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Abstract— Autonomous underwater navigation faces signif-
icant challenges due to the complexity of the environment,
limited localization methods, and poor visibility. This paper
investigates the performance of various reinforcement learn-
ing (RL) algorithms—Proximal Policy Optimization (PPO),
Trust Region Policy Optimization (TRPO), Soft Actor-Critic
(SAC), Twin Delayed DDPG (TD3), and Advantage Actor-Critic
(A2C)—to improve navigation capabilities of low-cost under-
water robots equipped with multi-modal sensors. Advanced
depth estimation models such as MiDaS and Depth Anything,
combined with domain randomization techniques, are employed
to enhance the system’s robustness and generalization across
varying underwater conditions.

The proposed approach integrates real-time sensor data and
historical actions to enable 3D maneuvering in simulated envi-
ronments, leading to significant improvements in sensor fusion,
depth perception, and obstacle avoidance. Simulation results
demonstrate that the combination of RL techniques with sensor
fusion considerably improves mapless autonomous underwater
exploration, providing a robust solution for navigating unstruc-
tured aquatic environments. The complete implementation is
available in an open-source repository.

I. INTRODUCTION

The exploration of underwater environments is a vital yet
complex task, hindered by challenges like limited visibility,
complex terrains, and unpredictable conditions [1], [2], [3].
Autonomous Underwater Vehicles (AUVs) and Remotely
Operated Vehicles (ROVs) have emerged as key solutions,
offering safe and cost-effective alternatives for aquatic ex-
ploration and data collection. Despite technological advance-
ments, reliable and efficient underwater navigation remains
a critical challenge, primarily due to the limitations of con-
ventional sensor-based methods and localization techniques
[4], [5].

Recent developments in RL, particularly Deep Reinforce-
ment Learning (DRL), have introduced promising solutions
to these challenges by enabling robots to learn and adapt
autonomously to dynamic environments [6], [7], [8]. DRL’s
ability to optimize complex decision-making processes ren-
ders it suitable for addressing the unpredictable nature of un-
derwater environments. However, many current approaches
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struggle to integrate multi-sensor data efficiently and to
ensure generalizability across varied conditions [9], [10].

This research focuses on addressing these limitations by
evaluating the performance of several advanced DRL algo-
rithms— PPO, TRPO, SAC, TD3, and A2C—in enhancing
the navigation of low-cost underwater robots. Furthermore,
by incorporating multi-modal sensor fusion and domain ran-
domization techniques, we aim to improve both robustness
and adaptability, which are crucial for real-time underwater
exploration [11]. Specifically, our work leverages recent ad-
vancements in depth estimation models, such as MiDaS and
Depth Anything, to enhance depth perception in underwater
navigation systems [12], [13].

Previous studies have primarily focused on using static
environments with simple sonar-based obstacle avoidance
methods, which often result in low resolution and inaccurate
obstacle detection, limiting their effectiveness in real-world
applications [3], [14]. The integration of DRL with advanced
sensor fusion overcomes these limitations by combining the
strengths of multiple sensor inputs, thus enhancing naviga-
tional capabilities in dynamic and unstructured underwater
environments [15], [7].

This paper contributes to the field by offering a compar-
ative analysis of RL algorithms for underwater navigation,
demonstrating how combining DRL with sensor fusion can
significantly improve the performance of autonomous un-
derwater robots. The approach is tested and validated in a
controlled simulated environment, with results indicating su-
perior performance in terms of navigation accuracy, obstacle
avoidance, and robustness to environmental changes.

The paper is structured as follows: Section II provides a
detailed literature review, Section III describes the method-
ology used for policy optimization, Section IV presents the
proposed framework, and Section V the experimental result.
Finally, Section VI offers concluding remarks and future
directions.

II. LITERATURE REVIEW

The underwater domain has long been a challenge for
autonomous navigation due to limitations in sensor technol-
ogy and environmental complexity. Early solutions, primarily
sensor-based probabilistic planning techniques [16], were
designed for mobile ground robots and were later adapted to
AUVs using sonar for obstacle detection [17], [18]. However,
the inherent drawbacks of sonar, such as low resolution and
slow frame rates, have limited its effectiveness in real-time
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obstacle detection and avoidance, particularly in dynamic
underwater settings [19], [5].

In response to these challenges, heuristic-based meth-
ods (deterministic, non-deterministic, and evolutionary) have
been used to enhance path planning but struggle with the
unpredictable conditions of underwater environments [20],
[17]. Traditional systems relying on static maps and prede-
fined paths also limit adaptability to dynamic conditions and
real-time decision-making [21].

With the advent of DRL, model-free approaches like
TRPO and PPO have improved policy stability and explo-
ration, with PPO being favored for its balance of performance
and efficiency [22], [23]. Further advancements with SAC,
TD3 [24], and A2C [25] have enhanced sample efficiency
and addressed biases, but real-world adaptability remains
challenging. DRL solutions often rely on accurate sensor
data, and while multimodal sensor fusion helps, issues persist
with GPS or sonar accuracy in underwater contexts [6]. Most
approaches are confined to simulations, and generalization to
real-world conditions is problematic, leading to a significant
sim-to-real gap [26], [27].

Recent research has explored domain randomization to im-
prove model robustness across diverse environments, though
its application in underwater robotics is still limited. While
domain randomization has been effective in terrestrial and
aerial robotics [28], its use underwater remains relatively
unexplored. Liu et al. [15] have studied this for general
robotic navigation, but its specific application to underwater
environments is still lacking, as is a comparative analysis
with newer depth estimation models like Depth Anything
[29].

Our research addresses these gaps by systematically eval-
uating a range of DRL algorithms, incorporating multi-
modal sensor fusion, and leveraging domain randomization
to enhance robustness and adaptability in underwater en-
vironments. By integrating state-of-the-art depth estimation
models and focusing on real-time performance, our approach
aims to improve the generalizability of underwater navigation
systems, addressing the limitations identified in previous
works.

III. MODEL-FREE POLICY OPTIMIZATION WITH
DEEP REINFORCEMENT LEARNING

A. Observation & Action Space

The state of the robot is defined by the observation
vector at time step t, denoted Ot, including predicted image
depth, range measurements from the Single Beam Echo
Sounder (SBES) sensor, current relative goal position, and
past executed actions. The following key elements make up
this observation space:

1) Predicted Depth Image: oimageDepth,t ∈ R128×160

A matrix representing depth sensed by the robot, using
models MiDaS or Depth Anything, enabling perception
of distances to obstacles and terrain features.

2) SBES Range Measurement: orange,t ∈ R
A single value indicating the distance to the nearest
obstacle detected by a SBES.

3) Relative Goal Position: ogoal,t = [Dh,t, Dv,t, θh,t] ∈
R3

Defined by horizontal and vertical distances (Dh,t,
Dv,t) to the goal,and the yaw heading angle (θh,t)
difference.

4) Past Executed Actions: oaction,t ∈ R2

A vector recording the last actions taken by the robot,
providing historical context for current decisions.

These observations are stacked over a time window k to
capture the robot’s dynamics:

Ot = {oimageDepth,t−i, orange,t−i, ogoal,t−i, oaction,t−i}

for i = 0, 1, . . . , k − 1

The action space is defined as at = [vt,ωt] ∈ R2,
representing the vertical velocity and yaw angular velocity
of the robot. To ensure the agent learns adaptable behaviors
across various actions, the action space is normalized to
the range [-1.0, 1.0], which is linearly mapped to the fixed
velocity ranges of different platforms.

The action is then given by the policy:

at = π(Ot)

The goal is to find the optimal policy π∗ which maximizes
the navigation policy’s expected return over a sequence τ of
observations, actions, and rewards [15]:

π∗ = argmax
π

Eτ∼p(τ |π)

"X

t

γtrt

#

where γ ∈ [0, 1.0] is the discount factor. The optimal policy
would translate into a path that minimizes the travel time it
takes to the goal.

B. Sample Collection and Policy Update

The process of learning in our framework begins with the
collection of experience samples, where the agent interacts
with its environment, selecting actions based on its current
policy. These interactions (Ot, at, rt, Ot+1) are stored in a
replay buffer and used later for optimizing both the policy
and the value function.

TRPO: TRPO improves policy optimization by introduc-
ing a trust region that constrains the KL-divergence between
the new and old policies, ensuring stability during updates
[22]. The optimization problem in TRPO is formulated as:

max
θ

E
�
πθ(a|s)
πθold(a|s)

Â(s, a)

�
, s.t. E [DKL(πθold∥πθ)] ≤ δ

PPO: PPO optimizes the policy by constraining the size
of updates using a clipped objective function, which ensures
stability and prevents large deviations from the previous
policy [23]. The PPO loss function is defined as:

LPPO(θ) = Et

h
min

�
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

�i

where rt(θ) is the probability ratio of the new and old
policies, and Ât is the advantage estimate. The clipping
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mechanism ensures smoother policy updates and improves
training stability in complex underwater scenarios.

SAC: SAC introduces entropy regularization into the pol-
icy optimization, promoting exploration by encouraging the
agent to maintain a diverse set of actions [24]. The SAC
objective includes both reward maximization and entropy
maximization:

JSAC(π) = E [Q(st, at)− α log π(at|st)]

Here, α controls the trade-off between exploration
and exploitation, making SAC particularly effective in
environments with high uncertainty.

TD3: TD3 is an off-policy algorithm that reduces overes-
timation bias by employing two Q-networks [24]. The critic
update in TD3 is defined by:

yt = rt + γ min
i=1,2

Qθi(st+1,πϕ(st+1) + ϵ)

This conservatism in the critic update improves stability
in environments where overestimating Q-values can be detri-
mental to long-term policy performance.

C. Policy Update Process:

The training process involves drawing mini-batches from
the replay buffer and updating both a policy and value
networks to minimize their respective loss functions. The
policy loss is minimized to maximize the expected cumula-
tive reward:

Lπ = E [−Q(st, at)]

For the value network, the temporal difference (TD) error
is minimized using [30]:

LQ = E
h
(Q(st, at)− yt)

2
i
, yt = rt+γQ(st+1,π(st+1))

The combination of these updates ensures that the agent
learns an optimal policy that balances exploration and effi-
ciency.

IV. PROPOSED FRAMEWORK

The framework used to study the use of DRL in au-
tonomous underwater navigation consists of the following
components:

A. Agent Behavior

In our framework, an agent is tasked with navigating to
specified 3D waypoints while avoiding obstacles, adapting
to real-time environmental conditions. The behavior tree
(BT) of the agent is illustrated in Fig. 1. The core of the
agent’s operational framework is the MoveAgent function,
which executes movement decisions based on a learned
behavior conditioned on current observations. The movement
decision-making is modeled as a neural network whose
outputs control vertical and yaw angular velocities. The agent

moves forward constantly, adjusting its altitude according to
the immediate requirements of the environment.

Fig. 1: Behavior Tree of the Agent.

This behavior is determined by distance to nearest object
sensory inputs depth images, SBES measurements, and past
actions. By processing these inputs, the agent is able to
make continuous adjustments to its trajectory, ensuring safe
and efficient navigation. The agent is trained in a simulated
underwater environment designed with Unity ML-Agents,
offering realistic hydrodynamics and obstacles [31].

During training, the agent continuously explores the en-
vironment by following a policy that is updated based on
feedback from its interactions. Each action taken by the
agent leads to a new state, which is evaluated by the reward
function. These interactions allow the agent to learn from
its experiences and gradually improve its performance by
refining its policy using various DRL algorithms.

B. Reward Function

The reward function is structured to encourage progress
toward predefined navigation goals while penalizing
behaviors that may lead to collisions or inefficient
movement. Building upon principles from existing research
[15], our system introduces several modifications to cope
for specificity of our scenario. Unlike previous methods, we
refined this reward to better handle dynamic environments
with complex terrain variations and multi-directional
obstacles, making real-time navigation more adaptable. We
introduce the MovementIncentive (rmove,t) to reward
progress and exploration, and the RepetitionPenalty
(rrepeat,t) to discourage redundant actions, ensuring the
agent avoids stagnation or getting stuck.

Movement Incentive (rmovet )
To propel the agent towards dynamic exploration and

prevent stagnation, the Movement Incentive rewards positive
displacement.

rmovet =

(
+exploration incentive, if displacement < δstuck

0, otherwise
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Fig. 2: Network architecture.

This incentivizes the agent to initiate and continue
movement, essential for exploring new regions and avoiding
being trapped in a spatial loop.

Repetition Penalty (rrepeatt )
Conversely, the Repetition Penalty is designed to mitigate

redundant behavior that does not contribute to task achieve-
ment. It serves as a counterbalance to discourage the agent
from executing a sequence of actions that lead nowhere,
particularly under ’stuck’ conditions.

rrepeatt =

(
−rrepeat, if action repeated
0, otherwise

Composite Impact on Reward Strategy

r
t
= rmovet + rrepeatt + rgoalv

t + rgoalh
t + robst

This combination in the agent’s reward function ensures
that it is primed for both movement initiation and varied
action selection.

C. Network architecture

Our network architecture, as depicted in Figure 2, ef-
ficiently integrates multimodal sensory data to generate a
robust navigation policy. It begins with the normalization
and feature extraction from input RGB images using a pre-
trained DINOv2 Encoder. The extracted features are resized
and undergo multi-scale feature aggregation through a series
of fusion blocks, which enhance the feature maps for depth
perception using a Feature Pyramid Network [13]. Following
this, the depth maps are processed by depth heads for pre-
cise depth estimations. The convolutional layers process the
stacked predicted depth images, and the resulting flattened
output (dimensionality R512) is concatenated with additional
feature vectors that include stacked relative goal positions
(R96), echo-sounder (SBES) readings (R32), and past actions
(R64). This concatenated data stream forms a comprehensive
input to a fully-connected layer that outputs the navigation
policy and state value.

D. Simulation Environment

The underwater simulation environment, developed using
the Unity engine with the ML-Agents toolkit, replicates
the complexities of real-world aquatic conditions [32]. We
integrated a 3D model of a BlueROV into the simulation,
which includes realistic hydrodynamic modeling—such as
water drag, buoyancy, and obstacle interactions—to emulate
challenges faced in actual underwater environments [33],
[34]. Key environmental factors like variable lighting, ter-
rain complexity, and dynamic obstacles are incorporated
to simulate the unpredictability of underwater exploration
(see Fig. 3). Domain randomization is employed during
training to vary these parameters, improving the robustness
and generalization of the agent’s learned policy in real-world
scenarios.

Fig. 3: Simulation Environment.

The simulation provides realistic 3D renderings, which
serve as inputs to monocular depth estimation models such
as MiDaS and Depth Anything. These models simulate how
an AUV would perceive its surroundings, generating depth
approximations from visual data. Additionally, sonar data is
incorporated to offer a more comprehensive perception of
the environment. This controlled yet dynamic environment
allows for thorough testing and evaluation of various rein-
forcement learning algorithms.
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We designed five distinct scenes, each featuring complex
warpaths and combinations of static and dynamic obstacles.
While some obstacles remain fixed, others move to simu-
late real-world challenges like underwater currents or other
AUVs. The dynamic interactions, along with variations in
visibility, make the environment highly adaptive for training.
Each scene is constructed using different materials, textures,
lighting conditions, and custom shaders, creating diverse
visual complexities. The reinforcement learning agent trains
across these scenarios, focusing on tasks such as obstacle
avoidance and goal achievement within 3D spaces.

V. EXPERIMENTAL RESULT

Our model was trained in simulated underwater environ-
ments using datasets specifically designed to validate our
DRL-based multi-modal sensor navigation system. Training
was conducted on a laboratory cluster equipped with several
NVIDIA A100 80GB GPUs. We generated five distinct
scenarios, named waypoints (wp1 to wp5), each representing
different complex environments and warpaths. For each
scenario, a separate agent was trained, allowing us to assess
the model’s adaptability to various underwater conditions.

Each training procedure was repeated 5 times to ensure
robustness, and we report both the mean and standard devia-
tion of the results. We tested the model’s generalizability by
evaluating it in a different simulated environment, featuring
varied materials, textures, lighting conditions, and custom
shaders to create a distinct visual appearance compared to
the training scenarios. In this environment, the models were
tested across three different scenes, designed to resemble
potential underwater obstacles found in real-world settings.

A. Comparative Analysis of Depth Prediction and Algorithm
Performance

Accurate depth estimation is crucial for effective navi-
gation in underwater environments. We conducted a com-
parative study between two advanced monocular depth es-
timation models: Depth Anything and MiDaS. The results,
illustrated in fig 4, indicate that while MiDaS initially outper-
forms Depth Anything with higher average rewards, Depth
Anything demonstrates superior stability and consistency
throughout the training process. This consistency is essential
for real-world applications where environmental conditions
can vary significantly.

Depth Anything, known for its accurate and consistent
depth estimations across multiple benchmarks, leverages
both labeled and unlabeled data to enhance depth predictions,
thereby reducing the sim-to-real gap often encountered in
training. MiDaS, with its affine-invariant loss, excels in
generalization across diverse datasets but shows greater fluc-
tuations in value loss, potentially indicating overfitting risks.
Further testing is required to explore its performance in other
environments. Additionally, the extra computational cost and
parameter count associated with Depth Anything should be
considered when evaluating its practical applicability.
Besides, we compared the performance of various DRL
algorithms, based on their success ratios and travel times to

predefined waypoints (WP1 to WP5). The results, depicted in
Table I and Fig. 5, reveal that TRPO consistently outperforms
other algorithms in both average reward and success ratio,
achieving above 94% success across waypoints when paired
with Depth Anything. SAC and PPO also show competitive
performance, with SAC leading in initial reward accumula-
tion.

Fig. 4: Comparison of Depth Anything and MiDas.

The analysis of value loss trends (fig 5) provides additional
insights; TRPO’s stable learning process contrasts with the
more exploratory behaviors exhibited by SAC and PPO,
which can lead to higher fluctuations in value loss but
ultimately converge on effective policies. This highlights
the trade-offs between exploration and exploitation strategies
employed by different algorithms.

Fig. 5: Comparison of several algorithms on environment A, training for
200 iterations.

B. Experimental Evaluation

Results in table I provide insights into each algorithm’s
ability to navigate efficiently and safely. The trajectories are
shown in both 2D and 3D perspectives in table II, offering
a view on the resulting path planning and spatial navigation
characteristics of each method. Notably, the combination of
TRPO with the Depth Anything model achieved the high-
est success ratios, consistently reaching above 94% across
waypoints, with particularly standout performances at wp5
(95%) compared to PPO (92%), and A2C (72%). In contrast,
algorithms like SAC and TD3 exhibited lower success ratios,
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TABLE I: Comparison of Methods and Success Ratios. A hyphen (’-’) indicates cases where the model did not converge.

Method Sensors DPT Model WP1 WP2 WP3 WP4 WP5 Success Ratio

PPO -
Midas 67.6 ± 3.5 – – – 77.65 32%
Depth Anything 70.6 ± 2.8 – 69.8 ± 1.6 – 85.29 48%

PPO SBES
Midas 31.24± 2.5 37.80 ± 1.6 28.08 ± 1.5 33.80 ± 3 29.12 ± 2.5 89%
Depth Anything 42.58± 3 48.20± 2 34.58 ± 0.8 37.15 ± 2.5 36.27 ± 5 92%

TRPO SBES Depth Anything 31± 2.5 37.45 ± 6 29.5 ± 4.5 28.28 ± 1 33.82 ± 7 94%
A2C SBES Depth Anything 34.48 ± 3 – 26.89 34.52 ± 1 25.06 ± 4.5 72%
SAC SBES Depth Anything 37.10 ± 5 – – 31.58 ± 3.5 34.51 ± 4 68%
TD3 SBES Depth Anything 57.6 ± 2.5 – – 41.8 ± 3 37.91 ± 6 60%

illustrating potential limitations in complex environments or
need for further hyper-parameter tuning.

TABLE II: Trajectories in Different Environments with Different Training.

WP Agent View 2D Trajectory 3D Trajectory

WP1

WP2

WP3

WP4

WP5

Echo-Sounder Influence: Removing the echo-sounder
data compelled models to rely solely on image-based depth
predictions, which often resulted in conservative or risky
navigational choices. For instate, without echo-sounder data,
the models tended to exhibit up to a 20% increase in travel
time and a reduction in success ratio by approximately 50-
55%, indicating the importance of accurate depth information
in maintaining optimal navigation paths.

Depth Estimation Impact: Depth Anything paired with
PPO showed superior success ratios and demonstrated im-
pressive travel time efficiencies with TRPO. Although, at
waypoint wp1, MiDaS recorded a travel time of 31.24 ± 2.5
seconds, significantly outperforming Depth Anything under
the same conditions which logged 42.58 ± 3 seconds. As
Depth Anything required more computational resources but
it shows higher success ratio across all trajectories.

Training Enhancements with Domain Randomization:
Incorporating domain randomization into the training process
resulted in a noticeable improvement in algorithmic perfor-

mance across visually diverse and challenging conditions.
Models trained with this technique showed an increase in
cumulative rewards by up to 15%, enhanced success rates
by approximately 10%, and reduced average travel times
by nearly 20 seconds at certain waypoints, highlighting the
benefits of robust and generalized training approaches.

VI. CONCLUSION

We presented the a comparative analysis between different
DRL algorithms in 3D map-less underwater environment. It
is evident that TRPO combined with the Depth Anything
model consistently achieves superior performance in terms
of success ratio and navigational efficiency across various
waypoints. The study highlights the significant impact of
incorporating advanced sensor fusion techniques and domain
randomization in enhancing the robustness and adaptabil-
ity of underwater robotic navigation systems. While algo-
rithms like PPO and A2C also demonstrated competitive
performance, particularly when paired with effective depth
estimation models, TRPO’s ability to maintain high success
ratios and efficient travel times underscores its suitability for
complex underwater environments. The removal of echo-
sounder data illustrated the critical importance of accurate
depth information, as evidenced by the substantial decrease
in performance metrics. Future research should focus on
optimizing computational resources and further exploring
hybrid models to balance efficiency and accuracy in real-
time underwater navigation tasks. This work lays a solid
foundation for the continued advancement of AUVs, offering
valuable insights into the integration of reinforcement learn-
ing and sensor fusion to overcome the inherent challenges
of aquatic exploration.
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