where they are assumed to be �j = 0.01.

26

Figure 4.11: Mask2Former Architecture: (left) A backbone encodes a video volume and a decoder
scales it to different sizes. These are fed into a transformer decoder, which then outputs the segmen-
tation masks and class probabilities. (right) The transformer decoder block. Query features, describing
the possible instances in the frame, and image features from the decoder are both sent into a masked
attention module.

Fig. 4.12 shows the loss curves obtained during an exemplary model training run. In the top row, the
cross-entropy and dice loss are seen. These two are combined in mask loss, as seen in the bottom
right. The new addition of the pose loss is shown to the right. Although the network seems to learn parts
of the angular position, the loss seems to reach a plateau.

Parameter Value

Learning Rate 0.0001
Images per Batch 4
Weight Decay 0.05
Gradient Clip 0.01
Iterations 2000
Loss Weight: Class 2.0
Loss Weight: CE 5.0
Loss Weight: Dice 5.0
Loss Weight: Motion 2.0

Table 4.2: Mask2Former Training Parameters

Since Fig. 5.3 shows a slight improvement using the pose loss, an additional investigation was per-
formed. The original model was pretrained on the YouTube-VIS dataset, and subsequently fine-tuned
on the MarSyn dataset, extended by the camera pose information. The video sequences used for train-
ing are (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25); for testing the following videos were
used: (2, 13, 14) Information on the parameters used during training is shown in Tab. 4.2.

27

Figure 4.12: Loss curves for the Mask2Former architecture. The cross-entropy loss is shown on the
upper left, along with the dice loss to its right. The lower left shows their sum, named the mask sum.
On the lower left the pose loss, here denominated motion loss due to the use of the angular velocities,
is shown.

4.3 Multitask Learning Approach

Given the additional ground-truth data on the camera movement, a multitask learning approach is cho-
sen for encoder-decoder architectures. The loss function is enriched with additional terms to include
information on the motion of the camera. The aim is to let the model represent the camera motion in its
parameters to aid the prediction of segmentation masks.

The values chosen for the respective blocks of the U-Net architecture are shown in Tab. ??.

Name In Out Block

Inc 3 64 DownConv
Down 1 64 128 DownConv
Down 2 128 256 DownConv
Down 3 256 512 DownConv
Down 4 512 1024 DownConv
Down 5 1024 2048 DownConv
Up 1 2048 1024 UpConv
Up 2 1024 512 UpConv
Up 3 512 256 UpConv
Up 4 256 128 UpConv
Up 5 128 64 UpConv
Out 64 1 Conv3D

Table 4.3: The parameters used for the segmentation path of the 3D U-Net architecture.

28

The DownConv first performs a three-dimensional pooling operation with the kernel size nk = 1, stride
nstride = 2, and a padding npad = 1. The output then reaches the DoubleConv block, which is made up of
two equal subblocks, each consisting of a three-dimensional convolution using a kernel size nk = 3 and a
padding npad = 1, followed by a three-dimensional batch normalization and a rectified linear unit (ReLU).
The UpConv layers first perform a bilinear upsample operation with a scale factor of nupsample = 2, and
then pass through the DoubleConv block with the dimensions set in Tab. ??.

U-Nets are traditionally used for image segmentation. To extend their input to video, the subsequent
images of the input are stacked in the form (C, T,H,W), indicating the time, channels, height, and width
of the images. The stacking of regular images of dimension (C,H,W) leads to a sequence that can be
accessed through the time term T . Additionally, the kernels and pooling layers of the convolution are
adapted to be three-dimensional. The pooling layers are chosen to only pool the representation on an
image-to-image basis. Otherwise, the number of input frames is limited by the amount of vertical layers.
Tab. ?? shows the magnitude of the chosen parameters.

Parameter Value

Sampling Rate 3
Number of Images 5
Batch Size 1
Learning Rate 0.001
Momentum 0.8
Linear Learning Rate Scheduler 1.0 to 0.1
Epochs 1
Maximum Iterations 2000

Table 4.4: The values of the chosen parameters during training are shown in the table.

The hyperparameters used during the training of the model are shown in Table 4.4. The image se-
quences are loaded in input samples of ng = 5 consecutive images. Due to the high frame rate, the
changes between images appear small, diminishing the possible positive impact of including movement
information in a neural network. A sampling rate of fs = 3 is chosen; meaning that every third image is
included in the input data.

4.4 Camera Pose Regression as an Additional Task

Fig. 4.13 shows a high level of model representation. The general structure is an encoder-decoder
model, where the encoder generates a more semantically compressed feature vector, z, from the in-
coming video. The vector z is expected to contain higher-level information about the image sequence.
Using this information, along with the skip layers from previous convolutional layers, a video decoder
outputs a sequence of segmentation masks. As established earlier, the movement of the camera has
a direct impact on the location of objects in the frame. It might therefore be beneficial for the model
to build an internal representation of the camera pose. The pose regressor module uses the hidden
representation z, to predict certain parameters of the camera movement. Alternatively, predicting both
the segmentation masks and the camera pose parameters, z should contain information on both seg-
mentation and camera pose, through the backpropagation of errors in the training step.

The regressor module is a Feed Forward Neural Network (FFN), which takes as input a flattened version
of the latent representation z. The size of z, depending on the specific dimensions of the convolutional
and input layers, can range to 100,000s of parameters for the single layer. Consequently, the change
given by an update through the gradient can increase the magnitude of unstable regions, disturbing the

29

Figure 4.13: Simplified model of the pose regression approach. A series of input images is transformed
into a latent representation z using a video encoder. This representation z is then both used to generate
a series of segmentation maps and for camera pose regression, by the corresponding decoder blocks.

training. During experiments, downsampling the representation z to a constant length dim(zr) = (1000,)

led not only to memory benefits through a decreased parameter count of the regressor but also to results
with higher accuracy after training.

The trajectory of a camera directly impacts the movements of objects in the camera frame. Linear and
angular velocity values affect the change in vessel location in several images. Similarly, the absolute
values of the pitch and roll angles, as well as the height of the camera, give information on the positions
of the object and the horizon. Throughout this thesis, a combination of these values is predicted through
the network as an additional task, which we expect to be beneficial for the model to predict.

For training, the following composed loss function is used:

L = Lce + �1 Ldice + �2 Lpose . (4.5)

The goal is to update the segmentation and pose losses simultaneously, using the terms Lce for cross-
entropy, Ldice and Lpose. Factors �i are multiplied by the dice score Ldice and the pose loss Lpose,
to balance the ambiguities of the initial scale and to have a factor determining the relative importance
between the two losses. During training, these were set to �1 = 1.0 and �2 = 0.5 to reflect the importance
of the segmentation task.

For segmentation, there are multiple commonly used loss functions. Binary cross entropy, dice, L1, and
L2 losses are the most widely used. To remain consistent with implementation of the U-Net architecture,
a cross-entropy loss is used:

Lce = � 1

N

NX

i=1

pi log(p̂i) + (1� pi) log(1� p̂i) , (4.6)

where pi refers to the ground truth target value of a pixel i, and p̂i refers to the model output logit.
In general, binary cross-entropy loss is used as a measure of the difference between two probability
distributions for classification problems [57]. In this case, we classify between two different categories;
boats and non-boats. This can be easily extended by defining categories for different types of ships, the
horizon, or land.

The dice loss is given as follows:

30

Ldice = 1� 2 ·
1 +

PN
i ŷiyi

1 +
PN

i ŷ
2
i +

PN
i y

2
i

, (4.7)

where xi and yi describe the output of the model and the ground truth target label for a pixel i, respec-
tively. Through the additional terms of 1 in the numerator and denominator, the dice score is bounded to
the interval (0, 0), where a higher score indicates a worse quality segmentation. By inverting the score
and repositioning it in the same interval, a dice loss Ldice is found, which rewards a high overlap between
the predictions and the ground truth values. Although the value IoU is often used as a quality indica-
tor for segmentation, it is not differentiable, making it impossible to use in a deep learning-influenced
backpropagation setting.

Figure 4.14: The effect of dice loss factors on the average dice score of the model over training

Fig. 4.14 shows the influence of including dice loss in the performance of a model during a training
run by varying the magnitude of the prefactor �1. The metric used for comparison is the average dice
loss, further explained in Sect. 5.3. It can be seen that including the dice loss significantly improves the
performance of the model. Furthermore, the influence of the prefactor �1 is small. During subsequent
training runs, the factor is therefore set to �1 = 1.

Lastly, the pose loss is defined, as seen in the following equation:

Lpose =
X

i

�1 kx̂i � xik2 + �2 kqi �
q̂i

kq̂ik
k2 (4.8)

where, similar to Eq. 4.4, x̂i and q̂i describe the predicted linear and angular quantity, respectively. The
ground truth values are shown without the accent, and k · k2 indicates the L2-norm. Here, both linear
and angular values are calculated separately and summed to resolve issues in scale between the two
measures. The origin of this loss function lies in the PoseNet loss [56], where the absolute location and
angles of the camera are predicted. In our scenario, multiple combinations between absolute locations,
linear velocities, as well as different angular representations, such as Euler angles and quaternions, are
experimented with.

Fig. 4.15 shows an exemplary loss curve during training for binary cross-entropy Lce. A fast decrease

31

is observable; the loss decreases consistently until the end of training at 1500 iterations. The dice loss
Ldice similarly decreases over the training cycle. The variation in loss magnitude over the training cycle
is big; however, earlier experiments, as shown in Fig. 4.14, confirm the utility in addition to using the dice
loss.

Figure 4.15: Loss Curve of the binary cross-entropy and dice losses.

Fig. 4.16 shows the evolution of the adapted PoseNet loss Lpose using only the angular velocity values
over 1500 iterations. A sudden increase of the loss can be observed, until it steadily decreases. To
better illustrate the scale, the figure is shown with a logarithmic scale. The error remains steady after
around 200 iterations, at a value of 10�2.

Figure 4.16: Loss Curve of the adapted PoseNet loss: Linear Scale (left), Logarithmic scale (right)

Different camera pose regression models are compared in Fig. 4.17. During an exemplary training run,
every 50 iterations, the average dice score was calculated based on image input from the test set. First,
parameters that are relevant to explaining movement in-between frames were used in the loss function.
These include the height, rotational angles, and angular and linear velocities of the camera. Since the
movement of segmentation maps in the output more directly corresponds to changes in rotation and
location, the second model in green only includes linear and angular velocities in the pose loss function.
Finally, only angular velocities were included. Roll, pitch, and yaw velocities have a big influence on the
location of the maritime vehicles in the image, especially at close distances. As can be seen in Fig. 4.17,
only including this information aides the network the most in representing motion.

To show the improvement in angular prediction in the test set, evaluation runs were performed during
training every 50 iterations, as shown in Fig. 4.18. In blue, the increase in segmentation quality is

32

Figure 4.17: A comparison between different camera pose configurations during training. Including all
investigated parameters seems to perform the worst, while only including angular velocity values is the
best. The models are evaluated every 50 iterations on the test set.

Figure 4.18: The evaluation of the dice score during training is shown above, for the camera pose
regression model predicting angular velocities.

seen on the test set, as indicated by the increase in the average dice score when evaluating over 100
iterations test video samples. The difference in angular velocity is shown in Fig. 4.19 in yellow, where a
clear learning effect is observed. After the specified iterations, errors below 0.1 rad/s are seen. The next
section discusses a different pretext task that aims at incorporating camera pose information differently.

33

Figure 4.19: The average angular velocity difference is shown during training. The shown model uses
the camera pose regression predicting angular velocities as an additional task.

4.5 Motion Flow as an Additional Task

Similarly to Sect. 4.4, the additional task is devised as a side branch of the U-Net, where the hidden
representation z is used for the prediction of the motion field. It is theorized that the use of camera
motion in the form of a motion field gives a more informationally rich representation for the model to
learn from, due to the large amount of data contained in each field. Since directly regressing camera
motion data from the compressed representation z did not seem to create a motion representation in the
model, this alternative path is chosen. Fig. 4.20 shows the adaptation of the model for the prediction of
motion flow.

Figure 4.20: Simplified model of the motion flow prediction approach. A series of input images is trans-
formed into a latent representation z using a video encoder. This representation z is then both used to
generate a series of segmentation maps and motion fields, by the corresponding decoder blocks.

Ground truth information on the motion field is not available from the video data. By making geometric
idealizations and using the camera motion information obtained in Sect. 4.1, ground-truth motion fields
are created. Due to the negligible height of waves, as well as backgrounds which mainly consist of the
horizon, the ocean is modeled as a plane at z = 0. The points in the plane, when seen from a mobile
camera, create a motion field.

The motion flow embeds information about the movement of the camera. Given the points in the camera

34

frame, their apparent movement due to the motion of the camera is to be investigated to obtain the
motion flow of the image. The motion flow of the scene consists of the difference between the location
of pixels in the time step t, compared to the subsequent time step t + 1. Each pixel is first projected
back into the water plane z = 0 using the inverse homography matrix H

�1
t . After the movement of the

camera between subsequent frames, the change in location and orientation of the camera changes the
projection matrix Pt+1, as well as the corresponding homography Ht+1, defined in Eq. 4.9. Now each of
the original pixels in the three-dimensional space is projected to the camera to obtain the final location of
the pixels. Using the projection matrix described in Sect. 2.7, the plane points can be matched to pixels
in the camera frame.

Figure 4.21: Backprojecting the camera pixels: The trajectory of the camera, along with sampled camera
orientations are shown. The corresponding backprojection of camera frame pixels into three-dimensional
space is indicated by the blue/green pixels. Pixels get progressively lighter, throughout the whole tra-
jectory. The location of pixels in space is projected into the next state of the camera, allowing for the
calculation of motion flow throughout a video.

The following equation describes the projection of camera pixels into three-dimensional space:

�

2

64
xt

yt

1

3

75 = H
�1
t · xc =

2

64
h11 h12 h14

h21 h22 h24

h31 h32 h34

3

75

�1

t

2

64
ut

vt

1

3

75 , (4.9)

where Ht describes the homography matrix at time t, considering the geometric constraint. The variable
xc describes the location of the pixel in the camera frame. The parameters hij describe the projection
matrix parameters. Due to the geometric constraint of lying on the ground plane, the third column of the
projection matrix is be removed to create the homography matrix Ht; all points lie on zt = 0. To obtain

35

Figure 4.22: The trajectories of videos 10, 12, and 15 are shown above. In addition, the backprojection
of pixels from the camera view onto the ocean plane is indicated by the blue/green dots. Dark pixels
indicate the backprojection towards the beginning of the trajectory, whereas lighter colors indicate a later
projection.

the location of points back in the camera frame, the projection is applied in the next timestep.

�

2

64
ut+1

vt+1

1

3

75 = Pt+1

2

66664

xt

yt

zt = 0

1

3

77775
, (4.10)

The motion flow is finally obtained as follows,

"
umotion,t

vmotion,t

#
=

"
ut+1

vt+1

#
�
"
ut

vt

#
, (4.11)

where the same points in space are projected differently from the camera frame, due to the motion of
the camera between time t and t+ 1. The difference in location results in the motion flow.

The upper procedure thus implicitly encodes a number of parameters of the camera movement. In
particular, each projection matrix is calculated using the location and angular orientation of the camera.
Due to the change in time between the backprojection and reprojection, the linear and angular velocities
are implicitly encoded in the result.

Fig. 4.21 shows a visualization of the process. The trajectory and orientation of the camera are shown
for the third video in the dataset. Each point of the current frame is projected into three-dimensional
space, where the backprojected points get increasingly more light throughout the sequence. In timestep
t + 1, the location of these points in the new camera frame is recorded to calculate the optical flow.
Note that the projections are subsampled, to obtain a clear visualization of the process; To obtain the
motion field data, this process is executed for each time pixel and step t. Several other trajectories with
exemplary backprojections are shown in Fig. 4.22.

Fig. 4.23 shows an example of the motion flow obtained. A rotating motion of the camera can be clearly
observed. As a confirmation, the ground truth input images are shown on the side. To improve the
visualization of the motion, the second image was chosen to be approximately one second after the
initial one.

For the prediction of motion fields, several loss functions may be used. During this thesis, the focus was
on the L2 error. Geometrically, it can be interpreted as the square of differences between pixel velocities

36

Figure 4.23: Example of Motion Flow: The first image shows the difference between pixels at time t� 1
and t for video 3, frame 591. The next two images show the movement of the camera; note that for
visibility, frames 591 and 620 are shown.

and can be expressed as follows:

Lmotion flow = kVgt � V̂ k2 , (4.12)

where Vgt and V̂ refer to the ground truth and estimated motion fields, respectively, and k · k2 is the L2
norm. Specifically, the dimension of the motion field vectors here is (2, T,H,W), referring to the time,
height, and width dimensions of the image. The horizontal and vertical components of the flow vector
are encoded in the first dimension of the motion field vector.

The decoder module generates motion fields using the latent representation z as input. The choice
of decoder has a large influence on the quality of the output. During this thesis two approaches were
attempted: First, we reuse the video segmentation branch already provided through the U-Net imple-
mentation. To this end a copy of the deconvolutional branch, defined in Tab. ?? is made, while replacing
the final output dimensions with dout = 2, to calculate (umotion, vmotion). Given the existing implemen-
tation and due to the combination between high-level representations and skip-connections, along with
the locality of the motion field data, it is reasonable to attempt.

Second, an existing optical flow CNN, FlowNet, was used [58]. It consists of a contracting and expending
part that predicts the optical flow between two images. In this context, FlowNet could be used in two
different ways. The first approach applies it directly to the latent representation z and scales the results
to the input image dimensions. The low rank of the desired output, given the comparatively low number
of parameters needed to generate a motion field, made the upscaling plausible.

A representative loss curve from training for the use of the 3D U-Net is shown below in Fig. 4.24. The
model cannot predict the motion flow of the image series used as input. The loss is not decreasing
and seems to show large variations in some training iterations. Fig. 4.25 shows an example of the
prediction. The first two of the five predictions are depicted below, while the ground truth is shown on
top. The rotating motion of the camera is clearly seen; however, the model is unable to predict this result.

37

Figure 4.24: Loss curve during motion field prediction: The loss has a large variance, while not decreas-
ing throughout the training process, as seen on the left.

Figure 4.25: An example of the prediction, with the corresponding ground truth, is shown to the right.

38

Chapter 5

Results and Evaluation

This chapter gives an overview of exemplary outputs of the 3D U-Net and Mask2Former models, in-
cluding the adaptations described in this work. A series of evaluation runs during training is presented
as well as a comparison between the models that were trained in previous sections. Specifically, the
addition to the Mask2Former model, as well as the extension of the 3D U-Net with the additional task
of pose regression, and motion flow prediction are shown. Finally, a statistical evaluation based on
Bayesian t-testing is performed for the most promising model, namely the 3D U-Net that predicts the
angular velocity as an additional task.

5.1 Experimental design

The hyperparameters used for training the Mask2Former and 3D-U-Net models are seen in Table 4.2
and Table 4.4 respectively. Similarly, the structure used for the 3D-U-Net is shown in Table ??.

The models are first trained on a subset of available data, the training set, comprising 80% of the videos,
and then evaluated on the test set, consisting of the remaining 20%. The following plots show the
model evaluations in one specific train/test split. Specifically, the following split was tested: The videos
chosen for the train set are (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25) and for the test
set (2, 13, 14). Due to missing simulation data, video 20 could not be used for the extraction of camera
movement and was therefore excluded from training.

To illustrate the change in model performance over training, evaluation runs are performed on the test
set for every fixed number of iterations, here chosen to be feval = 50, that is, during the maximum
iterations of nmax = 2000, 40 evaluation runs are performed. Each evaluation run consists of predicting
segmentation masks for a number neval = 100 of video volumes, and then obtaining the dice score
with respect to the ground truth masks. Averaging these dice scores gives a metric for the prediction
performance of the model on the test set.

5.2 Results

Fig. 5.1 shows an example of the output of the 3D U-Net model, trained with the added pose regressor
predicting angular velocity values. On the left-hand side, the logits of the model are seen. This example
shows clear vessel-shaped activations, while the rest of the image is deactivated. To generate seg-

39

mentation masks for the model estimation, a sigmoid function is applied, to force the output to a range
between (0.0, 1.0). To obtain the final masks, a threshold of t = 0.5 is applied. The third image shows
the first input image of the sequence, depicting two orange boats. The ground truth segmentation mask
is shown to the right.

Figure 5.1: Results showing the prediction and ground truth for the first image of a prediction using the
pose model trained with angular velocities. From left to right: Logits, predicted segmentation mask, input
image, and ground truth.

An exemplary output of the Mask2Former model with the additional task of pose regression for angular
velocities is seen in Fig. 5.2. The segmentation mask, shown in pink, is displayed on top of the boat. The
label shows a classification score of 100% since we only accept boats as a category for the classification.

5.3 Evaluation

5.3.1 Mask2Former Evaluation

Fig. 5.3 shows the comparison between the Mask2Former model with and without the additional pose
loss function and without pretraining. Their difference in performance during the training run, as seen
in Fig. 5.3, does not appear to be significant. A further evaluation is performed using the AP scores, to
judge whether the modified version outperforms the original Mask2Former.

Evaluating the model in terms of AP scores reveals the scores shown in Tab.5.1. The original transformer
model still outperforms the extended model.

40

Figure 5.2: An image depicting the results from the video segmentation of the Mask2Former with the
additional task of camera pose regression of angular velocity values.

Mask2Former Mask2Former + Pose

AP Score 41.68% 35.55 %

Table 5.1: No Pose: Cross-validation results for cross-validation runs and five folds

Figure 5.3: Comparison between the original Mask2Former and the modified one for the first 2000
training iterations for semantic segmentation. The difference in evaluation accuracy is negligible. The
IoU scores are evaluated every 50 iterations on the test set.

5.3.2 Comparison between the 3D U-Net and the Mask2Former

For comparison, Fig. 5.4 shows the performance of a three-dimensional U-Net model. It can be seen
that the performance of the U-Net increases faster. This is believed to be due to the comparably low
parameter count, which makes it easier for the model to learn this dataset. It is expected that, given
enough training data, the transformer model will overtake the U-Net. Details on the implementation of

41

Figure 5.4: Comparison between the original Mask2Former and a 3D-U-Net. The IoU scores are evalu-
ated every 50 iterations on the test set.

the 3D U-Net are given in Sect. 4.3.

The Mask2Former thus reaches limits with regard to training data and the amount of computational
resources required for training and inference of the Mask2Former model. Furthermore, given the sce-
narios for maritime surveillance outlined in Sect. 1, inference on aerial vehicles becomes difficult, given
the need for large transformer model sizes. The rest of this thesis thus explores the possibility of using
camera movement data in encoder-decoder models, such as the three-dimensional U-Net. To this end,
a multitask learning approach is used.

5.3.3 3D U-Net Models Evaluation and Comparison - Pose regression and Orig-

inal Models

The following figures show comparisons between the trained 3D U-Net models.

Figure 5.5: Comparison between the unmodified 3D U-Net model and the model including pose regres-
sion during training.

42

Fig. 5.5 shows a comparison between the original 3D U-Net model and the model that includes the pose
loss based on the angular velocities. Again, evaluation runs are performed every 50 iterations during
the training of either model. The accuracy of both models seems to be similar; however, towards the
end of the training run, the unmodified 3D U-Net shows a slight increase in accuracy. This suggests that
including a prediction of the camera pose as a simple regression task on the compressed representation
does not improve the model performance for these particular training data.

Figure 5.6: Evaluation runs over training for different models.

Fig. 5.6 shows a comparison over one training run between all 3D U-Net-based models that were in-
vestigated. As can be seen, the addition of movement losses in general does not have a major impact
on the performance of the models. Slight increases and decreases in accuracy regarding the No-Pose
model can be seen at the beginning and end of training, respectively.

5.3.4 Bayesian t-Testing

When comparing the accuracy of neural networks on video segmentation tasks, an accurate evaluation
is important. In the deep learning paradigm, the performance of an approach is heavily dependent on
training and test data. For this purpose, the MarSyn videos were randomly divided into an 80/20 train
test split. Due to the arbitrary nature of splitting data like this, k-fold cross-validation is used to obtain a
more statistically significant result. In m = 4 iterations, the input videos were divided into k = 5 different
groups, while keeping the same random seed. Each of these groups was once used for evaluation while
training with the rest. This split alleviates concerns of arbitrariness when working with one dataset.

The results of the k-fold cross-validation are shown in the following tables. Tab. 5.2 and Tab. 5.3 show
the average dice scores obtained over subsequent runs of 100 video fragments on the relevant test set,
for the pose regression and non-pose regression model respectively. When comparing averages, the
non-pose model seems to perform slightly better. A detailed statistical test is shown below.

As shown in Sect. 2.9.5, correlated Bayesian t-tests are useful to compare the performance of different
classifiers. They actively give probabilities of one method surpassing the other. The following results
were obtained by evaluating the ensemble of run and fold accuracies obtained above;

43

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Run 1 0.665 0.809 0.722 0.708 0.770 0.735
Run 2 0.815 0.736 0.691 0.742 0.780 0.753
Run 3 0.669 0.723 0.789 0.706 0.777 0.733
Run 4 0.772 0.768 0.671 0.702 0.674 0.717

Overall Average 0.734

Table 5.2: Pose: Cross-validation results for four cross-validation runs and five folds

Run Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Run 1 0.689 0.792 0.721 0.699 0.785 0.737
Run 2 0.777 0.818 0.693 0.718 0.783 0.758
Run 3 0.661 0.706 0.774 0.744 0.778 0.733
Run 4 0.767 0.773 0.680 0.716 0.683 0.724

Overall Average 0.738

Table 5.3: No Pose: Cross-validation results for cross-validation runs and five folds

P (Pose > NoPose) = 0.17 ,

P (rope) = 0.51 ,

P (NoPose > Pose) = 0.32 ,

(5.1)

where each metric represents the probability that the performance of the new classifier will improve,
match, or worsen with respect to the old one. As can be seen from this analysis, the probability that both
classifiers have the same performance is the highest. Additionally, it is unlikely that the model including
camera pose outperforms the non-pose one.

Fig. 5.7 shows the process graphically. The probability density function shows the probability of a differ-
ence between the original and the pose model. The probabilities obtained in Eq. 5.1 can be graphically
interpreted as an integral over the appropriate sections of the probability density function.

44

Figure 5.7: Bayesian T Test comparing the average dice scores between the 3D-Unet with and without
the added pose loss. The yellow bars indicate the region of practical equivalence. A probability density
function of the difference between the NoPose and Pose model is shown. The probability of an improve-
ment is low, as indicated by the the small area on the left of the orange vertical line.

45

Chapter 6

Conclusion and Future Work

The following chapter gives a conclusion to the thesis work. Each approach is first summarized and then
discussed in brief. Finally, possible avenues for future work are discussed.

6.1 Conclusion

This work explored different approaches to using camera pose information to improve video segmen-
tation performance. Information on camera movement, in combination with high-quality segmentation
masks, is difficult to obtain, especially for specific scenarios, such as maritime surveillance. Simulation
data from a synthetic dataset, MarSyn, is therefore first extracted, to create ground-truth values for ref-
erence. Then, several approaches are tested to make neural networks predict these values, to improve
segmentation performance.

The first approach is described in Sect. 4.2, where a transformer-based model, the Mask2Former, was
explored. A branch was added to predict camera pose values to create internal representations of
camera motion, which might help improve the segmentation of maritime videos. The analysis shows
a decrease in performance compared to the original model. This is due to the inability of the model
to accurately predict camera motion using this branch. Due to the size of computational and data
resources necessary for transformer-based models to show good performance, smaller neural networks
are investigated.

Sect. 4.3 then shows the extension of a 3D U-Net with a camera pose regression decoder. The com-
pressed representation z created by the encoder-decoder architecture is fed into an FFN, to directly
predict camera pose parameters. Through the prediction of the camera movement solely from the repre-
sentation z, the model seeks an internal structure for movement. This additional information is theorized
to improve the quality of video segmentation. After testing the inclusion of several groups of parameters,
using only the values for angular velocity seems to be the most promising approach. However, statistical
tests, based on Bayesian T testing, reveal that it is unlikely to improve over the unmodified model.

Lastly, in Sect. 4.5, the prediction of the motion flow is used as a pretext task to include camera move-
ment in the 3D U-Net. Since the motion of the camera is inherently linked with the flow of pixels in a
scene, predicting these might also create internal representations for movement. Idealizations about the
scene were made, to obtain ground truth values for prediction, after which a second decoder of the 3D
U-Net started predicting the motion flow. During experiments on the MarSyn dataset, the model was
unable to accurately determine the motion flow given a series of subsequent images.

46

The inability of several different types of network to predict camera motion suggests the following pos-
sible findings. First, it is possible that the MarSyn dataset is not suitable to predict motion between
frames under the assumptions taken. The texture originating from waves in the ocean is a recurring
phenomenon that changes over time. Given that the majority of the image frame is composed of waves
and water, it is possible that deriving movement information is further made difficult.

6.2 Future Work

Possibilities for future work include the comparison of including camera pose-based losses for differ-
ent forms of neural networks. Since neural networks implicitly represent information in different ways,
contrasting the inclusion of camera movement representations might help to gain more insight into the
effectiveness of this approach. For example, long short-term memory (LSTMs) architectures may be
adapted to predict segmentation maps for video data. Similarly, obtaining real-life data from missions
using aerial vehicles presents an avenue for adapting these systems to realistic use cases. Although
the collection of these data is time-consuming, the benefits of obtaining information in these scenarios
will definitely improve model accuracy. This would ensure that the data used for model training closely
corresponds to the real-life use case. For example, noise-related problems could be taken into account
during the training of the new model.

6.3 Resources

The data and code used in the experiments for this thesis are openly available to promote transparency
and reproducibility. The code used is available at the following links:

For obtaining the simulation files, as well as the video data, along with the ground truth, the following
address is useful:

https://vislab.isr.ist.utl.pt/marsyn-dataset/

The modified version of the Mask2Former is available at the following address:

https://github.com/majvie/video_segmentation

The data processing to obtain camera movement data, as well as the modified versions of the 3D U-Nets
are available in the following repository:

https://github.com/majvie/ship_segmentation

For setup and usage instructions, refer to the README files in the repositories. Contact the author at
maximilian.vieweg@gmail.com for further assistance.

47

https://vislab.isr.ist.utl.pt/marsyn-dataset/
https://github.com/majvie/video_segmentation
https://github.com/majvie/ship_segmentation
mailto:maximilian.vieweg@gmail.com

Bibliography

[1] R. Ribeiro, G. Cruz, J. Matos, and A. Bernardino, “A Data Set for Airborne Maritime Surveillance
Environments,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, pp. 2720–
2732, Sept. 2019.

[2] M. Ribeiro, B. Damas, and A. Bernardino, “Real-Time Ship Segmentation in Maritime Surveillance
Videos Using Automatically Annotated Synthetic Datasets,” Sensors, vol. 22, no. 21, 2022.

[3] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analy-
sis, Applications, and Prospects,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 33, pp. 6999–7019, Dec. 2022.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image
Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015

(N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds.), Lecture Notes in Computer Science,
(Cham), pp. 234–241, Springer International Publishing, 2015.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin,
“Attention is All you Need,” in Advances in Neural Information Processing Systems, vol. 30, Curran
Associates, Inc., 2017.

[6] Y. Wang, Z. Xu, X. Wang, C. Shen, B. Cheng, H. Shen, and H. Xia, “End-to-End Video Instance
Segmentation with Transformers,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), (Nashville, TN, USA), IEEE, June 2021.

[7] R. Szeliski, Computer Vision: Algorithms and Applications. Berlin, Heidelberg: Springer-Verlag,
1st ed., 2010.

[8] D. Rao, P. K, R. Singh, and V. J, “Automated segmentation of the larynx on computed tomography
images: a review,” Biomedical Engineering Letters, vol. 12, pp. 1–9, Mar. 2022.

[9] X. Chen, X. Wu, D. K. Prasad, B. Wu, O. Postolache, and Y. Yang, “Pixel-Wise Ship Identifica-
tion From Maritime Images via a Semantic Segmentation Model,” IEEE Sensors Journal, vol. 22,
pp. 18180–18191, Sept. 2022.

[10] N. Tsolakis, D. Zissis, S. Papaefthimiou, and N. Korfiatis, “Towards AI driven environmental sus-
tainability: an application of automated logistics in container port terminals,” International Journal

of Production Research, vol. 60, pp. 4508–4528, July 2022. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/00207543.2021.1914355.

[11] A. Sandkamp, V. Stamer, and S. Yang, “Where has the rum gone? The impact of maritime piracy
on trade and transport,” Review of World Economics, vol. 158, pp. 751–778, Aug. 2022.

48

[12] D. K. Prasad, D. Rajan, L. Rachmawati, E. Rajabally, and C. Quek, “Video Processing From Electro-
Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey,” IEEE

Transactions on Intelligent Transportation Systems, vol. 18, no. 8, pp. 1993–2016, 2017.

[13] G. Cruz and A. Bernardino, “Learning Temporal Features for Detection on Maritime Airborne Video
Sequences Using Convolutional LSTM,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, pp. 6565–6576, Sept. 2019.

[14] M. M. Marques, P. Dias, N. P. Santos, V. Lobo, R. Batista, D. Salgueiro, A. Aguiar, M. Costa,
J. E. Da Silva, A. S. Ferreira, J. Sousa, M. De Fatima Nunes, E. Pereira, J. Morgado, R. Ribeiro,
J. S. Marques, A. Bernardino, M. Grine, and M. Taiana, “Unmanned aircraft systems in maritime
operations: Challenges addressed in the scope of the SEAGULL project,” in OCEANS 2015 -

Genova, (Genova, Italy), pp. 1–6, IEEE, May 2015.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov. 1998.

[16] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image Segmen-
tation Using Deep Learning: A Survey,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 44, pp. 3523–3542, July 2022. Conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[17] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Networks for Volumet-
ric Medical Image Segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV),
(Stanford, California, USA), pp. 565–571, 2016.

[18] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 39, no. 12, pp. 2481–2495, 2017.

[19] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers in Vision: A
Survey,” ACM Comput. Surv., vol. 54, Sept. 2022. New York, NY, USA.

[20] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep Learning for
Generic Object Detection: A Survey,” International Journal of Computer Vision, vol. 128, pp. 261–
318, Feb. 2020.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks,” in Advances in Neural Information Processing Systems, vol. 28, Curran
Associates, Inc., 2015.

[22] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation,” (San Francisco, CA, USA), pp. 580–587, 2014.

[23] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 1440–1448, Dec. 2015. ISSN: 2380-7504.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time
Object Detection,” (San Juan, PR, USA), pp. 779–788, 2016.

[25] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm Developments,” Procedia

Computer Science, vol. 199, pp. 1066–1073, 2022.

49

[26] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT++ Better Real-Time Instance Segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 1108–1121, Feb.
2022.

[27] T. Zhou, F. Porikli, D. J. Crandall, L. Van Gool, and W. Wang, “A Survey on Deep Learning Technique
for Video Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
pp. 7099–7122, June 2023.

[28] J. Wu, Q. Liu, Y. Jiang, S. Bai, A. Yuille, and X. Bai, “In Defense of Online Models for Video Instance
Segmentation,” in Computer Vision – ECCV 2022 (S. Avidan, G. Brostow, M. Cissé, G. M. Farinella,
and T. Hassner, eds.), (Cham, Switzerland), pp. 588–605, Springer Nature Switzerland, 2022.

[29] R. Caruana, “Multitask Learning,” Machine Learning, vol. 28, pp. 41–75, July 1997.

[30] B. Horn, Robot vision. The MIT electrical engineering and computer science series, Cambridge,
Mass. : New York: MIT Press ; McGraw-Hill, mit press ed ed., 1986.

[31] F. Van Beers, A. Lindström, E. Okafor, and M. Wiering, “Deep Neural Networks with Intersection
over Union Loss for Binary Image Segmentation:,” in Proceedings of the 8th International Confer-

ence on Pattern Recognition Applications and Methods, (Prague, Czech Republic), pp. 438–445,
SCITEPRESS - Science and Technology Publications, 2019.

[32] R. Zhao, B. Qian, X. Zhang, Y. Li, R. Wei, Y. Liu, and Y. Pan, “Rethinking Dice Loss for Medical
Image Segmentation,” in 2020 IEEE International Conference on Data Mining (ICDM), (Sorrento,
Italy), pp. 851–860, IEEE, Nov. 2020.

[33] A. Benavoli, G. Corani, J. Demsar, and M. Zaffalon, “Time for a Change: a Tutorial for Comparing
Multiple Classifiers Through Bayesian Analysis,” Journal of Machine Learning Research, July 2017.

[34] G. Corani and A. Benavoli, “A Bayesian approach for comparing cross-validated algorithms on
multiple data sets,” Machine Learning, vol. 100, pp. 285–304, Sept. 2015.

[35] L. Yang, Y. Fan, and N. Xu, “Video Instance Segmentation,” (Seoul, Korea), pp. 5188–5197, 2019.
Proceedings of the IEEE/CVF International Conference on Computer Vision.

[36] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention Mask Transformer
for Universal Image Segmentation,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), (New Orleans, LA, USA), pp. 1280–1289, IEEE, June 2022.

[37] L. Ke, M. Danelljan, H. Ding, Y.-W. Tai, C.-K. Tang, and F. Yu, “Mask-Free Video Instance Segmen-
tation,” pp. 22857–22866, 2023. Vancouver, BC, Canada.

[38] J. Wu, Y. Jiang, S. Bai, W. Zhang, and X. Bai, “SeqFormer: Sequential Transformer for Video
Instance Segmentation,” in Computer Vision – ECCV 2022 (S. Avidan, G. Brostow, M. Cissé, G. M.
Farinella, and T. Hassner, eds.), vol. 13688, pp. 553–569, Cham, Switzerland: Springer Nature
Switzerland, 2022. Series Title: Lecture Notes in Computer Science.

[39] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” (Cambridge, MA, USA), pp. 2961–
2969, 2017. Cambridge, MA, USA.

[40] T. Albrecht, G. A. West, T. Tan, and T. Ly, “Visual Maritime Attention Using Multiple Low-Level
Features and Naı̈ve Bayes Classification,” in 2011 International Conference on Digital Image Com-

puting: Techniques and Applications, pp. 243–249, Dec. 2011.

50

[41] Z. Shao, L. Wang, Z. Wang, W. Du, and W. Wu, “Saliency-Aware Convolution Neural Network
for Ship Detection in Surveillance Video,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 30, pp. 781–794, Mar. 2020.

[42] Y. Bazi and F. Melgani, “Convolutional SVM Networks for Object Detection in UAV Imagery,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 56, pp. 3107–3118, June 2018.

[43] C. Pires, B. Damas, and A. Bernardino, “An Efficient Cascaded Model for Ship Segmentation in
Aerial Images,” IEEE Access, vol. 10, pp. 31942–31954, 2022.

[44] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9,
pp. 1735–1780, Nov. 1997.

[45] D. Pathak, R. Girshick, P. Dollar, T. Darrell, and B. Hariharan, “Learning Features by Watching
Objects Move,” in Venice, Italy, pp. 2701–2710, 2017.

[46] P. Tokmakov, K. Alahari, and C. Schmid, “Learning Motion Patterns in Videos,” (Venice, Italy),
pp. 3386–3394, Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017.

[47] P. Agrawal, J. Carreira, and J. Malik, “Learning to See by Moving,” (Santiago, Chile), pp. 37–45,
Proceedings of the IEEE International Conference on Computer Vision, 2015.

[48] L. Jing, X. Yang, J. Liu, and Y. Tian, “Self-Supervised Spatiotemporal Feature Learning via Video
Rotation Prediction,” Apr. 2019. arXiv:1811.11387 [cs].

[49] F.-E. Wang, H.-N. Hu, H.-T. Cheng, J.-T. Lin, S.-T. Yang, M.-L. Shih, H.-K. Chu, and M. Sun, “Self-
supervised Learning of Depth and Camera Motion from 360 degree Videos,” in Computer Vision

– ACCV 2018 (C. Jawahar, H. Li, G. Mori, and K. Schindler, eds.), Lecture Notes in Computer
Science, (Cham), pp. 53–68, Springer International Publishing, 2019.

[50] A. Faktor and M. Irani, “Video Segmentation by Non-Local Consensus Voting,” 2014.

[51] D. D. Bloisi, L. Iocchi, A. Pennisi, and L. Tombolini, “ARGOS-Venice Boat Classification,” in 2015

12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),
(Karlsruhe, Germany), pp. 1–6, IEEE, Aug. 2015.

[52] L. A. Varga, B. Kiefer, M. Messmer, and A. Zell, “SeaDronesSee: A Maritime Benchmark for Detect-
ing Humans in Open Water,” in Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision (WACV), (Waikoloa, Hawaii), pp. 2260–2270, Jan. 2022.

[53] M. Jeff Faudi, “Airbus Ship Detection Challenge,” 2018.

[54] M. Kristan, V. Sulić Kenk, S. Kovačič, and J. Perš, “Fast Image-Based Obstacle Detection From
Unmanned Surface Vehicles,” IEEE Transactions on Cybernetics, vol. 46, pp. 641–654, Mar. 2016.

[55] B. Bovcon, R. Mandeljc, J. Perš, and M. Kristan, “Stereo obstacle detection for unmanned surface
vehicles by IMU-assisted semantic segmentation,” Robotics and Autonomous Systems, vol. 104,
pp. 1–13, 2018.

[56] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A Convolutional Network for Real-Time 6-DOF
Camera Relocalization,” (Santiago, Chile), pp. 2938–2946, 2015.

51

[57] E. Gordon-Rodriguez, G. Loaiza-Ganem, G. Pleiss, and J. P. Cunningham, “Uses and Abuses of
the Cross-Entropy Loss: Case Studies in Modern Deep Learning,” pp. 1–10, PMLR, Feb. 2020.
ISSN: 2640-3498.

[58] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. V. D. Smagt, D. Cremers, and
T. Brox, “FlowNet: Learning Optical Flow with Convolutional Networks,” in 2015 IEEE International

Conference on Computer Vision (ICCV), (Santiago), pp. 2758–2766, IEEE, Dec. 2015.

52

Appendix A

Appendix chapter

A.1 Camera Trajectories

The following figures show the camera trajectories collected as well as the camera orientation on each
video of the dataset. Video 20 is omitted due to corrupted simulation data.

Figure A.1: The trajectory of the camera for video 1 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 1 are shown.

Figure A.2: The trajectory of the camera for video 2 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 2 are shown.

53

Figure A.3: The trajectory of the camera for video 3 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 3 are shown.

Figure A.4: The trajectory of the camera for video 4 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 4 are shown.

Figure A.5: The trajectory of the camera for video 5 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 5 are shown.

54

Figure A.6: The trajectory of the camera for video 6 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 6 are shown.

Figure A.7: The trajectory of the camera for video 7 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 7 are shown.

Figure A.8: The trajectory of the camera for video 8 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 8 are shown.

55

Figure A.9: The trajectory of the camera for video 9 of the dataset is shown on the left. To illustrate the
images taken along the trajectory, images Nr. 0 and Nr. 500 from video 9 are shown.

Figure A.10: The trajectory of the camera for video 10 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 10 are shown.

Figure A.11: The trajectory of the camera for video 11 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 11 are shown.

56

Figure A.12: The trajectory of the camera for video 12 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 12 are shown.

Figure A.13: The trajectory of the camera for video 13 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 13 are shown.

Figure A.14: The trajectory of the camera for video 14 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 14 are shown.

57

Figure A.15: The trajectory of the camera for video 15 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 15 are shown.

Figure A.16: The trajectory of the camera for video 16 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 16 are shown.

Figure A.17: The trajectory of the camera for video 17 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 17 are shown.

58

Figure A.18: The trajectory of the camera for video 18 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 18 are shown.

Figure A.19: The trajectory of the camera for video 19 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 19 are shown.

Figure A.20: The trajectory of the camera for video 21 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 21 are shown.

59

Figure A.21: The trajectory of the camera for video 22 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 22 are shown.

Figure A.22: The trajectory of the camera for video 23 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 23 are shown.

Figure A.23: The trajectory of the camera for video 24 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 24 are shown.

60

Figure A.24: The trajectory of the camera for video 25 of the dataset is shown on the left. To illustrate
the images taken along the trajectory, images Nr. 0 and Nr. 500 from video 25 are shown.

61

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Problem Definition
	Challenges
	Aims and Objectives
	Contribution

	Background
	Convolutional Neural Networks
	Transformers
	Architecture

	Object Detection
	Faster - RCNN
	YOLO

	Image Segmentation
	YOLACT++

	Video Segmentation
	Multitask Learning
	Projection Matrix
	Motion Field
	Evaluation of Segmentation Methods
	Intersection over Union
	Dice Score
	Precision and Recall
	AP Score
	Bayesian Testing — Region of Practical Equivalence

	State-of-the-Art
	Video Segmentation
	Detection and Segmentation of Marine Vessels
	Learning of Movement
	Maritime Video Segmentation Datasets
	Literature Gaps

	Methodology
	MarSyn Dataset
	Extracting the Camera Pose from the MarSyn Dataset

	Mask2Former and Camera Pose Regression
	Multitask Learning Approach
	Camera Pose Regression as an Additional Task
	Motion Flow as an Additional Task

	Results and Evaluation
	Experimental design
	Results
	Evaluation
	Mask2Former Evaluation
	Comparison between the 3D U-Net and the Mask2Former
	3D U-Net Models Evaluation and Comparison - Pose regression and Original Models
	Bayesian t-Testing

	Conclusion and Future Work
	Conclusion
	Future Work
	Resources

	Bibliography
	Appendix chapter
	Camera Trajectories

