
Autoregressive 3D Scene Reconstruction
with Structured Data Models

Maria Saleem

Master Thesis
Erasmus Mundus Master in

Marine and Maritime Intelligent Robotics
Universitat Jaume I

October 22, 2024

Supervised by:

Prof. Lledó Museros Cabedo (Universitat Jaume I)
Abdelrhman Bassiouny (IAI, University of Bremen)
Prof. Michael Beetz, PhD. (IAI, University of Bremen)

http://creativecommons.org/licenses/by-nc-sa/3.0/

To my parents for their endless love and support....

Acknowledgments

First, this thesis would not have been feasible without the help, support, guidance, and
encouragement of so many remarkable individuals who had been with me throughout
this academic journey.

Above all, I would like to express my deepest gratitude to my supervisor Prof.
Michael Beetz from the Institute of Artificial Intelligence of the University of Bremen for
this great opportunity for a master’s thesis in such a stimulating environment. I would
like to thank him for his expert guidance and insightful feedback. Above all, his support
and constant encouragement toward excellence during the process were priceless.

I also want to convey the same magnitude of appreciation to my advisor from Univer-
sitat Jaume I, Prof. Lledó Museros Cabedo, who has always been there with unwavering
support and enthusiasm. You’ve shown me how to navigate not just the technical chal-
lenges, but the sometimes equally difficult mental hurdles of research. Your feedback
and suggestions have sparked new ideas and improved my thesis study.

I would also like the thank Abdelrhman Bassiouny, from the Institute of Artificial
Intelligence, University of Bremen who helped me a lot in the early stages of my Master’s
thesis and taught me what to do when I was lost. This work would not be possible
without his support and enthusiasm.

I also wish to express my profound gratitude to all the great people I got to know
during my time at the University of Bremen. From sharing ideas and expertise to
sharing coffee and laughs, you turned what could have been a very isolating process into
a collaborative and friendly environment. Thank you for always being there, whether
troubleshooting a bug or guiding me through a new concept. I truly appreciate all your
help.

I am deeply grateful to Prof. Pedro Sanz from UJI for his invaluable advice and
consistent guidance throughout my master’s journey. His insights and support have
been instrumental. I also want to express my sincere thanks to Prof. Ricard Marxer and
Prof. Vincent Hugel from UTLN for their consistent support and dedication from the
very start of the master’s program. Their mentorship and expertise have been invaluable
to my growth, both professionally and academically. I appreciate the contributions they
have made to my success.

To my fellow students in the MIR master’s program, thanks for being my compan-
ions along the arduous yet rewarding academic ride. From days of grinding through
assignments to days of celebration-however small-your friendship and camaraderie are
strengths to me. You have all been part of this journey, big or small.

i

ii

Finally, to the real stars of this journey: my family. To my parents, for believing in
me even when I didn’t. Your support has formed the basis of all I have been able to
achieve.

Abstract

Reconstructing 3D environments from sparse point cloud data isn’t just about filling
in the voids —it’s about reimagining the whole scene creatively from minimal informa-
tion. This work takes on that challenge, using an encoder-decoder architecture to turn
scattered data into dense, dynamic 3D environments with impressive precision.

The approach used here generates flexible, script-based commands that predict de-
tailed spatial information, using this description, the scene is reconstructed. While
traditional models often rely on dense data, which limits their effectiveness in practical
scenarios, this method thrives on sparse input. The method uses a Transformer-based
decoder which takes the encoded features obtained from sparse input and produces high-
level commands and key spatial parameters (e.g., height, width, position). 3D scenes are
generated iteratively, learning from a large dataset of indoor environments. The script
generation plays a central role in this model, hence acting as a framework to transform
sparse point cloud data into structured 3D reconstructions. The ability of the system to
achieve flexibility and precision can be attributed to decomposing the process into well-
defined, script-based commands. Each command is instructive on how to reconstruct a
particular element within the scene in unambiguous terms and, therefore, enables the
model to work efficiently even with limited data points. Due to its scalability, this work
is quite suitable for urban planning, Virtual Reality (VR), and automation in simula-
tion. More importantly, the model could support real-time geometric prediction and
rendering such that the system dynamically evolves the scene without requiring dense
data. In this way, the model can prove that 3-D reconstruction may be efficient, reliable,
and adaptive operating under the script-driven precision umbrella.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Related Work . 6
1.3 Research Question . 17
1.4 Objectives . 17
1.5 Training Dataset . 18
1.6 Environment and Initial State . 18

2 Planning and Resources Evaluation 21
2.1 Planning . 21
2.2 Resource Evaluation . 23

3 System Analysis and Design 25
3.1 Requirement Analysis . 25
3.2 System Design . 27
3.3 System Architecture . 28

4 Work Development and Results 31
4.1 Point Cloud Processing . 31
4.2 Language Decoder . 34
4.3 Training . 38
4.4 Results . 41
4.5 Limitations . 48

5 Conclusions and Future Work 51
5.1 Conclusion . 51
5.2 Future Work . 52

Bibliography 55

A List of Abbreviations 59

v

vi Contents

B Source Code 61

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Related Work . 6
1.3 Research Question . 17
1.4 Objectives . 17
1.5 Training Dataset . 18
1.6 Environment and Initial State . 18

1.1 Work Motivation

Recent advances in architecture, robotics, and VR have created an increasing demand
for detailed, accurate, and efficient reconstructions of real-world environments in three
dimensions. The most recent applications rely on dense 3D models capturing not just
the coarse structure of an environment but all surfaces, objects, and their spatial re-
lationships in detail. The level of detail here is not an option but an imperative in
applications like indoor navigation for autonomous robots or Augmented Reality (AR)/
VR systems that need precise spatial awareness. Without such precision, these systems
will either result in inefficiencies or, worse still, in errors that impede proper interaction
with their surroundings.

1.1.1 Moving Beyond 2D: The Third Dimension

2D data lacks intrinsic depth of information for complete spatial context understanding
by definition. On the other hand, 3D reconstruction presents a more holistic virtual

1

2 Introduction

representation of an environment, to which a finer level of understanding can be devel-
oped through advanced manipulations of virtual objects. For example, in robotics, 3D
models present more complete traversal capabilities since the depth information enables
a robot to build a map of its surroundings and make real-time decisions using such ac-
curate spatial understanding. Amongst them, and probably most importantly, the work
by Beltran [18] shows that 3D data is essential for precise decision-making involved in
autonomous systems.

However, virtual objects today are largely hand-designed, which is painfully slow and
bounds the scaling of such models. In recent years, there has been progress in indoor
data technologies namely mobile scanners like Microsoft Kinect using techniques like
[31] and [2].In this regard, automated 3D reconstruction from real-world data bridges
the gap from manually designed objects to accurately replicated ones, not only raising
efficiency but also enhancing the quality of virtual environments.

Mapping and localization are indispensable in robotics, where continuous depth-
aware 3D reconstruction takes place. By conducting the real-time, precise sensing of
3D, a robot will be able to conceive its ambient environment, recognize objects, and
manage navigation in space elegantly. Moreover, 3D reconstructions have the advantage
of visualizing scenes from several perspectives the bird’s-eye view which may also support
decision making.

Figure 1.1: Left: A LiDAR system for autonomous cars sensing the environment (repro-
duced from [9]), and right: a close-up laser scan of the David statue captured under the
Digital Michelangelo project (reproduced from [22]).

AR also heavily relies on the accurate creation of 3D reconstructions. For example,
to allow virtual objects to be placed convincingly into the real world. If the spatial data
is imprecise, the virtual object may not behave well in its environment, thus affecting
the user experience.

1.1.2 The Challenge of Sparsity

While point clouds, by their nature, may provide a detailed capture of the representations
of the space in an environment, they are inherently sparse, meaning they sample contin-
uous surfaces only at discrete points. This sparsity may be problematic in applications
aiming at realistic models. To put this into perspective, suppose that an autonomous
vehicle was mapping its surroundings using LiDAR. As a result, partial representations
of the objects in their surroundings would remain, and thus gaps in the reconstructed

1.1. Work Motivation 3

model would persist. This can be observed in Figure: 1.1 which demonstrates how
point clouds can be obtained, with the LiDAR scan emphasizing spatial awareness in
autonomous vehicles and the detailed laser scan showing the fine details of the David
statue. Notice the sparsity and the incomplete scanning of the statue’s face [29].

Figure 1.2: (a) Left side of the object captured, (b) Foot partially missing, (c) Overall
sparsity and missing sections of the object. This figure shows that a point cloud (obtained
from [42]) represents objects as a collection of independent and scattered measurements
in 3D space, resulting in sparsity and incompleteness depending on the scanner’s position.

This discontinuity is a problem, mainly when the application involves realistic content
or decision-making in robotics. In most cases, it is of utmost importance to construct
continuous and dense surfaces from sparse point clouds for realistic model generation
or to present the robot with enough details about the structure of an object to make
realistic decisions. Though the problem may be overcome in controlled environments,
real-world conditions very often produce partial scans and information loss, as seen in
Figure: 1.2.

1.1.3 From Point Clouds to Dense Representations

Traditionally, dense polygonal meshes have played a central role in creating virtual
3D environments and are capable of providing detailed representations of objects and
spaces. They are highly important in content creation industries such as gaming and
virtual simulation, where precision and realism are considered crucial elements. However,
such sparse point clouds face various challenges while being transformed into dense
representations due to several gaps inherent in the data and a lack of continuity therein.

Recent machine learning advances, in particular, data-driven approaches have been
seeking to alleviate this issue for the improvement of quality in 3D reconstructions from
sparse input data. Indeed, these methods have visibly shown great potential to bridge
the gap between sparse point clouds and dense polygonal meshes. However, sparser the
data, the limitations are still present in the quest for accuracy.

4 Introduction

1.1.4 Transformers: Learning Complex Dependencies in 3D
Reconstruction

Although transformers were originally proposed for natural language [38] processing,
recently it has become a strong solution to learn complicated relations in 3D spatial data.
Based on the successful performance of Vision Transformers (ViTs) [12] on processing
the visual data, capturing long-range dependencies can be called particularly suitable
for the modeling of spatial relationships from sparse point clouds.

Transformers can thus focus on relevant aspects of a scene using multi-head attention
mechanisms even when data is incomplete, which is critical when operating on sparse
point clouds. The model should hence infer the missing spatial information and create a
coherent 3D representation. Attention mechanisms and masking are utilized to enhance
transformer models in high-quality 3D reconstructions; these are explained in depth in
subsequent sections.

Attention Mechanisms in 3D Reconstruction

Transformers’ multi-head mechanism of attention allows it to pay attention to different
parts of the 3-D scene at once (see Figure: 1.3). Given that most scene reconstruction
involves taking raw point clouds and trying to make sense of them, the spatial relations
among sets of different elements are especially crucial [38].

Figure 1.3: Self-attention head computing relationships within the decoder sequence for
capturing context in sequence generation.

Cross-attention will further enable the model to align decoder queries with encoder
keys and values, hence enabling the decoder to generate commands containing the most
relevant spatial features extracted by the encoder as shown in Figure: 1.4.

Masking for Sequence Generation

Masking ensures that the model only attends to the previously generated commands
during the generation of sequences in 3D reconstruction. This mechanism is highly
important in keeping the type of sequence autoregressive and, at the same time, it
ensures temporally consistent predictions with high accuracy.

1.1. Work Motivation 5

Figure 1.4: Cross-attention head aligning decoder queries with encoder keys and values.

MaskedAttention(Qi, Ki) = softmax
(

QiK
⊤
i√

dk
+ mask

)
Vi (1.1)

1.1.5 Why Transformers for 3D Reconstruction?

Volumetric, surface-based, and multi-view point cloud-based 3D reconstruction methods
have recently been greatly discussed in the literature. The volumetric methods represent
a point cloud as voxel grids but are computationally very expensive, and for larger
scenes, because of resolution limits, important detailed information is lost. Surface-
based methods, like Poisson Surface Reconstruction, fit the surfaces directly to the point
clouds, but when the data is sparse or inconsistent, incompleteness and surface distortion
may occur. In multiview stereo methods, consistent viewpoints are required for scene
reconstruction, and this does not always hold true for occluded scenes, especially indoors.

Thus, there is a fundamental dependency of these approaches on dense, consistent
input that poses quite a great challenge to applying them to real-world point cloud data,
considering how real-world data often tends to be sparse, uneven, or incomplete because
of sensor limitations relating to occlusions or limitations of capture angles. Another
challenge they have is the appropriate representation of complex geometries, to which
they usually are bound by dense data to interpolate and fill gaps. Even methods that
use occupancy grids or implicit functions, like Signed Distance Fields (SDFs), require
heavy pre-processing and face scaling-up issues with computational overhead for detailed
reconstructions.

On the other hand, our transformer-based approach will exploit self-attention mech-
anisms in modeling long-range dependencies to enable sparse data environment recon-
structions. This shift lets the model perform inference about spatial relationships on the
whole dataset, rather than just depending on local information, effectively filling gaps in
point clouds. Furthermore, instead of static 3D models, the model outputs structured
commands; thus, the approach is more flexible and adaptable to 3D reconstruction. The
command-based generation will not only mitigate the problems related to sparse input

6 Introduction

but also allow for real-time adjustments and dynamic updates that directly address the
limitations found in previous methods depending on complete point cloud coverage.

1.2 Related Work

1.2.1 Indoor Data Models and Standards

This section is devoted to discussing indoor data models, important contributors to
shaping this work’s outcome given their very important applications in in architectural
modeling and CAD-based design among others. To create a 3D model compatible with
most established models such as Indoor Geographic Markup Language (IndoorGML),
Indoor OpenStreetMap (IndoorOSM), and Industry Foundation Classes (IFC) we have
to understand the specifications and standards of the representations of indoor space.
As indoor mapping and services are becoming more popular, standardization regarding
data collection, management, and software development has become vital. Four major
models are presently widespread:

• IndoorGML: It is the Open Geospatial Consortium (OGC) standard for indoor
navigation and topology. For example, spaces such as rooms and corridors can be
modeled, but connectivity is the focus, not architectural details [21].

• City Geography Markup Language, Level of Detail 4 (CityGML, LoD4): This OGC
standard is an eXtensible Markup Language (XML)-based standard. It contains
detailed interior modeling for LoD4, including rooms, stairs, and doors. It would
therefore be good to go for a complete building model [15].

• IFC: A Building Information Modeling (BIM)-based standard focusing on architec-
tural components and building maintenance. Though object-oriented and offering
detailed architectural features, IFC lacks spatial and navigational relationships,
making it less ideal for navigation-centric models like IndoorGML [17].

• IndoorOSM: An indoor extension of OpenStreetMap, focusing on representing sim-
ple indoor spaces (e.g., rooms, corridors) through Volunteered Geographic Infor-
mation (VGI). While not as comprehensive as the other models, it simplifies data
collection and representation [14].

One of the main applications of these models is the transition from a 3D reconstructed
model to a Geographic Information System (GIS)/BIM model. These can benefit indoor
applications, as expert communities widely support these models. While IndoorGML
represents interior spaces using a cellular approach, with the smallest units being cells,
IFC models these spaces through architectural components. IndoorGML is useful for
navigation, while IFC focuses on building maintenance details. Therefore, IndoorGML
can be enhanced by referencing IFC for specific information such as wall materials and
thickness (see Figure: 1.5) [21]

1.2. Related Work 7

Figure 1.5: The figure demonstrates how IFC can serve as an external reference to popu-
late IndoorGML with missing data about walls, materials, and architectural components
[21].

8 Introduction

1.2.2 Indoor 3D Reconstruction Methods

Indoor 3D reconstruction methods from point clouds can be classified into four broad cat-
egories: Planar-based, Volumetric-based, Mesh-based reconstruction, and Indoor Scene
Interpretation and Semantic Labeling. The classification here has put more emphasis
on the methodology rather than data acquisition and focused on the process of recon-
struction. There is some overlap; for example, semantic labeling may assist in planar or
volumetric approaches.

Planar-Based Reconstruction

The planar-based methods identify planar primitives in the point clouds by the least
squares, region growing, and Random Sample Consensus (RANSAC). All these tech-
niques deal with polygonal representations of indoor spaces that are particularly suit-
able for environments that follow the Manhattan World assumption. For example, [10]
presented a method for planar region detection in building facades. They reconstructed
polyhedrons from the sparse scanned range data by detecting the intersection of planes
and applying an edge extraction algorithm to compute the boundary. The work here is
outdoors, but its basic principles are also applicable indoors for plane detection.

Following this, [33] introduced an automated planar 3D modeling system for indoor
environments. Their approach first classifies points based on their normal vectors to
detect floors, ceilings, and walls. RANSAC is then applied to detect planar primitives,
which after two-step plane-fitting are used to generate wall polygons and identify such
features as staircases. Although effective in detecting staircases as observed in Figure:
1.6, their method is limited to detecting walls aligned with the X and Y axes, and it
fails to account for openings like doors or cluttered data, which remains a significant
limitation.

Figure 1.6: Input data on left and reconstructed planar 3D Models of the planes and
staircases detected [33]

[8] also proposed a sweeping plane algorithm for detecting vertical and horizontal
segments in Manhattan world environments. Here, the density of the point cloud is an
input that discretizes and sweeps the environment to detect surfaces such as walls, floors,
and ceilings. Later, it uses cell decomposition to identify indoor and outdoor spaces.

1.2. Related Work 9

However, this cannot be generalized in a non-Manhattan setting and also cannot detect
specific interior features such as doors and staircases.

[28] projected the points on the Z-axis to find ceilings and floors and then used Hough
transforms to find the walls. The procedure presented would divide point clouds based
on height, slicing them and classifying these points into either clutter or permanent
structures. While effective for some applications, this method does not infer structural
relationships between segments, such as detecting openings, and is better suited to gen-
erate a floor plan rather than complete 3D models.

Further building on these approaches, [3] and [41] proposed methods that focused
on handling cluttered data and reconstructing occluded walls. Their approach tends
to perform ray casting to create the occupancy map, labeling wall surfaces as occupied
(walls, for example) or empty-space surfaces (for example, windows). In any case, their
model is difficult to handle with complex features such as arched windows or doors
with moldings. Mislabeling occluded closed doors as solid walls also happened. Besides
occlusion issues in general, indoor environment reconstruction usually shows substantial
occluded data due to clutter.

[23] proposed a cell decomposition technique for cluttered point sets in non-Manhattan
scenes. They applied ray casting to detect walls and then generated a 2D map by the
intersection of wall candidates. This approach managed to compute the polyhedron of
each room independently, although it had some problems with openings and low ceilings
as shown in Figure: 1.7.

Figure 1.7: The main phases of [23] for cluttered point clouds, showing the final room
polyherda

Finally, [6] applied a combined shape grammar approach to reconstruct interiors from
point clouds. They divided indoor spaces into rooms and hallways and applied grammar
rules to reconstruct the environment. The model benefits from using neighborhood
relationships and a priori probabilities for detecting room connections, making it suitable
for conversion into BIM models. However, the model lacks specific details about wall
openings or areas with sparse data.

While there are many limitations, planar-based approaches have turned out to be
powerful tools for indoor reconstructions, especially when the data presents significant
noise and occlusions. However, their reliance on surface-based representations makes it

10 Introduction

difficult to integrate them into BIM models using volumetric representations for indoor
navigation and services.

Volumetric-Based Reconstruction

Most of the volumetric-based methods for indoor 3D reconstruction address the partition
of space into cells or volumetric primitives, such as cuboids, to represent structures such
as walls and rooms.

[19] presented a method for cuboid detection in indoor environments assuming its
interior is composed of a set of mutually intersecting cuboids. They first apply the
RANSAC algorithm proposed by [34] for detecting planes that define the cuboids with 9
parameters: scale, translation, and rotation. It identifies the optimal cuboids by recon-
structing a graph of adjacent planes as displayed in Figure: 1.8. While robust against
noise, this method struggles with cluttered data and non-Manhattan world environments.
This method also fills the gaps such as doors or windows.

Figure 1.8: Left side: Input data and right side: reconstructed model from cuboid
primitives detection and shape graph [19]

[40] represented a Constructive Solid Geometry (CSG) approach. As shown in Fig-
ure: 1.9, the model stacks 2D models to 3D by detecting rectangular primitives in point
clouds’ horizontal slices. Their method, restricted to cuboids, adds textures and re-
constructs walls but without detecting openings or doors. Although operates on some
non-Manhattan world interiors, this technique does not have any automated quality
control, and accuracy has to be checked manually.

[27] used "space partitioning" and "primitive extraction" to reconstruct indoor spaces.
Horizontal slices of point clouds are analyzed using Hough transformation, and empty/-
solid space labeling is applied through energy minimization, solved by graph cuts. The
outcome is a 3D model made up of stacked cells labeled as solid or empty (Figure: 1.10).
Their method handles non-Manhattan worlds and clutter but does not detect features
like doors or windows. A ray casting method is used which labels solid and empty spaces
(Figure: 1.11).

1.2. Related Work 11

Figure 1.9: Detection of rectangular primitives using line segments [40]

Figure 1.10: Point clouds undergo space partitioning which outputs cell decomposition.
These cells are then labeled as empty and solid where solid cells reconstruct permanent
structure. Finally, all horizontal slices are stacked to form the 3D model [27].

Figure 1.11: Ray-casting method is applied to define empty and solid cells. Walls or
edges are marked as orange lines, cells as black lines, and the odd number of intersections
as pink lines which represent that the point is in an empty cell while an even number of
intersections are represented as blue lines if the point is in a solid space [27].

12 Introduction

[20] applied "Palladian Grammar" using cuboids to reconstruct Manhattan world
interiors. The method selects the transformation parameters to choose cuboid primitives
and grammar rules for placing and merging the cuboids. This still fails when one is
dealing with cluttered scenes or those that are not perfectly perpendicular, or even
occluded data.

[26] presented an energy-minimization-based approach for detecting volumetric walls
and rooms by performing clustering of the input point cloud by room. They detect
vertical planes and generate candidate walls to form a 2D planar graph represented in
Figure 1.12. This method represents the reconstructed walls as volumetric objects with
centerlines, which is helpful for BIM applications. However, their method is sensitive
to occluded walls and mobile laser scans when rooms are scanned through windows
or corridors. Its detection of wall thickness and openings is an essential ability in the
reconstruction of topological relationships.

Figure 1.12: (a) The input point cloud is color-coded to show the points assigned to
different scans; (b) the segmentation results refine these points per room; (c) vertical
planes are projected in 2D; (d) the intersected lines represent potential walls in various
colors, dividing space into inside and outside; (e) edges around rooms remain; (f) the
final model displays walls, with doors in green and windows in yellow. [26].

Mesh-based Reconstruction

The mesh-based approaches are good in surface reconstruction, object recognition, and
finally for rendering in the 3-D environment. These methods range from indoor objects
up to building facades [32]; [13]. For example, in [32] a hybrid map approach provided
a high accuracy in reconstructing 3D kitchen models for various kinds of surfaces such
as walls and furniture. In general, the mesh-based approaches are well-suited for surface
modeling and rendering but not practical for semantic labeling and topological relations
within complex indoor spaces.

1.2. Related Work 13

Grammar-Based Reconstruction

Grammar and shape grammar approaches have been widely applied in architecture and
computer graphics regarding geometric modeling and reconstruction. They are based
on grammar at the level of language, where rules determine the structure of sentences.
In this context, "shape grammar" was coined by [35] to produce the 2D and 3D shapes.
A highlighted application is the "Palladian Grammar", developed by [36] which models
Palladio’s architectural designs. It defines rules for symmetric villa plan generation laid
out along the Cartesian axis.

[20] have applied this grammar to the reconstruction of Manhattan World interiors
using cuboid-based rules without applying rotations, focusing on translation and scal-
ing transformations. They employed connect and merge rules to align the walls and
reconstruct the interiors of buildings.

The "Split Grammar" method of Wonka et al. [39] in the "Instant Architecture"
paper brings in automation of building design based on enhancements to the parametric
grammar approach. This method simplifies shape derivation by splitting basic shapes
such as cuboids, cylinders, or prisms into smaller components. "Control Grammar"
plays a key role by restricting rule application to ensure consistency with architectural
principles. This system follows a three-tiered process in design generation: the inclusion
of split grammar, grammar regulation for rule selection, and the employment of an
attribute matching system to ensure that randomness is handled according to the users’
specifications. The "basic shape" is represented as (b), centered on the origin, and
defined by its edges that enable decomposition and transformation. Figure: 1.13 shows
how Split Grammar applies to the reconstruction of a building facade. For example, if
it is provided with a simple building shape with a certain height, width, and depth, the
rules will split the facade into rooms, entrances, and windows. This is done by splitting
at predefined axes into different elements constituting a building. The grammar specifies
rules such as:

• R1: BUILDING→ Subdiv(Z, 0.3, 3.5, 3, 3, 3) {band |GROUNDFLOOR | FLOOR
| FLOOR | FLOOR}

• R2: GROUNDFLOOR → Split hoz(X, 4.5, 4, 4.5, 4.5) {ROOM | ENTRANCE |
ROOM | ROOM}

• R3: ENTRANCE → Split ver(Z, 0.0, 2.4, 0.6) {∅ | extdoor | wall}

• R4: ENTRANCE → Split hoz(X, 0.5, 3, 0.5) {wall | extdoor | wall}

• R5: ROOM → Split hoz(X, 2.25, 2, 2.25) {wall | WINDOW | wall}

• R6: WINDOW → Split ver(Z, 0.2, 2, 0.2) {frame | glass | frame}

• R7: WINDOW → Split hoz(X, 0.2, 1.60, 0.2) {frame | glass | frame}

14 Introduction

Figure 1.13: Example of Split Grammar applied to a building facade with room and
window generation. [39].

Applications of split grammar are found throughout "procedural modeling". [24]
applied split grammar to help design complex buildings and city models automatically,
while [25] made use of it for facade reconstruction from images.

[5] generalized the previous methods to work with LiDAR data while performing
indoor detailed modeling. [7] combined split grammar with Lindenmayer Systems (L-
Systems) for hallways and room modeling. Non-corridor areas are split using Split
Grammar and L-Systems for generating hallways. Figures 1.13 and 1.14 show some
examples of how split and multi-split rules can be utilized to generate realistic structures
of rooms from the input point cloud.

[6] expanded on this work by using grammar rules to automatically generate building
layouts without predefined input. They derive grammars from the real world directly,
rather than manually predefined rules, and that allows flexibility in the approaches
for varied building types. However, their approach tends to break when considering
non-Manhattan World cases, especially with complex geometries and building axes that
aren’t well-defined.

Figure 1.14: Six split rules as shown in [7], demonstrating various partitioning methods
like RepeatSplit and MultiSplit.

1.2. Related Work 15

Detection of Openings

Opening detection is an important task, for doors and windows, in the creation of indoor
reconstructions. In fact, for applications that are related to evacuation planning, the
identification of these features and the extraction of their geometry can enrich the model
semantically, providing information about the escape routes or door functionality. They
detect wall surfaces with the analysis of histograms, then they model the surface with
voxels. The principal contribution is the "occlusion labeling" step, wherein voxels get
labeled as occupied, empty, or occluded as observed in Figure: 1.15.

Figure 1.15: Opening detection process. (a) Reflectance image, (b) Depth image, (c)
Edge detection, (d) Opening detection using Support Vector Machine (SVM), (e) Pro-
totype openings, (f) Final labeling, where white represents openings, blue is occluded,
and red is solid surfaces [3])

Ray tracing allows the detection of voxels that are empty or occluded. After the
reconstruction of a range image with the depth values of the surface, Canny’s algorithm,
and Hough Transform for detecting edges are used, following adjustments in occluded
voxels according to detected empty space. Their approach was quite accurate and at-
tained 93.3% of openings correctly identified; however, their method had problems when
non-rectangular openings were concerned.

However, this might fail at closed doors, which can be mislabeled as occupied. [11]
improved the previous work by using imagery for detecting closed doors through edge
detection and a Hough Transform approach. This had an accuracy of up to 95% in some
cases; nevertheless, it did not work well where similar textures were available.

Besides, Ray-casting-based techniques for opening detection have been adopted in
several works such as [23], [26], and [30] targeting stationary terrestrial laser scanners.
In the case of a mobile scanner, where the laser is moving, a more complicated approach
should be developed to keep track of which points are measured from which position of
the scanner as time progresses.

16 Introduction

1.2.3 Open Issues and Conclusion

We can summarize current research issues about 3D indoor reconstruction as follows:
Many of them are restricted to the detection of fundamental shapes such as planes and

cuboids, which restricts the reconstruction of more complicated architectural features.
Most methods assume horizontal floors and ceilings, and vertical walls. However, these
methods are unable to account for non-standard architectural forms, such as curved or
sloped surfaces that are frequently found in concert halls, airports, and other locations.
While these approaches show promise, there are currently no well-developed solutions
for such architectural complexities.

Furthermore, the best approaches usually function in Manhattan-World situations
when the walls are perpendicular. It’s still difficult to adapt these techniques to non-
Manhattan structures, though. While some methods address irregular wall orientations
by using primitive detection and cell decomposition, they are still insufficient for complex
interiors with irregular geometry. While techniques like Computer Generated Animation
(CGA) or split grammar may help alleviate this to some extent, volumetric data or point
clouds are difficult to use as direct inputs in current software.

Indoor environments, often have occluded or cluttered data by their very nature,
which reduces the accuracy of the reconstruction process. Occlusion is usually handled
with techniques like occupancy maps, few techniques focus on reconstructing fully oc-
cluded areas [3]. This problem escalates when considering mobile laser scanning since
different scanner trajectories add to the already cluttered data [41].

Furthermore, methods based on shape grammar introduce challenges, especially since
they often rely on manually defined rules by experts, which is labor-intensive. Though
papers like [25] and [7] have tried to find the rules automatically from data, such methods
still strongly depend on the quality of the data. Deriving correct geometric relationships
like collinearity or parallelism becomes increasingly challenging with cluttered point
clouds. Furthermore, the correct assignment of rules to the detected shapes is important.
The same shape with different rules can yield different results, which is not acceptable
in practical applications like evacuation planning, wherein precision is indispensable.

Model consistency—particularly ensuring both topological and semantic correct-
ness—has not been sufficiently explored. [16] discussed this issue in their research,
but more work is needed to guarantee that generated models maintain connectivity and
navigability. Consistency control is vital to ensuring that reconstructed spaces, such as
rooms and exits, are linked correctly.

Another important challenge is, that accuracy control of the models is difficult since,
in most studies, complete ground truth for validation does not exist. Although some
manual checks will still be necessary, future research should develop automatic accuracy
control methods that verify the accuracy of reconstructed models against real-world
data.

These research gaps highlight the need for scalable methods that can effectively ad-
dress the complexities of various indoor environments. To fill these gaps, my research
combines elements of planar- and volumetric-based techniques with grammar-based re-
construction to create a hybrid model that can handle the complexity of interior envi-

1.3. Research Question 17

ronments. To further enhance existing approaches, this thesis incorporates script-based
commands and transformers. Transformers offer mechanisms of attention that allow
the model to record complicated spatial relationships, hence helping with the handling
of difficulties brought about by sparse and occluded input. The generation of struc-
tured script-based commands for producing intricate, high-fidelity interior reconstruc-
tions presents a more scalable and adaptable method. Using such a sequence-to-sequence
generating mechanism massively outperforms previous approaches that perform poorly
when dealing with complex geometries, occlusions, and sparse data.

1.3 Research Question
Correctly reconstructing indoor places in 3D is difficult, particularly when addressing
the essential features of the scene that enable robots to orient themselves and function
within the space. There are also differences in the indoor spaces’ complexity, dimensions,
and design. How can we construct a system that will be able to reconstruct the above-
mentioned components efficiently in hundreds of discrete spaces and environments with
zero or minimum manual work?

Here, the following research questions are raised:

• There might be a scarcity of 3D data, but how would we make use of this kind
of data such that salient components, like walls and doors with windows, all are
touched upon?

• How could a reconstruction system of this kind be applied to indoor environments
with manifold geometrical settings while remaining within specified accuracy and
flexibility?

1.4 Objectives
The main objective of this thesis is to present a system that allows for a fully auto-
mated dense 3D reconstruction of indoor scenes based on point cloud data. The specific
objectives, in correspondence with the main objective, are listed as follows:

• Design a dense 3D reconstruction system: A system able to capture an
indoor scene and reconstruct it with high accuracy, mostly the main structural
components like walls, doors, and windows. It will, in turn, include detailed 3-D
models ready for further processing, modeling, or visualization.

• Generate human interpretable commands for scene reconstruction: This
algorithm should output high-level, scriptable commands to represent the key ar-
chitecturally relevant components and their spatial relations.

• Guarantee Scalability and Automate: In this project, the system will be
trained to cope with a wide variety of indoor locations, from small rooms to the

18 Introduction

most complex constructions, using 100,000 different multi-room interior scenes that
constitute the Aria Synthetic Environments (ASE) Dataset [4]. Since the recon-
struction process was trained on data containing rooms in various configurations,
it can work, with few modifications, in a wide range of locations.

• Create practical 3D models: The created detailed 3D meshes can be used
directly in a virtual model, simulation, and any other application where the interior
environment is to be reconstructed.

1.5 Training Dataset
I trained my model on the Meta ASE dataset, which is procedurally generated and
consists of 100k unique interior scenes. Originally developed and used by SceneScript,
Meta [4] for scene understanding, the ASE dataset is particularly suited to my focus
on reconstructing spatial features and generating structured scene scripts. The dataset
includes point cloud data and a CAD-like command language designed to describe the
structural elements clearly. The language consists of commands such as make_wall,
make_door, among others that perfectly align with the goal of my model. Figure: 1.17
shows language commands used in the scripts.

Figure 1.16: Visualization of the ASE Dataset with its many 3D scenes [4].

Figure 1.16 offers a visualization of the ASE dataset, showcasing its rich point cloud
data and the variety of interior scenes it covers.

1.6 Environment and Initial State
The work presented in this thesis was initiated by building a 3D reconstruction model
from scratch, based on the Project Aria ASE dataset [4]. For this work, the dataset

1.6. Environment and Initial State 19

Figure 1.17: Complete set of structured language commands that detail the architectural
layouts of the dataset. [4]

provided several input modalities. Among these were point clouds and RGB images.
After discussing it with my supervisors, we decided to focus on the latter since they had
the richest spatial data to reconstruct the main structural features of interest.

To begin with point cloud processing, I chose TorchSparse [37] for its capability of
offering real-time feature extraction. It is the best option for efficient and real-time
testing of the model. Using TorchSparse, the point cloud data was processed into sparse
tensors so that one can effectively handle big indoor environments. Plotly was used for
visualization through which I could view interactively the pre-processed data and the
outputs of the model in development.

The model output is the script generated by the model, describing the object place-
ments and dimensions within the scene. Based on discussions with my supervisors, we
agreed on the form this output should take such that it would be practical and in-
terpretable for real-world use. The rendering techniques and model architecture are
inspired by SceneScript [4], a framework developed by Meta. Decisions regarding the
above aspects, including their adaptation in this work, were based on discussions with
my supervisors.

Some key decisions were taken at the beginning of the project to include in the
main area of focus: indoor environments, where unique challenges lay ahead, including
dynamic elements and structural complexity.

The whole development of the model was conducted by me, from data processing to
architectural design and rendering techniques, with inputs from the supervisors during
the technical discussions on advanced topics like handling point cloud data and perform-
ing real-time 3D reconstructions.

C
h

a
p

t
e

r

2
Planning and Resources Evaluation

Contents
2.1 Planning . 21
2.2 Resource Evaluation . 23

2.1 Planning

Figure: 2.1 shows a Gantt chart that highlights the timeline of the project. It gives an
overview of the flow of all the tasks and how much time each task is consuming. Table
2.1 complements Figure: 2.1 with great detail regarding all the tasks and subtasks and
the relationship between them.

As the project developed, different versions of the plan were generated. In fact, from
the beginning, the schedule was changed several times to reflect research by SceneScript
[4] that revealed limitations in utilizing RGB images alone and the need to switch to
point cloud data. Also, issues surrounding voxel size and choices of positional encoding
contributed to changing the timeline.

Using point cloud data directly provides 3D spatial representation and avoids the
drawbacks associated with RGB images, like poor depth estimation. Changing to this
more informative representation involved several adjustments, including the extended
time now used in the processing of the point clouds, feature extraction, and creating a
sparse tensor representation; The moving from sinusoidal to trainable positional encoding
involved additional experimentations and model tunings.

Initial experiments demonstrated that the performance of the model strongly depends
on the voxel size: the smaller the voxel size, the more detailed the information; but this

21

22 Planning and Resources Evaluation

Figure 2.1: Gantt chart representing an overview of project timeline

2.2. Resource Evaluation 23

increases memory consumption and prolongs training. Therefore, another important
factor during model development and testing was finding a balance between information
detail and computational efficiency.

While considering these changes, the project still had a smooth path because some
tasks were being rescheduled and extended when needed. These modifications, though
deviating from the original plan, are fundamental for the optimization of the performance
of the model in 3D scene reconstruction tasks.

2.2 Resource Evaluation
The resources used during this project, both concern computational infrastructure as well
as the dataset used for training. The computation facilities provided by the Institute for
Artificial Intelligence at the University of Bremen are:

• Lab computers: These have been extensively used for performing software de-
velopment, debugging, and model refinement in this project.

• GPU-powered system: Training the 3D reconstruction model required a Graph-
ics Processing Unit (GPU), as it relies on efficiently handling large-scale point
cloud data. The GPU system greatly reduced the training time and allowed faster
experimentation during the development process.

Additionally, the ASE dataset [4] played a crucial role during training and testing
processes. It provided large numbers of point cloud data from synthetic environments
with the necessary 3D spatial context for the process of indoor scene reconstruction.

24 Planning and Resources Evaluation

WBS # Name / Title Type Start Date End Date
1.1 Analyze Dataset Group 2024-04-01 2024-04-15
1.1.1 Understand Dataset Structure Task 2024-04-01 2024-04-05
1.1.2 Decision regarding input modality Task 2024-04-06 2024-04-15
1.2 Point Cloud Processing Group 2024-04-16 2024-05-14
1.2.1 Extract sparse tensor using TorchSparse Task 2024-04-16 2024-04-22
1.2.2 Working on Encoder Architecture Task 2024-04-23 2024-04-30
1.2.3 Using Positional Encoding Task 2024-05-01 2024-05-03
1.2.4 Implementation of Encoder Task 2024-05-04 2024-05-14
1.3 Transformer Decoder Design Group 2024-05-15 2024-06-04
1.3.1 Decoder Architecture Design Task 2024-05-15 2024-05-21
1.3.2 Attention Mechanism Design & Tuning Task 2024-05-22 2024-05-29
1.3.3 Implementation of Decoder Task 2024-05-30 2024-06-04
1.4 Complete Model Design Group 2024-06-05 2024-06-25
1.4.1 Integrating Encoder & Decoder Task 2024-06-05 2024-06-20
1.4.2 Hyperparameter Tuning Task 2024-06-21 2024-06-25
1.5 Training Group 2024-06-26 2024-07-30
1.5.1 Selecting the Voxel Size Task 2024-06-26 2024-07-05
1.5.2 Initial Training, batch size = 1 Task 2024-07-06 2024-07-19
1.5.3 Training on multiple scenes Task 2024-07-20 2024-07-30
1.6 Testing Group 2024-08-01 2024-08-22
1.6.1 Testing with Sample Data Task 2024-08-01 2024-08-07
1.6.2 Performance Evaluation & Refinement Task 2024-08-08 2024-08-14
1.6.3 Final Testing & Bug Fixes Task 2024-08-15 2024-08-22
1.7 Export to Meshes Group 2024-08-23 2024-08-28
1.7.1 Prepare Model Outputs Task 2024-08-23 2024-08-25
1.7.2 Export to Mesh Format (OBJ & JSON) Task 2024-08-26 2024-08-28
1.8 Performance Metrics Group 2024-09-01 2024-09-15
1.8.1 Define Metrics Task 2024-09-01 2024-09-05
1.8.2 Implement Metrics Task 2024-09-06 2024-09-10
1.8.3 Analyze Performance Task 2024-09-11 2024-09-15
1.9 Writing Thesis Group 2024-09-01 2024-09-30
1.9.1 Introduction & Related Work Task 2024-09-01 2024-09-07
1.9.2 System Design and Architecture Task 2024-09-08 2024-09-14
1.9.3 Work Development and Results Task 2024-09-15 2024-09-21
1.9.4 Conclusion and Future Work Task 2024-09-22 2024-09-28
1.9.5 Proofreading Task 2024-09-29 2024-09-30

Table 2.1: Project Schedule

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 25
3.2 System Design . 27
3.3 System Architecture . 28

This chapter presents the requirements analysis, design, and architecture of the pro-
posed work.

3.1 Requirement Analysis
Core functionalities entailed in the system include raw point cloud data processing,
transformation of the data into sparse tensors, and generation of final scripts that can be
used in rendering 3D scenes. There are various stages involved in realizing the functional
and non-functional requirements of the work, which range from data preprocessing to
the generation of scripts and assessment of performance.

3.1.1 Functional Requirements

The salient features of the model are reviewed in this section. First is the encoder, which
takes the raw point cloud data and transforms it into a sparse tensor using TorchSparse
[37]. The encoder further uses this tensor with positional encoding so that the scene’s
spatial information is preserved. These encoded features do not feed directly into the
decoder but rather are first processed through several 3D convolutional layers extracting
higher-level geometric features, detailed in Table: 3.2. Such features are used in the
second functionality where the decoder autoregressively predicts an output script. It

25

26 System Analysis and Design

is done by generating each command one at a time to make sure the elements of the
structure, like walls, doors, and windows, are correctly reconstructed.

As a pre-processing step for memory efficiency, the point cloud is transformed into
a sparse tensor according to Table 3.1; thus, it can facilitate faster computations while
retaining the essential details in spatiality. Such an encoding ensures that relationships
that may exist between different architectural elements are preserved.

Input: Raw point cloud data
Output: Sparse tensor
In this stage, point cloud data is transferred to a sparse tensor with the library
of TorchSparse.

Table 3.1: Functional requirement «Conversion of Sparse Tensor»

This is followed by encoding. The features are positionally encoded, and then some
successive 3D convolutional layers extracting geometric details compress the information
in space into a high-level feature representation. Explanation in detail is given in Table:
3.2.

Input: Sparse tensor
Output: Encoded features
Several layers of 3D convolution are applied on the sparse tensor to extract
geometric features. This reduces the point cloud into a deep higher-order repre-
sentation of features that can maintain the spatial relationships of walls, doors,
and windows.

Table 3.2: Functional requirement «3D Convolution Encoding»

The second functionality is that of script generation, which is a transformer-based
decoder making use of the encoded features to generate a structured script. Such com-
mands as "make_wall" and "make_door" are predicted autoregressively based on the
previous commands. It allows for accurate and clear scene descriptions, as outlined in
Table: 3.3.

3.1.2 Non-functional Requirements

The non-functional requirements for this work are as follows.

• The system should positionally encode features into the system with accurate
preservation of the spatial relationships between elements in the 3-D scene.

• The mapping of the vocabulary to the output script should be exact, and com-
mand names such as "make_wall", "make_window" and "make_door" should be
appropriately generated.

3.2. System Design 27

Input: Encoded point cloud and START token
Output: Generated script with STOP token
Decoder takes the encoded features from the point cloud and generates a script
describing the scene. Starting with the START token, it goes on till the STOP
token. Each command includes objects like "make_wall" and their spatial pa-
rameters.

Table 3.3: Functional requirement «Script Generation»

• Parse the script correctly to the renderer to ensure that it renders the 3D scene
without errors.

• Operations are to be in the normalized frame of reference so that it has consistent
scaling of spatial dimensions between different scenes.

• Voxels extent is to be decided appropriately for point cloud processing with an
optimal trade-off between accuracy and computation.

• Causal masking should be performed in such a way that every generated command
is conditioned on what has already been predicted at training time.

• Real-time rendering of 3D meshes allows for immediate feedback, capturing all the
details in the structure.

• Meshes should be exported in file formats like OBJ and JavaScript Object Notation
(JSON) for further use by external rendering engines or simulation systems.

3.2 System Design

The system focuses on the generation of detailed 3D scene reconstructions from sparse
point cloud data, driven by a data-driven, autoencoder-like approach. The partial point
cloud acts as input, which is further encoded into a latent space vector. Subsequent pro-
cessing of this latent vector through the decoder results in a scene script that comprises
commands for the recreation of the layout of the scene.

The design of the system design follows a well-structured flow represented in Figure
3.1. It first voxelizes point cloud data and feeds them into the sparse 3D encoder. Us-
ing the library TorchSparse [37], it will transform data into sparse tensors that ensure
computational and memory efficiency. In turn, this encoder uses this sparse representa-
tion with some 3D convolutional layers for obtaining high-level geometric features and
maps into a latent vector. Positional encodings are applied to retain the most important
spatial relationships within the data.

A decoder, inspired by the Meta’s SceneScript model [4], subsequently takes encoder
outputs and autoregressively generates a script that represents scene layout. The com-

28 System Analysis and Design

mands, such as make_wall or textttmake_door, are predicted one after another while
the system keeps coherence and accuracy regarding the structure of the scene.

The system is then rendered and visualized in a dense and interactive environment
representation after the processing of the script. Converting the scene to a polygon mesh
is followed by converting the scene, which can easily be integrated into different real-time
rendering engines and simulation environments.

Each part of the system will be discussed in further detail in Section 3.3.

Figure 3.1: High-level overview of the system design.

3.3 System Architecture
The system’s architecture is built around an encoder-decoder framework.

3.3.1 Encoder

This is a 5-layer point cloud encoder with 3D convolution, with a kernel size of 3 and a
stride of 2. Further, the encoder processes voxelized point cloud data. The point cloud
data is first converted to a sparse tensor using the Torchsparse Library [37]. The sparse
tensor is then passed through layers of 3D convolutions. After every convolutional layer,
the features are downsampled using max-pooling layers. Meanwhile, positional encoding
is proposed to keep the spatial information in that process. This architecture is also
shown in Figure: 3.2.

3.3.2 Decoder

The autoregressive decoder consists of 6 transformer layers, each of which includes multi-
head self-attention, cross-attention, and feedforward networks. This model makes use
of 6 multi-head self-attention and cross-attention heads per layer while processing the
decoder sequence. The cross-attention is used to align queries in the decoder to outputs
from the encoder, ensuring that commands are grounded in the features of the encoded
point cloud. Each of these layers is implemented as a feedforward network with a di-
mensionality of 2048, projecting its inputs from a 512-dimensional space, applying a
Rectified Linear Unit (ReLU) activation, and projecting back to 512 dimensions.

3.3. System Architecture 29

Figure 3.2: Encoder Architechture

The decoder outputs structured commands like make_wall, make_door, and make_window,
where each line in the output predicts both the type of command involved and its geo-
metric parameters, which include position, width, and height.

The model used here for the decoder architecture is very much similar to that in [38],
except that it involves both multi-head as well as cross-attention mechanisms while the
one mentioned in the paper [38] relies purely on multi-head attention shown in Figure:
3.3.

30 System Analysis and Design

Figure 3.3: Decoder Architecture of the System [38]

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Point Cloud Processing . 31
4.2 Language Decoder . 34
4.3 Training . 38
4.4 Results . 41
4.5 Limitations . 48

The developed work and the obtained results are made explicit in this chapter. All
possible deviations from the initial planning are detailed here and justified.

4.1 Point Cloud Processing

I first focused on RGB images as the input modality because they encoded rich visual
and texture information, promising for 3D environment reconstruction. However upon
observing the performance of the model using this modality from "Scenescript" paper
[4], where the performance was much below expectations, especially concerning depth
estimation and spatial accuracy. The limitation is very much due to the inherently 2D
nature of RGB images, providing just the projection of 3D objects onto a plane.

The problem with using RGB information at the core was that it required the model
to infer depth from visual cues such as shading and occlusion, which, though possible,
provided ambiguities of the scene. Mapping from 2D mathematically poses an under-
constrained problem: for RGB images, we solve for three spatial dimensions based on
only two observable coordinates. That has inherently noisy and uncertain captures of
exact structural relationships between objects.

31

32 Work Development and Results

Having observed these limitations, I moved on to point cloud data. This provided
3D coordinates directly and avoided indirect depth inferences.

4.1.1 Sparse Tensor Representation

The system begins its processing by taking input in the form of a point cloud P =
{p1, p2, . . . , pN}, where each point pi ∈ R3 is a 3D coordinate. The point cloud data is
first discretized by voxelizing the points onto a 3D grid with a given voxel size v (see
Figure: 4.1). This voxelization of points is calculated as:

V =
⌊

pi

v

⌋
(4.1)

Figure 4.1: After voxelization, the challenge of sparsity of the data can be observed on
the left side of the scene as parts of the layout appear to be missing

The features, such as the mean distance inside each voxel, are calculated after vox-
elization. These features are aggregated in the form of a sparse tensor S = (C, F), where
C ∈ ZK×3 is the coordinate of the non-empty voxels, and F ∈ RK×d is the feature for
each voxel. Here, d denotes the feature dimension, including the statistical properties of
the points within each voxel.

S = SparseTensor(F, C) (4.2)
For the sparse tensor processing, I decided to use the Torchsparse library [37]. Dif-

ferent from the standard dense tensor libraries, operating on large sparse point clouds
with Torchsparse will only be applied on voxels that are not empty, hence efficiently
reducing computational overhead.

Moreover, the optimized sparse convolution operations in Torchsparse are memory-
and speed-efficient, especially for 3D point cloud data where most of the volume in a grid

4.1. Point Cloud Processing 33

would be empty. This capability of dynamic sparsity, where there could be variation in
the density over regions, is very effective for real-time 3D scene reconstruction tasks as
well.

4.1.2 Encoder with Convolutional Layers

First, the sparse tensor undergoes a process of feature extraction via a set of 3D convo-
lutional layers. These layers increase the depth of features while gradually reducing the
spatial resolution of the input. The convolution process enriches the features in such a
way that the number of channels increases after passing through each layer, for example,
16, 32, 64, 128, and 512. Each convolutional block applies a 3D convolution followed by
max pooling and can be represented by the following equation:

Sl+1 = MaxPool3D(Conv3D(Sl, Wl, stride = 2, kernel = 3)) (4.3)

The convolution operation over multiple layers can be summarized as:

Sencoded = Conv3Dn(S0, {W1, W2, . . . , Wn}) (4.4)

Where n is the number of convolutional layers, and Wi denotes the convolutional
weights for layer i.

4.1.3 Positional Encoding

Initially, I used sinusoidal positional encoding to encode the spatial information in the
point cloud. This method encodes the coordinates of voxels C with a sum of sinus and
cosines of different magnitudes, providing a non-trainable yet consistent way of infusing
positional awareness. These coordinates are encoded by the equation below:

PE(pos,2i) = sin
(

pos

10000 2i
d

)
, PE(pos,2i+1) = cos

(
pos

10000 2i
d

)
(4.5)

However, I switched to the trainable positional encoding embedding layer. That is
mainly because the trainable embeddings can learn positional representations concerning
the geometry of the point cloud data. Sinusoidal encoding enforces a hard-wired and
predefined structure that cannot adapt to the unique geometric characteristics in the
dataset, such as point densities and intricate local structures typically found in indoor
environments.

In voxelized point clouds, the data is inherently irregular and sparse, with significant
variation in spatial structure. Because of this, the static nature of sinusoidal encoding
couldn’t capture the details of the local geometry. Switching to trainable positional
encoding has been a better adaptation of the model to these variations as the model
can encode and make use of the positional information more correctly relevant to each
element in the scene.

Therefore, after feature extraction by convolutional layers, I apply learned positional
encoding. Voxel coordinates (C) are concatenated with the feature vectors as:

34 Work Development and Results

Fi ← cat(Fi, Ci) (4.6)

A learned positional embedding layer is applied subsequently to map the voxel coor-
dinates into a higher-dimensional space as:

Pi = W · Ci (4.7)

Thus, the final encoded feature vectors, which include both feature and learned
positional information, can be represented as:

Fgeo = F + P (4.8)

The output will be a set of feature vectors Fgeo ∈ RK×512, with each vector re-
taining the encoded feature and the learned positional information that will be used in
subsequent steps.

4.2 Language Decoder

4.2.1 Tokenization

The input tensor x ∈ Rndecoder×dmodel in the decoder part of the model is tokenized
and processed into a sequence of embeddings. These commands are encoded as an
enumeration; thus vocabulary is given by:

• START = 1

• STOP = 2

• MAKE_WALL = 3

• MAKE_WINDOW = 4

• MAKE_DOOR = 5

This gives a total vocabulary size of 5. For each instruction, an embedding is gen-
erated by concatenating a one-hot encoded vector that represents the type of command
with its parameters; the resulting input size becomes 1 × 11. Positional encoding, as
explained in the previous section, is added to incorporate spatial information about the
sequence.

The model’s command generation is built upon three basic layout elements: MAKE_WALL,
MAKE_DOOR, and MAKE_WINDOW shown in Figure: 1.17. All three commands have associ-
ated parameters that define the geometry of these elements. For example, the complete
set of parameters for MAKE_WALL defines a gravity-aligned 2D plane while MAKE_DOOR and
MAKE_WINDOW define cutouts within walls including their respective sizes and positions.

Unlike the approach followed in Meta’s SceneScript [4], which predicts the command
structure parameter by parameter, my model predicts the whole script line. In this

4.2. Language Decoder 35

line-based prediction approach, the model generates a complete and coherent command,
including all its parameters, in a single output. This method not only accelerates the
process but also ensures consistency across the generated commands.

4.2.2 Implementation of Attention Mechanisms in 3D Reconstruction

This 3D reconstruction model uses the multi-head attention mechanism in both self-
attention and cross-attention to predict command sequences based on point cloud data.
Using learned weight matrices WQ, WK , WV , the multi-head attention projects the input
tensor x ∈ Rndecoder×dmodel into queries, keys, and values.

These matrices are used in the scaled dot-product attention mechanism. The query
Qi is multiplied by the transpose of the key Ki, scaled by the square root of the key
dimension dk, and the softmax function is applied.

An output of size Rndecoder×dk is produced by each attention head. By concatenating
and transforming these outputs into a tensor of size Rndecoder×dmodel , the model can handle
various segments of the input sequence concurrently.

Self-Attention

My approach applies self-attention to the decoder inputs, enabling it to attend to distinct
segments of the input sequence and discern correlations between previous commands
and the one it is predicting at that moment. The decoder’s self-attention mechanism is
calculated as follows:

Qdecoder = WQ · xdecoder, Kdecoder = WK · xdecoder, Vdecoder = WV · xdecoder (4.9)

The attention weights are computed as:

SelfAttention(Qdecoder, Kdecoder, Vdecoder) = softmax
(

QdecoderK
⊤
decoder√

dk

)
Vdecoder (4.10)

This mechanism allows the decoder to understand how previous commands influence
upcoming ones in the autoregressive generation process.

Cross-Attention

The decoder can attend to features encoded by the encoder from the point cloud data by
using cross-attention in addition to self-attention to align decoder queries with encoder
keys and values. The key and value matrices from the encoder output, Kencoder and
Vencoder, are combined with the decoder’s query matrix, Qdecoder:

Qdecoder = WQ · xdecoder, Kencoder = WK · xencoder, Vencoder = WV · xencoder (4.11)

36 Work Development and Results

The cross-attention is then computed as:

CrossAttention(Qdecoder, Kencoder, Vencoder) = softmax
(

QdecoderK
⊤
encoder√

dk

)
Vencoder

(4.12)
This ensures that the decoder generates commands that are grounded in the 3D spa-

tial context of the scene by focusing on relevant features from the point cloud data. Fig-
ure 1.3 and Figure 1.4 illustrate the workings of both self-attention and cross-attention
in my model.

Masking

Masking is used in my 3D reconstruction model to provide appropriate sequential pro-
duction of commands and relevant feature selection for both self-attention and cross-
attention mechanisms.

Masking in self-attention guarantees that the decoder does not pay heed to subse-
quent tokens when making an autoregressive prediction about the next instruction. The
following is how the masking operation is used:

MaskedSelfAttention(Qdecoder, Kdecoder) = softmax
(

QdecoderK
⊤
decoder√

dk
+ mask

)
Vdecoder

(4.13)
In cross-attention, masking ensures that only relevant parts of the encoded point

cloud data are attended to. By doing this, the model is kept from concentrating on
portions of the input that are not relevant, guaranteeing precise command creation
based on spatial properties. The calculation of the masked cross-attention is:

MaskedCrossAttention(Qdecoder, Kencoder) = softmax
(

QdecoderK
⊤
encoder√

dk
+ mask

)
Vencoder

(4.14)
These masking mechanisms help ensure the model attends to the correct tokens and

features at each step of the generation process.

4.2.3 Feedforward Network and Final Output

In the model, after the attention layers, a feedforward network projects the input tensor
from R512 to R2048, applies ReLU activation, and then projects it back to R512:

FeedForward(x) = W2(ReLU(W1x)) (4.15)

Each transformer layer normalizes and applies residual connections between the input
and the outputs of the self-attention, cross-attention, and feedforward layers.

4.2. Language Decoder 37

The final output of the decoder consists of two linear transformations: one for predict-
ing command probabilities and one for predicting associated parameters. The command
layer calculates the probability distribution over the command vocabulary:

command_probs = softmax(Wcommand · x) (4.16)

The parameter layer calculates the associated parameters of the architectural ele-
ments:

parameter_probs = tanh(Wparam · x) (4.17)

Finally, the output is mapped from 512 to 11 (5 commands + 6 parameters) using a
linear layer:

final_output = Linear(Wfinal · x) (4.18)

4.2.4 Optimized Parameter Prediction

The model was initially designed to predict, for each command, seven parameters com-
prising identifiers and spatial properties. For every command, such as make_wall, make_door,
and make_window, it was predicting parameters of the form wall0_id and wall1_id of
doors and windows. This wasn’t necessary, since wall identifiers can always be gathered
from the spatial relations between different architectural elements.

The strategy was then optimized to predict six key parameters for every architectural
feature except the identifiers of the wall for doors and windows. In this setup, the model
focuses on:

• make_wall: {id, pos_x, pos_y, angle, width, height}

• make_door and make_window: {id, pos_x, pos_y, pos_z, width, height}

The parameters for walls define the essential spatial and structural properties:

• id: A unique identifier for the wall.

• pos_x, pos_y: The x and y coordinates of the wall’s position, defining the hori-
zontal location of the wall in the scene.

• angle: The orientation angle of the wall relative to the coordinate system, defining
the wall’s rotation.

• width: The width of the wall, representing its horizontal extent.

• height: The height of the wall, with the assumption that walls are straight and
aligned with gravity (i.e., vertical).

The parameters of each command specify their spatial properties and dimensions:

38 Work Development and Results

• id: A unique identifier for the door or window.

• pos_x, pos_y, pos_z: The x, y, and z coordinates represent the center of the door
or window, defining its exact location in the 3D space.

• width: The width of the door or window, defining its horizontal extent.

• height: The height of the wall, door, or window, specifying its vertical extent.

The model uses spatial proximity to infer the relationship between doors, windows,
and walls, hence making the process of prediction more effective. The wall association
for doors and windows is done based on their predicted positions and their distances
to the walls, without explicit prediction of wall IDs. For example, given the predicted
coordinates (xd, yd, zd) of a door or window, select the closest wall based on the minimum
distance dmin.

This optimization reduces redundancy to its minimum and the prediction mechanism
is simplified.

4.2.5 Output Format

Scenes are stored as JSON files, where each object is saved in OBJ format. This stream-
lines the process, enabling other simulation platforms to directly include the scenes in
their environment with ease as shown in Figure: 4.2.

4.3 Training

4.3.1 Voxel Size

Voxel size is a significant hyperparameter when training. The voxel size decides the
resolution at which point cloud data is processed. First, I tried using the voxel size
values 0.03, 0.04, and 0.05 for 20 epochs each with a batch size of 1. The rates of
convergence were about the same for all these values of voxel size. As can be seen from
Figure: 4.3, the loss function has similar converging rates for all the tested voxel sizes.
However, voxel size 0.04 gives an optimal tradeoff between keeping sufficient resolution
and saving memory consumption.

Voxel size controls the amount of detail the model can capture in the point cloud.
Smaller voxel sizes increase resolution, but demand higher memory and computation
since the number of voxels Nvox grows exponentially with smaller voxel sizes:

Nvox = 1
voxel size3 (4.19)

For example, a reduction of the voxel size from 0.05 to 0.04 increases the number of
voxels by approximately 50

Nvox(0.05) = 1
0.053 = 8, 000, Nvox(0.04) = 1

0.043 = 15, 625 (4.20)

4.3. Training 39

Figure 4.2: Meshes rendered in PyCram, enabling smooth integration into simulation
environments [1].

Figure 4.3: Loss convergence rates for three different voxel sizes, 0.03, 0.04, 0.05 over 20
epochs. All of them have a similar convergence rate.

40 Work Development and Results

For example, further reducing it to 0.03 would have an exponential growth of usage
in memory and very long training time without yielding proportional benefits in scene
reconstruction accuracy.

A voxel size of 0.04 offered a good tradeoff: the algorithm preserved enough geometric
detail from the point cloud while maintaining reasonable memory and computational re-
quirements. Using smaller voxel sizes allows for the capture of finer details; however, this
comes at a higher computational cost that is not justified by the minimal improvements
in model performance.

Thus, 0.04 was chosen to strike the best balance between capturing detail during
training and computational efficiency for the voxel size.

4.3.2 Model Training

The model was first fit too closely to one scene to ensure it could learn and reconstitute
the spatial relationships and commands specific to that particular scene. This overfitting
experiment offered verification that the architecture worked the way it should: the model
performed satisfactorily in the prediction of commands and their relative parameters
across the scene it had been trained on. The ground truth sequence of commands was
very similar, and the structural information of the scene was captured well by the 3D
reconstruction from these predictions. Figure: 4.4 consists of a graph showing loss during
overfitting along with the rendered ground truth and predicted scenes.

Figure 4.4: Plot showing the model’s loss during overfitting on a single scene, along with
the rendered ground truth (top) and prediction (bottom)

Validated through this overfitting test, the model was trained for a dataset of 4000
scenes both in point clouds and scene script format. Training on batch size 32 with
the Adam optimizer, and a learning rate of 0.0001, a step learning rate scheduler that
reduced the learning rate by half every 10 epochs. The loss function consisted of two

4.4. Results 41

parts: cross-entropy loss for predicting the categorical commands and mean squared
error (MSE) for the continuous parameters. The training time for the model was 6 days
13 hours.

4.3.3 Testing

During testing, the model is evaluated on 50 unseen scenes, inputting only the point
cloud without its corresponding scene script. A START token is given first to initiate
an autoregressive generation process of a sequence of commands, one step at a time. In
each step, the model predicts a command with its corresponding parameters; the process
continues until a STOP token is predicted, which signals the end of the scene description.

Each predicted command will correspond to six parameters, which include spatial
position, dimension, and orientation of the architectural elements. The object ID is the
first among these six parameters and is predicted as a float then converted into an
int for use in the scene reconstruction. These are the parameters that will describe
the geometric properties of objects. Since the model was trained on normalized scripts,
the output script that will be predicted would also be normalized thus keeping the
parameters all consistent in scale.

Once generated, the scene is rendered by taking as input the predicted commands
and normalized parameters with the object ID converted to an int. In this manner, it
will be possible to evaluate whether the model can infer complete and accurate scene
descriptions solely from point cloud input in the absence of supervision from scene scripts
at test time. The quality of the model’s prediction is considered by the similarity of the
generated sequence to the structure of the real scene.

The testing duration varies significantly based on scene complexity, ranging from
approximately 17 seconds for simple scenes to around 54 seconds for more complex
indoor layouts.

4.4 Results

4.4.1 Quantitative Evaluation

To test the accuracy of the layout estimation, I used the entity distance metric (dE)
using Hungarian matching and then compared the performance of my model to Scene-
Script. The dE is defined as the maximum Euclidean distance between the corners of
corresponding entities (walls, doors, and windows) from the ground truth and predic-
tions:

dE(E, E′) = max{||ci − c′
π(i)|| : i = 1, . . . , 4} (4.21)

Where π(i) is the permutation found via Hungarian matching.
The metrics used to evaluate the model’s performance are:

• F1 Score @ Threshold: The F1 score at a fixed entity distance threshold.

42 Work Development and Results

• Average F1 Score: Computed across multiple thresholds, averaged over the
dataset.

• PSNR (Peak Signal-to-Noise Ratio): Measures reconstruction quality by
comparing the maximum signal to error ratio.

• LPIPS (Learned Perceptual Image Patch Similarity): Assesses perceptual
differences based on deep features.

The table below compares the results of the model against those reported for Scene-
Script [4]:

Method F1 @ 5cm Wall (F1 Avg) Door (F1 Avg) Window (F1 Avg)
SceneScript 0.930 0.843 0.811 0.692
My Model 0.815 0.815 0.698 0.610

Table 4.1: Comparison of F1 scores between SceneScript and my model using point cloud
data.

According to Table: 4.2, the model’s PSNR score of 27.65 dB suggests that it can
accurately recreate scenes with an acceptable level of visual fidelity. A higher PSNR
indicates less noise and a closer match to the ground truth, indicating that the model
accurately captures and predicts spatial elements like windows, doors, and walls. This
degree of accuracy suggests that the model works well in applications like interior nav-
igation systems and architectural modeling, where upholding precise and unambiguous
geometry is essential.

Also, the LPIPS score of 0.2895, while acceptable, highlights perceptual differences
that can arise in areas with complex geometry or cluttered data, such as overlapping
entities or densely packed spaces. This score shows that, although the model performs
well overall, there are still subtle inconsistencies in fine structural details that need
refinement.

Metric Value
PSNR (Point Cloud) 27.6541 dB
LPIPS (Point Cloud) 0.2895

Table 4.2: Performance metrics of the model using point cloud data.

These results point to how well the model performs on robust 3D reconstruction even
with sparse data input. That is to say, the model generalizes well to different indoor
scenes, predicts accurate spatial layouts, and may also maintain important features
despite inherent challenges like occlusion and clutter. Further tuning and refinement are
necessary, especially for elaborate and densely packed areas, to achieve higher fidelity
reconstructions.

4.4. Results 43

These accuracy metrics demonstrate both the possibility of the model for practical
applications and further work, especially on the accuracy of fine-grained structural de-
tails. It is also anticipated that these insights will form a guide for further improvement
and enhancement of the model in the future.

4.4.2 Qualitative Results

The model-generated 3D scenes, which are constructed using point cloud inputs, range
in complexity. Figure 4.5 depicts simple room layouts with a single door or window,
proving the model’s accuracy in basic architectural setups.

In Figure: 4.6, the model successfully reconstructs rooms with multiple doors and
windows, showing its adaptability to more intricate setups.

More complex configurations are illustrated in Figure: 4.7, revealing the model’s
capability to reconstruct scenes with several spatial relationships and objects positioned
closely together.

While the model accurately depicts the overall structure, tightly packed or small
places pose difficulties. Overlaps between things such as doors and windows as seen
in Figure: 4.8 indicate limitations in voxelization. Although this procedure is efficient,
it may reduce spatial precision when numerous objects are closely aligned. The voxel
size utilized may be insufficient to distinguish between these near objects, resulting in
overlap mistakes. This constraint highlights the necessity for a more flexible voxel size
that may change dynamically depending on object density in the scene.

Moreover, the dataset’s diversity plays a crucial role. A lack of varied examples
of densely packed configurations may limit the model’s learning capability, preventing
it from accurately distinguishing adjacent entities. For instance, the model may fail
to generalize effectively in scenes where architectural elements are tightly positioned,
resulting in misalignments.

The attention mechanism, which detects spatial correlations, may also underperform
in such instances. If the attention focus is too broad, it can obscure those small distinc-
tions required to recreate tight spaces accurately. In certain cases, the attention may
fail to detect precise boundaries, leading to overlapping predictions or inaccurate spatial
relationships.

These findings highlight areas for future research, such as increasing the dataset to
include more examples of complicated layouts and fine-tuning the attention mechanism
to balance broad spatial context with localized precision. Addressing these difficulties
could significantly improve the model’s accuracy in reconstructing dense and complex
indoor environments.

These findings highlight possibilities for development, such as expanding the dataset
to include additional examples of complex layouts and fine-tuning the attention mecha-
nism to balance broad spatial context with localized precision. Addressing these concerns
could greatly improve the model’s accuracy in reconstructing dense and complicated in-
door environments.

Despite these minor flaws, the visual results demonstrate the model’s ability to gener-
ate coherent and visually realistic images from minimal input data. The model’s capacity

44 Work Development and Results

Ground Truth Prediction

(a) Ground Truth 1 (b) Prediction 1

(c) Ground Truth 2 (d) Prediction 2

(e) Ground Truth 3 (f) Prediction 3

(g) Ground Truth 4 (h) Prediction 4

Figure 4.5: Predicted vs. ground truth layouts for simple room configurations.

4.4. Results 45

Ground Truth Prediction

(a) Ground Truth 1 (b) Prediction 1

(c) Ground Truth 2 (d) Prediction 2

(e) Ground Truth 3 (f) Prediction 3

(g) Ground Truth 4 (h) Prediction 4

Figure 4.6: Predicted vs. ground truth for moderately complex room configurations.

46 Work Development and Results

Ground Truth Prediction

(a) Ground Truth 1 (b) Prediction 1

(c) Ground Truth 2 (d) Prediction 2

(e) Ground Truth 3 (f) Prediction 3

(g) Ground Truth 4 (h) Prediction 4

(i) Ground Truth 5 (j) Prediction 5

Figure 4.7: Qualitative results of complex room layouts showcasing effective scene re-
construction.

4.4. Results 47

Ground Truth Prediction

(a) Ground Truth 1 (b) Prediction 1

(c) Ground Truth 2 (d) Prediction 2

(e) Ground Truth 3 (f) Prediction 3

(g) Ground Truth 4 (h) Prediction 4

Figure 4.8: Examples of overlapping objects in complex scenes.

48 Work Development and Results

to infer spatial relationships and structure 3D spaces with great fidelity demonstrates
its suitability for a wide range of indoor layouts. These qualitative findings support the
model’s strengths while also highlighting areas for improvement in complicated spatial
configurations.

4.5 Limitations
Despite the model’s success in 3D reconstruction from point clouds, several limitations
need to be highlighted:

4.5.1 Trade-offs with Sparse Input Data

The reliance on point cloud data, while advantageous for direct 3D spatial representation,
has problems. Sparse input data lacks detail in particular places, resulting in missing
or incorrectly represented elements during reconstruction. For instance, when areas of
the point cloud have fewer points due to occlusions or incomplete scanner trajectories,
the model fails to properly infer information about missing parts. This sparsity creates
gaps or inconsistencies in the results, especially over minor features such as door frames
or narrow corridors.

Furthermore, sparse data requires a trade-off between detail and computing efficiency.
Higher voxel resolution captures more detail, but it also consumes more memory and
takes longer to process. Finding the proper voxel size was crucial, as higher resolutions
became impracticable for real-time applications, while lower resolutions reduced detail
fidelity.

4.5.2 Assumption of Orthogonal Structures

The model operates under the assumption that walls and ceilings are aligned orthog-
onally to the z-axis. While this works well for standard architectural designs, it may
limit the model’s generalization to non-standard features such as curved walls or sloped
ceilings, which are common in modern architecture. Although this particular limitation
has not been tested, reliance on voxelization processes that convert point clouds into
grid structures would insinuate that the model might over-simplify such non-rectilinear
forms and hence could be inaccurate for such scenarios.

4.5.3 Dependence on Normalization

Normalization of input values is essential for model stability and accuracy. Early exper-
iments with unnormalized scripts revealed that parameter loss spikes significantly when
values aren’t scaled appropriately. As shown in Figure: 4.9, the model’s architecture,
which handles command prediction effectively through discrete classifications, struggles
with continuous parameter values unless they are normalized to a consistent scale. This
indicates a limitation in handling variability and suggests that, without normalized in-
puts, the model’s robustness is compromised.

4.5. Limitations 49

Figure 4.9: Plot showing the spike in loss when training with unnormalized scripts.

4.5.4 Generalization to Complex Geometries

The dataset used to train the model lacks diverse examples of non-orthogonal and com-
plex geometries, such as arches or curved surfaces. Consequently, the model’s ability to
generalize beyond standard, rectilinear architectures is limited. For scenes with intricate
layouts or varying angles, the attention mechanism may fail to capture the necessary
spatial relationships accurately, leading to oversimplifications in the output. Enhancing
the dataset with diverse architectural features and expanding the training scope could
potentially mitigate this limitation.

4.5.5 Overlapping and Densely Packed Features

The model shows difficulty in accurately reconstructing scenes with closely positioned
or overlapping features. As demonstrated in earlier results, when multiple elements
like doors and windows are packed in a small area, voxelization resolution may not be
sufficient to distinguish between these objects precisely, resulting in overlaps or mis-
alignments. This issue is also related to the shortage of diverse training data for densely
packed environments, whereby models do not see enough examples to learn from and
generalization is poorer in such cases.

The limitation of the model, in turn, points out that it is hard to find a good balance
between voxel resolution and sparsity of data and generalize on complicated architectural

50 Work Development and Results

aspects. Addressing these concerns would include improving both the dataset and the
model’s design to boost resilience and flexibility.

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusion . 51
5.2 Future Work . 52

In this chapter, the conclusions of the work, as well as its future extensions are shown.

5.1 Conclusion

This thesis proposes a methodology for 3D scene reconstruction utilizing point cloud
data, proving the efficacy of neural network-based, organized command generation in
producing correct architectural layouts. The model efficiently converts point clouds into
a series of commands, recreating critical features like walls, doors, and windows with
excellent structural accuracy.

The key findings reveal that the model achieves great perceptual and structural ac-
curacy over a wide range of indoor settings, as evidenced by quantitative measurements.
The effective reconstruction of large-scale architectural components demonstrates the
model’s ability to generalize across contexts while minimizing error rates. The suggested
approach is also scalable, as it automates the reconstruction process for complicated sit-
uations without requiring considerable manual intervention.

The model effectively solves the research challenges by utilizing sparse 3D data to
recreate major structural features such as walls, doors, and windows across a variety of
contexts. It meets the goals of scalability and automation by managing a wide range
of architectural challenges with minimal involvement. This feature proves the model’s
applicability in a wide range of complicated circumstances.

51

52 Conclusions and Future Work

Despite these achievements, constraints persist. The model struggles with fine-
grained geometric details, especially in densely packed places, and its current reliance on
voxelized input restricts its capacity to handle non-standard, curved geometries. These
limitations point to future work in two directions: improving the capabilities of the
model in capturing fine details and being adaptable to various input formats for practi-
cal applicability.

This thesis presented a robust, scalable system for fully automated 3D indoor recon-
struction; its promising applications include architectural modeling, robotics, and VR.
Future enhancement is intended to increase the model’s flexibility and accuracy to be
helpful in a real-world application.

5.2 Future Work
Future work can take this model and its capabilities further in a number of directions:

One of the key directions is auto-structured command generation. It is noted that in
the current ASE dataset, language commands are pre-defined by humans. In future work,
it may apply self-supervised learning or reinforcement learning to enable the model to
learn on its own the relations of objects concerning each other and generate structured
commands. This will lower the dependency on predefined rules and make the model
adaptable under diverse conditions.

The model can also be extended to dynamically identify and predict additional object
classes. For instance, categories present in the ASE dataset, which includes a total of
20 classes, can be seamlessly integrated into the model’s prediction framework. It will
then be able to generate additional commands such as:

make_chair(position_x, position_y, position_z, width, height, length)

This could be extended by adding an extra layer of commands in the decoder that
could predict furniture-like objects, adding these commands to both the predicted and
ground truth scripts when training. That way, this extension allows the model to gen-
erate indoor scenes with more detail, complete with reconstructions beyond mere archi-
tectural elements of walls, windows, and doors.

Being able to handle more complex structures like a curved wall and sloped ceilings
would greatly enhance the usability of the model. This is not explicitly tested, but
adding new command types like:

make_curved_wall(a_x, a_y, a_z, b_x, b_y, b_z, c1_x, c1_y, c2_x, c2_y, height, thickness)

With parameters such as Bezier control points, this will allow the model to rebuild
the surface correctly, be it a curve or non-planar surface. Future datasets with such
structures would be needed in training the model on how to identify and process such
features effectively in increasing the flexibility of the model and expanding the range of
applications.

5.2. Future Work 53

Another promising direction is to develop a model that directly predicts un-normalized
values, which essentially enables the model to operate on an absolute scale without re-
quiring normalized input data. This would enable the model to directly produce real-
world dimensions and positions and, therefore, be applicable on a wide range of scales
without any further post-processing. The normalization included as part of learning by
the model would, therefore, bridge gaps between scaled and unscaled data and enable
the model to intrinsically understand and predict real-world measurements.

Another important future direction is the application of the model to real-time 3D
reconstruction in robotics. This includes the optimization of the model for real-time in-
ference and the integration with robotic systems that may enable an on-the-fly 3D scene
understanding and navigation, which is a core factor in autonomous robots operating
within dynamic environments. This would involve incorporating real-time data stream-
ing and improving computational efficiency by allowing the model to operate within
hardware constraints on robotic platforms.

Moreover, this can also be used for interactive scene reconstruction with AR, en-
hancing its usability. By allowing real-time interaction with users, it can adapt the
model to modify and refine the reconstructions of users while they are being generated.
Such integration of AR technologies allows various applications in the fields of interior
design, architectural visualization, and robotics, where there is a need for user input and
immediate feedback.

These potential future works will further extend the model’s accuracy and function-
ality for tremendous opportunities for both practical and theoretical advancement of the
technologies involved in 3D reconstruction.

Bibliography

[1] Pycram. Available at: Link.

[2] M. Zollhöfer S. Izadi A. Dai, M. Nießner and C. Theobalt. Bundlefusion - real-time
globally consistent 3d reconstruction using on-the-fly surface reintegration. ACM
Transactions on Graphics (2017). DOI: 10.1145/3054739.

[3] A. Adan and D. Huber. 3d reconstruction of interior wall surfaces under occlusion
and clutter, 2011. DOI: 10.1109/3DIMPVT.2011.42.

[4] A. Avetisyan and C. et al. Xie. Scenescript: Reconstructing scenes with an autore-
gressive structured language model, 2024. DOI: 10.48550/arXiv.2403.13064.

[5] S. Becker. Generation and application of rules for quality dependent façade recon-
struction, 2009. DOI: 10.1016/j.isprsjprs.2009.06.002.

[6] S. Becker, M. Peter, and D. Fritsch. Grammar-supported 3d indoor recon-
struction from point clouds for “as-built” bim, 2015. Vol. 1, pp. 17–24, DOI:
10.5194/isprsannals-II-3-W4-17-2015.

[7] S. Becker, M. Peter, D. Fritsch, D. Philipp, P. Baier, and C. Dibak. Combined
grammar for the modeling of building interiors, 2013. DOI: 10.5194/isprsannals-II-
4-W1-1-2013.

[8] A. Budroni and J. Boehm. Automated 3d reconstruction of interiors from point
clouds, 2010. pp. 55–73, DOI: 10.1260/1478-0771.8.1.55.

[9] O. Cameron. An introduction to lidar: The key self-driving car sensor., 2017. Link.

[10] J. Chen and B. Chen. Architectural modeling from sparsely scanned range data.,
2008. DOI: 10.1007/s11263-007-0105-5, pp. 223–236.

[11] L. Diaz-Vilarino, K. Khoshelham, J. Martínez-Sánchez, and P. Arias. Modeling
of building indoor spaces and closed doors from imagery and point clouds, 2015.
3491–3512, DOI: 10.3390/s150203491.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
and Gelly et. al. An image is worth 16x16 words: Transformers for image recognition
at scale, 2020. DOI: 10.48550/arXiv.2010.11929.

55

https://github.com/cram2/pycram.git
https://doi.org/10.1145/3054739
https://doi.org/10.1109/3DIMPVT.2011.42
https://doi.org/10.48550/arXiv.2403.13064
https://doi.org/10.1016/j.isprsjprs.2009.06.002
https://doi.org/10.5194/isprsannals-II-3-W4-17-2015
https://doi.org/10.5194/isprsannals-II-4-W1-1-2013
https://doi.org/10.5194/isprsannals-II-4-W1-1-2013
https://doi.org/10.1260/1478-0771.8.1.55
https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff
https://doi.org/10.1007/s11263-007-0105-5
https://doi.org/10.3390/s150203491
https://doi.org/10.48550/arXiv.2010.11929

56 Bibliography

[13] C. Frueh, S. Jain, and A. Zakhor. Data processing algorithms for generating tex-
tured 3d building facade meshes from laser scans and camera images, 2005. DOI:
10.1023/B:VISI.0000043756.03810.dd.

[14] M. Goetz and A. Zipf. Indoor route planning with volunteered geographic informa-
tion on a (mobile) web-based platform, in: Krisp, j.m. (ed.), progress in location-
based services, lecture notes in geoinformation and cartography. springer berlin
heidelberg, pp. 211–231. DOI: 10.1007/978-3-642-34203-512.

[15] Claus Nagel Karl-Heinz Häfele Gröger, Thomas H. Kolbe. Geography markup lan-
guage (citygml) encoding standard. Link.

[16] G. Gröger and L. Plümer. How to achieve consistency for 3d city models, 2009. 15,
137–165, DOI: 10.1007/s10707-009-0006-7.

[17] ISO. Iso 16739-1:2018. Link.

[18] F. M. Moreno-D. Cruzado F. García J. Beltrán, C. Guindel and A. de la Escalera. A
3d object detection framework from lidar information. ITSC (2018). pp. 3517–3523,
DOI: 10.1109/itsc.2018.8569311.

[19] P. Jenke, B. Huhle, and W. Straßer. Statistical reconstruction of indoor scenes,
2009. Available at: Link.

[20] K. Khoshelham and L. Diaz-Vilarino. 3d modeling of interior spaces: Learning the
language of indoor architecture, 2014. DOI: 10.5194/isprsarchives-XL-5-321-2014.

[21] Li K.-J. Zlatanova S.-Kolbe T.H. Nagel C. Becker T. Lee, J. Indoorgml [www
document]. Link.

[22] M. Levoy and K. Pulli. The digital michelangelo project: 3d scanning of large
statues (presentation slides)., 2000. Link.

[23] C. Mura, O. Mattausch, A. Jaspe Villanueva, E. Gobbetti, and R. Pajarola. Au-
tomatic room detection and reconstruction in cluttered indoor environments with
complex room layouts, 2014. Vol. 44, pp. 20–32, DOI: 10.1016/j.cag.2014.07.005.

[24] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural modeling
of buildings, 2006. DOI: 10.1145/1179352.1141931.

[25] P. Müller, G. Zeng, P. Wonka, and L. Van Gool. Image-based procedural modeling
of facades, 2007. DOI: 10.1145/1276377.1276484.

[26] S. Ochmann, R. Vock, R. Wessel, and R. Klein. Automatic reconstruction of
parametric building models from indoor point clouds, 2016. pp. 94–103. DOI:
10.1016/j.cag.2015.07.008.

https://doi.org/10.1023/B:VISI.0000043756.03810.dd
https://doi.org/10.1007/978-3-642-34203-5_12
https://api.semanticscholar.org/CorpusID:196068957
https://doi.org/10.1007/s10707-009-0006-7
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/03/70303.html
https://doi.org/10.1109/itsc.2018.8569311
https://dspace.zcu.cz/items/786f8c28-f290-4e36-bab8-04cc24a2ba76
https://doi.org/10.5194/isprsarchives-XL-5-321-2014
http://docs.opengeospatial.org/is/14-005r3/14-005r3.html#12
https://graphics.stanford.edu/talks/DigMich.html
https://doi.org/10.1016/j.cag.2014.07.005
https://doi.org/10.1145/1179352.1141931
https://doi.org/10.1145/1276377.1276484
https://doi.org/10.1016/j.cag.2015.07.008

Bibliography 57

[27] S. Oesau, F. Lafarge, and P. Alliez. Indoor scene reconstruction using fea-
ture sensitive primitive extraction and graph-cut, 2014. pp. 68–82, DOI:
10.1016/j.isprsjprs.2014.02.004.

[28] B. Okorn, X. Xiong, B. Akinci, and D. Huber. Toward automated modeling of floor
plans, 2010. DOI: 10.3390/app10082817.

[29] B. Curless-S. Rusinkiewicz D. Koller L. Pereira M. Ginzton S. E. Anderson J. Davis
J. Ginsberg J. Shade P. M. Levoy, K. Pulli and D. Fulk. The digital michelangelo
project - 3d scanning of large statues. pp. 131-144. DOI: 10.1145/344779.344849.

[30] M. Previtali, L. Barazzetti, R. Brumana, and M. Scaioni. Towards automatic indoor
reconstruction of cluttered building rooms from point clouds, 2014. 281–288, DOI:
10.5194/isprsannals-II-5-281-2014.

[31] O. Hilliges-D. Molyneaux D. Kim A. J. Davison P. Kohli J. Shotton S. Hodges
R. A. Newcombe, S. Izadi and A. W. Fitzgibbon. Kinectfusion - real-time dense
surface mapping and tracking. ISMAR (2011). pp. 127–136, DOI: 10.1109/IS-
MAR.2011.6092378.

[32] R.B. Rusu, Z.C. Marton, N. Blodow, A. Holzbach, and M. Beetz. Model-based and
learned semantic object labeling in 3d point cloud maps of kitchen environments,
2009. DOI: 10.1109/IROS.2009.5354759.

[33] V. Sanchez and A. Zakhor. Planar 3d modeling of building interiors from point
cloud data, 2012. pp. 1777–1780, DOI: 10.1109/ICIP.2012.6467225.

[34] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for point-cloud shape detection,
2007. pp. 214–226, DOI: 10.1111/j.1467-8659.2007.01016.x.

[35] G. Stiny and J. Gips. Shape grammars and the generative specification of painting
and sculpture, 1971. DOI: https://dblp.org/rec/conf/ifip/StinyG71.bib.

[36] G. Stiny, W.J. Mitchell, et al. The palladian grammar, 1978. DOI: 10.1068/b050005.

[37] H. Tang, Z. Liu, X. Li, Y. Lin, and S. Han. Torchsparse: Efficient point cloud
inference engine, 2022. Available at: https://torchsparse.mit.edu/.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need, 2017. DOI: 10.48550/arXiv.1706.03762.

[39] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture, 2003.
DOI: 10.1145/1201775.882324.

[40] J. Xiao and Y. Furukawa. Reconstructing the world’s museums, 2014. DOI:
10.1007/s11263-014-0711-y.

https://doi.org/10.1016/j.isprsjprs.2014.02.004
https://doi.org/10.3390/app10082817
https://doi.org/10.1145/344779.344849
https://doi.org/10.5194/isprsannals-II-5-281-2014
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/IROS.2009.5354759
https://doi.org/10.1109/ICIP.2012.6467225
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://dblp.org/rec/conf/ifip/StinyG71.bib
https://doi.org/10.1068/b050005
https://torchsparse.mit.edu/
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1145/1201775.882324
https://doi.org/10.1007/s11263-014-0711-y

58 Bibliography

[41] X. Xiong, A. Adan, B. Akinci, and D. Huber. Automatic creation of semanti-
cally rich 3d building models from laser scanner data, 2013. pp. 325–337, DOI:
10.1016/j.autcon.2012.10.006.

[42] Aditya Khosla Fisher Yu Linguang Zhang Xiaoou Tang Jianxiong Xiao Zhirong Wu,
Shuran Song. 3d shapenets: A deep representation for volumetric shapes. DOI:
10.48550/arXiv.1406.5670.

https://doi.org/10.1016/j.autcon.2012.10.006
https://doi.org/10.48550/arXiv.1406.5670

A
p

p
e

n
d

ix A
List of Abbreviations

Abbreviation Full Term
AR Augmented Reality
ASE Aria Synthetic Environments
BIM Building Information Modeling
CGA Computer Generated Animation
CityGML, LoD4 City Geography Markup Language, Level of Detail 4
CSG Constructive Solid Geometry
dE Entity distance metric
GIS Geographic Information System
GPU Graphics Processing Unit
IFC Industry Foundation Classes
IndoorGML Indoor Geographic Markup Language
IndoorOSM Indoor OpenStreetMap
JSON JavaScript Object Notation
LPIPS Learned Perceptual Image Patch Similarity
L-systems Lindenmayer Systems
OGC Open Geospatial Consortium
PSNR Peak Signal-to-Noise Ratio
RANSAC Random Sample Consensus
ReLU Rectified Linear Unit
SDFs Signed Distance Fields
SVM Support Vector Machine
ViTs Vision Transformers
VGI Volunteered Geographic Information
VR Virtual Reality

59

60 List of Abbreviations

XML eXtensible Markup Language

A
p

p
e

n
d

ix B
Source Code

The code for this project can be found at the following GitHub repository: https:

//github.com/MariaSaleem6571/3d_SceneScript.git.
The TorchSparse Library can be accessed here: https://github.com/mit-han-lab/

torchsparse.git

61

https://github.com/MariaSaleem6571/3d_SceneScript.git
https://github.com/MariaSaleem6571/3d_SceneScript.git
https://github.com/mit-han-lab/torchsparse.git
https://github.com/mit-han-lab/torchsparse.git

	Contents
	Introduction
	Work Motivation
	Related Work
	Research Question
	Objectives
	Training Dataset
	Environment and Initial State

	Planning and Resources Evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	System Architecture

	Work Development and Results
	Point Cloud Processing
	Language Decoder
	Training
	Results
	Limitations

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography
	List of Abbreviations
	Source Code

