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Abstract

This thesis investigated the integration of Multibeam Echosounder (MBES) data and
photogrammetry models to enhance the quality of underwater archaeological surveys,
particularly focusing on plane wrecks in Malta. The objective was to combine two tech-
niques—acoustic MBES for wide-area bathymetric mapping and photogrammetry for
detailed 3D reconstruction—into a unified point cloud for improved accuracy and data
usability.

This research employed the Autonomous Underwater Vehicle (AUV) Gavia, marking
the first time the University of Malta has used this platform for MBES data collection
on plane wrecks. Extensive mission planning was necessary to ensure the safe and accu-
rate operation of the AUV, with special attention given to environmental factors such
as sea-floor obstacles and wave conditions. The survey area was carefully selected and
overlapping lines were programmed into the mission plan to ensure sufficient data cov-
erage for post-processing.

Post-processing of the collected multibeam data involved converting raw files into
compatible formats for use in SonarWiz. The data were filtered and cleaned using sev-
eral built-in functions—such as Static Box Filters, Cutoff Angle Filters, and Sample
Density Filters—to remove outliers and ensure the accuracy of the final output. Various
point cloud registration methods, including Iterative Closest Point (ICP) and Random
sample consensus (RANSAC), were tested for aligning and merging datasets from both
sources. The project developed an automatic registration process and a novel method
to color MBES point clouds using visual data, contributing to more robust and efficient
underwater mapping workflows. Future work will focus on enhancing registration accu-
racy and investigating machine learning approaches to optimize the fusion of MBES and
photogrammetry datasets under varying environmental conditions.

Keywords: Autonomous Underwater Vehicle (AUV), Sea trials, Multibeam Echosounder
(MBES), Photogrammetry (PG), Point cloud registration (PCR), Underwater Archae-
ology, Iterative Closest Point (ICP), Random sample consensus (RANSAC)
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1.3.2 Reconstruction of Wrecks with Multibeam . . . . . . . . . . . 5
1.3.3 Reconstruction of Wrecks using Multibeam and Photogram-

metry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Match and Compare point clouds . . . . . . . . . . . . . . . . 7

1.4 Test Objects: Plane Wrecks . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 JU88 South . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 JU88 North . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3 Spitfire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The exploration of underwater environments has become increasingly sophisticated
with the advent of advanced technologies, particularly in the realm of bathymetric
(acoustic) data measurements and photogrammetry models. Acoustic signals emerge
as the preferred method for obtaining a large layout of the seafloor and extracting data
related to depth. Bathymmetry’s significant advantage lies in the possibility to use it
over a wide area, making it the preferred choice for comprehensive underwater surveys.
In addition, photogrammetry can provide a more detailed overview on specific features
of interest. Both techniques involve the deployment of advanced hardware configura-
tions and the use of diverse software applications to analyze and visualize the acquired
data. The integration of technologies and methodologies in this project is part of the
ongoing efforts to enhance the understanding of archaeological underwater environments
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2 Introduction

generally, in underwater plane wrecks specifically, and contribute to the broader field of
marine exploration.

1.1 Work Motivation
The motivation for starting this thesis is to find out, if and how Multibeam data can be
combined with Photogrammetry. Therefore, different data sets needed to be collected,
and the broader view of how to register and combine them were investigated. Finally,
the best practice for fine tuning the code had to be investigated and developed in order
to yield the best possible results

It is important to mention that the technologies are only compared within the realm
of archaeology surveys. To further reduce the scope, only three plane wrecks chosen as
representatives of a variety of different wreck sides. It is investigated how the technology
worked for a first survey, to complement a full dataset with multibeam and photogram-
metry and according to its quality. First surveys are mainly concerned with generating
a good state-of-the-art dataset that can be used for later research or future surveys.
The next step following a first survey is to monitor wrecks and detect how they change
over time. This is, naturally, a long term project. Therefore, it is more important to
compare different datasets or study more details and get a fast overview.

In reference to the two different sources for the point clouds; this paper investigated
how the combination would help to improve the quality of the 3D model and what
options for the combination and registration are possible.

1.2 Objectives
The project was initiated with the goal of understanding the limitations and potential
approaches for combining Multibeam and Photogrammetry point clouds. The main ob-
jective was to explore how both technologies can be used to enhance the quality and
speed of generating results in situations where Multibeam point clouds and visual in-
puts—such as images or videos—are collected using a single vehicle, specifically the
Autonomous Underwater Vehicle (AUV) Gavia.

The focus of this work is primarily on Multibeam technology, as the photogramme-
try models have already been created and the corresponding point cloud was available.
This research marked the first time the University of Malta had used the AUV Gavia
to collect Multibeam data for bathymetric purposes. Prior to this investigation, the
University of Malta had been scanning the seafloor at low resolution until a target of
interest was identified. Divers or a high-resolution Side Scan Sonar (SSS) would then be
employed for a more detailed investigation.
This project encompasses a comprehensive understanding of the AUV from mission plan-
ning to data collection at sea using Multibeam Echosounder (MBES). Once the data was
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collected, it underwent post-processing and cleaning. Afterward, the Multibeam point
cloud was compared with the existing photogrammetry point cloud. In this step, it is
important to understand the different registration methods and explore options for com-
bining these datasets. A potential approach for integration is to develop an automatic
coloring process. For the photogrammetry point cloud, it is essential to understand how
the model is generated and gain an overview of the techniques and limitations involved.

The goals of the project are summarized in table 1.1. They are prioritized according
to importance, starting with "Priority 1," which is critical for the project, to "Priority 3,"
which is a nice-to-have. Future work that is not included in this research is categorized
under "not included." The project goals include operating the AUV, post-processing the
data, and developing two sets of code. One code was designed to handle the automatic
registration of point clouds, including parameter tuning, and the second was used to
color the Multibeam Echosounder point cloud using visual data from images.

Table 1.1: Project Goals

Goal Description Criteria Priority
Understand AUV Understanding function

and planning of mis-
sions

Mission is prepared Priority 1

Gather data MBES point cloud is
gathered for all Planes

point cloud gathered Priority 1

Hardware: com-
bine camera and
MBES

Use a camera and
MBES in same vehicle

Both mounted not included

Software: com-
bine camera and
MBES

Program to com-
bine/register both
point clouds

Program tested Priority 1

Costs all cost for the project calculation of cost Priority 3
Finishing date Finish the thesis earlier Thesis handed in Priority 2

The project started at the beginning of February 2024, due to weather conditions,
the initial phase focused on general research and gaining an understanding of the AUV
and its software. Once weather conditions improved, fieldwork commenced and MBES
data collection began. After data collection, the comparison and programming phase
followed. A more detailed record of the planning stage can be seen later in Chapter 2.1.

The project budget included costs for AUV operation, renting a boat for two full
days, and licensing various software programs. All expenses were covered by the Uni-
versity of Malta.
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Several risks were identified for the project in the beginning. The most significant
risk to the project was the weather, as conditions for collecting the Multibeam data had
to be clear. There was no existing data available for initial tests, so it was crucial to
prioritize early data collection. Additionally, the project could negatively be impacted
by a bad data quality for the point clouds or technical issues with the vehicle.

1.3 Environment and Initial State

In this section, a literature review with various papers and books are presented to get
an overview of the field. The focus is on papers that explore either multibeam data for
reconstruction of wrecks or the combination of both multibeam and photogrammetry
technologies. The sources are mainly from the field of underwater archaeology. These
sections should help to classify the topic in the broader context and get information
about advantages and disadvantages that other researchers found. In the table 1.2 on the
final page of this section, the sources are listed and compared according to the different
topics that are covered in this thesis. Those categories are: Archeology, Multibeam
Echosounder (MBES), Photogrammetry (PG), Combining both, Registration, Coloring.

1.3.1 Multibeam and Photogrammetry in Malta

In 2021 the paper "From discovery to public consumption: The process of mapping and
evaluating underwater cultural heritage in Malta" [14] gives an overview about under-
water cultural heritage in Malta and the context of surveys with Side Scan Sonar (SSS).
It was used in this Master thesis as a starting point. Therefore, the following section of
this thesis will describe the main achievements of the paper.
The research noted that most identified shipwrecks around the world are currently found
in waters shallower than 50 meters but the authors anticipated that this would change
due to technological advances and increased deep-water exploration. The paper high-
lights the synergy between remote sensing technologies and underwater heritage man-
agement, using ongoing research projects like Malta’s surveying approach and scoring
system for historic wreck sites as examples. This approach categorized sites based on
various parameters, aiding in the creation of management strategies. The goal of the
paper was to show how large-scale remote sensing surveys can significantly contribute
to site management by enhancing decision-making processes for divers and the public.
Additionally, it highlighted the importance of promoting and preserving underwater cul-
tural heritage sites.

Another notable source was the website Underwater Malta [8]. On the website, the
various researched wrecks around Malta are displayed. Additional information about
the wrecks are listed and the user is able to visualize them in a 3D Photogrammetry
model. In the section 3.3 Photogrammetry Models, it is in more detail described how
the models are generated and how they were used in the context of this thesis.

https://underwatermalta.org/
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1.3.2 Reconstruction of Wrecks with Multibeam

The use of multibeam data is a well-established practice in the field of underwater ar-
chaeology. Acoustic methods are mostly used to find either wrecks or quickly survey
large areas of the seafloor.

An example is listed in the book "Jutland 1916 " [21] from 2018, where the author
used Multibeam data to map a World War I battlefield. Innes McCartney used multi-
beam data to detect different shipwrecks - in combination with an Remotely Operated
Vehicle (ROV) - to positively identify them. The book analyzed the data to understand
both the order of the battle and the damage the wrecked ships had received. In the
future, the author hoped the research would protect the ships from further destruction
and illegal plundering. Therefore, it was important to map the current condition as
exact as possible and preserve it in 3D models.

Other institutions have already used 3D modelling to display wreck sites online. A
good example is the website of 3DVisLab [19]. Contracted by the UK Government, the
purpose of this project, is to investigate historic wreck sites and preserve them with
3D models. For this purpose, they use only acoustic data (multibeam) and exclude
photogrammetry completely. This application’s main research goal is to explore the
potential of multibeam sonar for accurately and rapidly surveying shipwrecks; it was,
therefore, unnecessary to gather pictures as the main structure of the wrecks was of in-
terest. The different 3D point clouds models of the wrecks are displayed on their website
and can be easily accessed.

Another notable example is the website Infomar [16], which adopts a broader per-
spective. The primary focus of Ireland’s seabed mapping initiatives is to comprehensively
survey the physical, chemical, and biological characteristics of the nation’s seabed. The
strategy aims to establish a marine baseline dataset supporting various national inter-
ests, including security and informed decision-making across economic, environmental,
infrastructural, and policy realms. The existing dataset comprises a diverse range of geo-
physical measurements, including MBES bathymetry and backscatter, shallow seismic
profiles, gravity, magnetics, SSS, and oceanographic water column profiles. Additionally,
it incorporates valuable data concerning physical ground-true samples and documenta-
tion of over 420 discovered shipwrecks.

1.3.3 Reconstruction of Wrecks using Multibeam and
Photogrammetry

Compared to acoustic surveys, photogrammetry is a newer technology that is still evolv-
ing. Therefore, fewer examples of the combination of both technologies can be found.
The existing sources give either a theoretical background about the technologies, or if
both techniques are used on a case like a shipwreck, it is to build the first model.

http://www.seriousanimation.com/
https://www.infomar.ie/
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One book that delves into the theoretical background of state-of-the-art methods
for 3D recording and mapping is "State of the art and applications in archaeological
underwater 3D recording and mapping" [22] from 2018. It describes the advantages
and disadvantages of using both multibeam and photogrammetry in the context of ar-
chaeological sites. The paper discusses the technical aspects, giving an overview about
different sensors and the challenges on various locations and focuses more on the dif-
ferent technologies separately and not on the combination of both. In chapter 3.3 of
the paper, techniques for integrating underwater data from acoustic and optical systems
to overcome their individual limitations are discussed. The challenges of aligning such
data are expounded upon, with optic-acoustic extrinsic calibration and feature matching
identified as major issues that require further attention. They concluded that—despite
the current lack of popularity in underwater archaeological mapping— the fusion of vi-
sual and acoustic data, coupled with advancements in acoustic system resolution held
promise for improving underwater mapping, especially in turbid waters.

Another paper from 2016 that provides a theoretical overview for both technologies
is: "Underwater optical and acoustic imaging: A time for fusion? A brief overview of
the state-of-the-art" [12]. This paper explores the fusion of optical and acoustic imaging
in underwater environments, addressing the inherent limitations and advantages of each
modality. While optical imaging provides high resolution and color information, it suf-
fers from light attenuation and water turbidity. On the other hand, sonar systems offer
robustness to these issues but generally have lower resolution and lack color information.
The Researchers propose, combining data from both modalities to improve underwater
imaging, especially with recent advancements in higher resolution sonar systems. Appli-
cations such as autonomous navigation, mapping, and object recognition stand to benefit
from this fusion approach. The paper reviews various approaches to the fusion of the
technologies, highlighting examples ranging from simple data combination to more com-
plex inter-sensor fusion and high-level data fusion. Examples include combining acoustic
arrays with optic systems, pencil beam sonars with optical cameras, multibeam sonars
with optics, and forward-looking sonars with optics.
Finally, the paper identifies the same challenges as in "State of the art and applications in
archaeological underwater 3D recording and mapping" [22], such as extrinsic calibration
and feature matching between optical and acoustic data. Extrinsic calibration involves
aligning the coordinate systems of both sensors, while feature matching aims to identify
corresponding features across modalities. Also, they come to the same conclusion as in
the paper before [22]. Despite the progress in optic-acoustic systems, more research
is needed to address calibration and feature matching issues. The paper concludes by
emphasizing the potential of fusion in underwater imaging and the importance of theo-
retical studies to further advance the field.

There are more examples of published papers that tested both technologies on a
specific project to reconstruct wrecks or archaeological sites. One notable example can
be found in the book "3D Recording and Interpretation for Maritime Archaeology" [20],
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chapter 12, published in 2019. The paper discusses an innovative approach to create a
3D visualization of HMS Falmouth, a British light cruiser sunk during World War I off
the Yorkshire coast. The visualization combined Multibeam Echosounder survey data
of the wreck with photogrammetry and laser scanning of the original builder’s model of
the ship. The main difference between this paper and the ones before is that there are
no technical challenges discussed but the impact and benefits to the community. The
purpose of the paper was to, both generate public and media interest as well as to serve
as a platform for engaging the public with underwater archaeology. Moreover, the au-
thor discusses the potential for future development of visualization techniques, including
incorporating still photographs and videos taken by divers and creating a "virtual dive
route” for non-diving audiences. The paper underscores the significance of HMS Fal-
mouth as a heritage asset, particularly in the broader context of preserving the United
Kingdom’s maritime history, which often remains submerged and overlooked. In sum, it
underscores the value of 3D visualization in animating underwater cultural heritage, fos-
tering public engagement, and safeguarding historical narratives for future generations.

Another relatively new paper from 2021 that combines different 3D mapping methods
is: "Exploration and reconstruction of a medieval harbor using hydroacoustic, 3D shallow
seismic and underwater photogrammetry: A case study from puck, southern baltic sea"
[17]. This study focused on exploring the submerged archaeological heritage harbor in
Puck, Poland, which was one of the largest medieval harbors in the Baltic Sea. Mul-
tiple surveying methods—including MBES, parametric sub-bottom profiler, and aerial
photography—were employed to explore the site. High-resolution bathymetry revealed
seabed features and archaeological artifacts, while 3D shallow seismic datasets identified
buried structures, shipwrecks, excavation trenches, and the harbor boundary. The fusion
of the different datasets enables a comprehensive visualization of the heritage site. The
researchers combined these technologies to increase the resolution of their data, but did
not dedicate space in their paper comparing and contrasting the different competing
methods.
For the context of this thesis, it is interesting to note the fact that the paper com-
pares the new generated models with archival documentation. As a result, the paper
documented significant erosion rate of biogenic layers containing archaeological objects
over a period of 26 years. The authors concluded by highlighting the effectiveness of
underwater remote-sensing methods for exploring and preserving underwater heritage
sites.

1.3.4 Match and Compare point clouds

Point cloud registration (PCR) methods play a crucial role in aligning different point
clouds to create a unified representation of a scene or object in 3D. This registration
methods plays a vital role in various applications, including 3D reconstruction, object
recognition, and autonomous navigation. Despite its significance, selecting the most
suitable PCR method remains challenging due to the diversity of available techniques
and the lack of comprehensive comparative studies. Therefore, in the following pages,
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different papers that focused on the topic of PCR using various methods will be com-
pared.

The paper "Comparison of point cloud Registration Techniques on Scanned Physical
Objects" [9] from 2024 presents a comparison of six PCR methods, including classical
techniques like Iterative Closest Point (ICP), Random sample consensus (RANSAC)
and modern deep-learning-based approaches such as PointNetLK (Point Network, Lu-
cas and Kanade algorithm), RPMNet (Robust Point Matching Network), and ROPNet
(Retinopathy of Prematurity Network). The author used as a baseline for comparing
of synthetic and real-world datasets, key metrics such as: precision, variance, speed,
generalizability, and required pre-processing.
The validation results on the test dataset demonstrated the effectiveness of the PCR
methods in achieving accurate point cloud alignment. The comparison highlights the
influence of various parameters—such as voxel size and Final Root Mean Square Er-
ror (RMSE) threshold—on registration accuracy and computational efficiency. Their
analysis of registration parameters revealed significant impact on the performance of
PCR methods. Varying voxel sizes affected the recall metric differently across methods,
emphasizing the need for parameter optimization based on the specific application and
dataset characteristics. The comparative evaluation underscores the strengths and lim-
itations of classical and deep-learning-based PCR methods. While classical techniques
like RANSAC and ICP offer real-time performance and robustness to environmental
clutter, learning-based approaches like PointNetLK and RPMNet demonstrate superior
accuracy but require extensive training and higher computational resources.

In 2018 the authors of the paper: "Registration of Laser Scanning Point Clouds: A
Review" [5] compared the different disadvantages and advantages of classical registra-
tion methods. The paper concludes that each registration method has its advantages
and disadvantages. The ICP algorithm provides high precision alignment but requires
dense point clouds and accurate initial alignment. RANSAC is robust to outliers, while
it struggles with poor initial alignment. Feature-based methods offer efficiency in coarse
registration, yet may face challenges in feature extraction and uneven feature distri-
bution. The Normal Distribution Transform (NDT) algorithm offers computational
efficiency, however suffers from limitations in handling complex surface geometries. Un-
derstanding the strengths and limitations of each method is essential for selecting the
most appropriate approach based on the characteristics of the point cloud data and the
specific registration requirements.

Published in 2019, the paper: "A Comprehensive Performance Evaluation for 3D
Transformation Estimation Techniques" [3] evaluated eleven transformation estimation
techniques across four benchmark datasets and revealed significant insights for select-
ing appropriate methods in 3D space applications. The methods were assessed based
on their performance on both descriptor-based and synthetic correspondences. The re-
searchers did this by considering factors like dataset quality, overlap ratios, combining
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different transformation techniques, local descriptors, and Local Reference Frame/Axis
techniques. Results indicated that Variant of Game Theoretic Matching (V-GTM) con-
sistently achieved 100% correct registration and demonstrated superior performance
across all datasets due to its iterative evolution with a game theory approach, which al-
lowed it to effectively exclude false correspondences. The paper states that methods like
Geometric Constraint Cluster (GCC) and Geometric Constraint-based Method (GCM)
performed poorly—despite their efficiency—as they struggle with low ratios of correct
registration across datasets. This is contributed to their reliance solely on geometric
constraints without iterative evolution. Moreover, the efficiency of methods varied, with
GCC and GCM being the most efficient but least accurate, while RANSAC and Local and
Global Voting (LGV) struck a balance between efficiency and performance. Guidance
for selecting appropriate methods in specific applications was provided based on dataset
quality and ap- plication requirements. For high-quality datasets, V-GTM emerged as
the top choice due to its excellent performance and efficiency. On the other hand, for
low-quality datasets, 1-Point-RANSAC combined with ICP proved to be the best op-
tion. Additionally, for applications utilizing Local Reference Frame-based descriptors,
1-Point-RANSAC was recommended for its superior performance. In time-critical appli-
cations like robotics and mobile platforms, RANSAC was preferred for its efficiency and
acceptable performance. V-GTM, however, remained a viable option due to its superior
overall performance and execution speed.

The last paper that will be discussed in this section was: "A Review of Point Cloud
Registration Algorithms for Laser Scanners: Applications in Large-Scale Aircraft Mea-
surement" [25] from 2022. The paper compared PCR methods, each with its own set
of advantages and disadvantages. Hierarchical optimization methods, such as the ICP
algorithm, offered iterative refinement of point cloud alignment, ensuring convergence to
a local minimum. These methods, however, require a good initial guess for convergence
and may struggle with complex geometries.
On the other hand, stochastic and probability distribution-based approaches—like the
RANSAC algorithm, exhibited robustness against outliers and noise, making them suit-
able for real-world scenarios. Nonetheless, these methods may not always converge to the
optimal solution and necessitate parameter tuning for different datasets. Feature-based
methods that focus on specific geometric features provide robustness and efficiency in
registration. Despite their advantages, they can be computationally intensive and strug-
gle with smooth surfaces lacking in distinctive features. In the context of large-scale
aircraft measurement, specialized algorithms address challenges such as efficient bound-
ary feature extraction and multi-view registration. Misalignment issues persist due to
the smooth surfaces of aircraft, requiring further advancements in registration preci-
sion. Future research might include improving the fusion of traditional methods with
deep learning techniques, developing specialized algorithms tailored to specific applica-
tion scenarios, and overcoming challenges with partial overlap in point clouds. Overall,
while significant progress has been made in PCR, there remain ample opportunities for
innovation and refinement in this field.
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1.4 Test Objects: Plane Wrecks

To efficiently compare the technologies, three similar plane wrecks located off the coast
of Malta were selected. Planes are relatively small compared to shipwrecks, making it
feasible to obtain bathymetric data in a single dive using an AUV. The locations of all
three plane wrecks are depicted in the following map (Figure 1.1).

Figure 1.1: Location of the plane wrecks

The next sections will provide further insights into the submerged planes and the
specific location of the wrecks.

During World War II, Malta emerged as a vital Allied stronghold, positioned strate-
gically between Gibraltar and Alexandria. With the German Luftwaffe establishing a
presence in Sicily, Malta became a prime target for Axis bombings. The island’s proxim-
ity to Sicily facilitated frequent air raids, often involving upwards of 200 JU88 bombers
daily. Allied forces, however, managed to bolster their aerial defenses, leading to their
eventual reclamation of air superiority over Malta by early May 1942 [8].
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1.4.1 JU88 South

Uncovered during another remote sensing survey in 2019, the JU88 South revealed its
true identity as a Junkers JU88 following a visual inspection by divers in 2021. Posi-
tioned up- right on a sandy seabed at a depth of 106 meters, the aircraft is in excellent
condition overall, although signs of wear and tear are evident, particularly in the nose
and tail sections. The damage observed on the port tail wing of the JU88 suggests
potential scenarios contributing to its demise, such as engagement in aerial combat,
anti-aircraft fire, or controlled ditching. One theory as to the cause of the wreck notes
that the damage pattern on the plane suggests the possibility of the aircraft being struck
from behind, potentially during a dogfight. The precise cause of the damage remains
undetermined, with multiple factors potentially contributing to the plane’s current state.
Therefore, a more detailed examination is required to determine the exact cause [8].

The Junkers JU88, a tactical medium-range bomber, stands out as one of the most
adaptable combat aircraft of the Germans in the World War II. First taking flight in
December 1936, the JU88 quickly garnered military interest, leading to its deployment
with the Luftwaffe by late 1939. Manufactured by Junkers Flugzeug und Motorwerke
AG, production soared, with approximately 15,000 units rolling off the assembly lines by
war’s end in 1945. The Junkers JU88 was operated by a four-member crew comprising,
all situated within the glazed cockpit [8].

1.4.2 JU88 North

The JU88 North was found in 2009, during an offshore remote sensing survey. The
wreck lies approximately 3km outside Salina Bay at a depth of 57 meters on a sandy
seabed. Remarkably well-preserved, the aircraft exhibits a broken tail, situated a short
distance from the main wreckage site. Notably, the forward-facing machine gun remains
intact, mounted within the cockpit. Same as the JU88 South, it is not known why the
plane crashed, but hints at potential encounters with Allied forces during the period of
renewed aerial contention [8].

1.4.3 Spitfire

The Supermarine Spitfire was an iconic aircraft for the Royal Air Force (RAF) through-
out the World War II, noted for its continuous production among British aircraft. De-
signed by R. J. Mitchell of Supermarine Aviation Works in 1934, the prototype first flew
in March 1936, and the aircraft entered RAF service by August 1938. By the end of the
war, over 20,000 Spitfires had been built, with more than 20 Marks and 50 sub-variants
[8].

The Spitfire was a single-seat, high-performance interceptor featuring advanced at-
tributes such as a variable pitch propeller, all-metal construction, retractable undercar-
riage, and an elliptical wing. This design allowed it to house eight machine guns and
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endure high-speed maneuvers. The Spitfire gained legendary status during the Battle of
Britain and was a key fighter in the air battle of Malta in 1942 [8].

The Spitfire wreck located off the coast of the island of Gozo is linked to Operation
Husky, the Allied invasion of Sicily from July to August 1943. Following the Allied
victory in North Africa, the focus shifted to Italy, with Malta serving as a crucial base.
During the invasion, Spitfire Squadrons based in Gozo, including the 307th, 308th, and
309th, provided air coverage. On 30 June 1943, the first Spitfires landed at the newly
constructed Xewkija airfield in Gozo. A missing aircrew report from 30 June 1943 de-
tails a Spitfire from the 308th Fighter Squadron that disappeared while en route from
Korba, Tunisia, to Gozo. The aircraft, a Spitfire Mk Vc with a Merlin 45 engine, was
lost after a missed approach to Xewkija. Despite a search by the Malta Air/Sea Rescue,
the aircraft was not found, and the pilot remains missing [8].

In April 2021, a side-scan sonar survey discovered the wreck site at a depth of 70
meters. The Spitfire is upright on a sandy seabed, with the rear fuselage folded and the
tail upside down. Violent ditching is indicated by the collapse of the rear fuselage and
the disintegration of the wooden Dowty Rotol propeller blades. This evidence suggests
that the wreck is indeed the missing aircraft from the 308th Squadron [8].
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This chapter first provides an overview of the timeline established for the master’s
thesis and the necessary dependencies to achieve the final goal. In the second subsection,
the planning of a mission with the Autonomous Underwater Vehicle (AUV) was examined
in greater detail. The section evaluated the costs, logistics, and safety factors that were
considered for the AUV mission.

2.1 Planning
At the start of the project, a timeline was created, which is shown in figure 2.1 till
2.4. This timeline was more general and covered the entire project. Specific tasks were
divided into subtasks as needed. For instance, the task "00-3-A: Plan AUV missions"
also included the application process and permit verification.
The project followed a classic project management approach, divided into six milestones
over six months. The critical path was marked in red on the timeline. While the overall
time plan was adhered to, updates were necessary after the data collection phase. This
was due to the unpredictable nature of the data collection dates, so a significant time
buffer was added in the initial planning. Additionally, as much work as possible was
completed before fieldwork began.

14
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Figure 2.1: Timeline for the Project (Part 1)
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Figure 2.2: Timeline for the Project (Part 2)
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Figure 2.3: Timeline for the Project (Part 3)
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Figure 2.4: Timeline for the Project (Part 4)



Planning and resources evaluation 19

2.2 Resource Evaluation
The project required a variety of resources, and this section delves into the specific
resources, costs, and risks associated with the project. Each item is detailed below,
along with how they were managed throughout the project.

• Permit:
It is important to remember that the sites are managed by Heritage Malta, mean-
ing any activity surrounding that area needs an official permit for the time and
day. This needs to be prebooked on the website. For normal dives there is an
admission to pay, in case of the AUV the sites need to be closed to divers during
the time of the survey.

• Vehicle/ Boat:
To transport the AUV and all additional equipment to the harbour were the boat
leaves and back to the University, a big VAN (Peugeot Ducato) was provided by
the University. For each day out on the sea, a Diving boat including a captain was
rented for the full day. The boat can be seen in figure 2.5, the figure 2.6 displays
the preparation inside the boat on the transit to the mission side.

Figure 2.5: Diving Boat used for missions

• People:
A minimum of four people was required to handle the AUV. The vehicle weighed
around 130 kg and needed to be loaded into the van, transferred to the boat, and
later deployed into and retrieved from the water after the mission.

• Software:
The project also required a high-performance computer equipped with the Sonar-
wiz software to read and post-process the collected data, the license for that is
provided by the University.
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Figure 2.6: Inside view of the boat, (picture during transit)

Costs:
As for the costs, these were all covered by the University of Malta. They have ownership
of the AUV with all additional equipment and own additionally the license for all the
Software. The Dive boat was rented for missions with the AUV and the team members
that helped to operate the AUV were students of the Underwater Archaeological course.

Risks:
The primary risks for both personnel and the AUV occurred during data collection at
sea. To mitigate these risks, special care was taken for the sea days, a detailed risk
assessment plan was prepared and is included in the appendix A.3. To guarantee the
AUV’s safety, the mission planning included checks for seafloor obstacles or significant
height variations. Backup plans were developed in case circumstances changed, such
as challenges in locating or retrieving the AUV, or if the weather forecast worsened on
the scheduled day. Furthermore, attention was given to boat traffic in the area and the
potential presence of fishing gear in the water. The most dangerous phases for the AUV
were during its descent and ascent and on the surface [13].
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The following chapter gives some background information needed to understand and
compare the results. It is intended to help the reader understand the used equipment,
software and technologies behind. Therefore, it focuses on the AUV, the software, the
Multibeam Echosounder (MBES), a brief introduction to Photogrammetry and how the
results were compared.
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3.1 AUV Gavia

To gather the acoustic model, an Autonomous Underwater Vehicle (AUV) was used,
which is a type of robot that operates underwater without direct human control. These
vehicles are equipped with various sensors, navigational systems, and propulsion mech-
anisms, enabling them to perform tasks such as oceanographic research, underwater
mapping, environmental monitoring, and military surveillance autonomously. AUVs
were designed to withstand the harsh conditions of ocean depths and can operate at
significant depths for extended periods, gathering valuable data that would have been
difficult or impossible to obtain using traditional manned methods. Their autonomy
allows them to navigate through complex underwater environments, collect data, and
execute pre-programmed missions with minimal human intervention, making them es-
sential tools for a wide range of marine applications [11].

For this master’s thesis in particular, the AUV Gavia, from the company Teledyne
Marine, was used. This AUV is owned by the University of Malta. It is a self-contained,
low-logistics, modular survey platform capable of delivering high-quality data while op-
erating from vessels of opportunity or from the shore. The Gavia AUV could dive to
depths of up to 1000 meters, surpassing many others in its category. Its modular con-
struction ensured maximum flexibility, allowing for easy customization and adaptation
to different mission requirements, even between dives [11].

In figure 3.1, the AUV with all the modules is displayed. The AUV used was equipped
with two battery modules, recognizable by the handle on top, and the propeller unit at
the back. In the front, the noise cone with an obstacle avoidance sensor was installed.
In the middle, the control module was located, identified by the orange fin. It included
an acoustic modem transducer, an antenna tower, and a sound velocity meter. On
both the left and right sides, a Side Scan Sonar (SSS) was mounted. Additionally,
the AUV was equipped with a high-accuracy, survey-grade Inertial Navigation System
(INS) navigation system, along with a Doppler Velocity Log (DVL), ensuring precise
positioning and navigation during missions. For the data collection in this thesis, a
module for Multibeam Echosounder (MBES) was mounted. This was the third module
from the back, positioned between Battery 2 and the Control Module.

Figure 3.1: Different Modules of the AUV [11]
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To control the AUV, a chart-based Graphical User Interface (GUI) called Control
Center was provided. This interface simplified mission planning and monitoring for
operators during missions. To display and process the recorded data, Teledyne used the
software SonarWiz. It served as an all-in-one solution for seafloor mapping, offering a
comprehensive suite of features designed to streamline the mapping process from start
to finish. The software included intuitive management tools, reliable data acquisition
capabilities, powerful post-processing functions, and adaptable reporting options [11].

3.2 Multibeam
To obtain bathymetric data, a MBES or SSS system was used. For this specific project,
a Multibeam device from BlueRobotics has been mounted. The subsequent section pro-
vides general information about Multibeam systems, followed by specific details about
the particular device used in this project.

3.2.1 Function of a Multibeam

MBES are acoustic devices that simultaneous emit and receive multiple beams of sound
to measure the depth and shape of the seafloor. They are widely used for hydrographic
surveying, seabed mapping, and underwater exploration. The systems provide high-
resolution and accurate bathymetric data over a large area in a short time and can be
mounted on a boat or underwater vehicle.
In an acoustic multibeam sonar, a transducer array emits multiple beams of sound
waves in different directions. By analyzing the returning echoes, the system can create a
detailed and accurate three-dimensional map of the seafloor. The use of multiple beams
allows for a broader coverage area and faster data acquisition compared to traditional
single-beam sonar systems [27].

Figure 3.2: Function of a Multibeam Echosounder [27]
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The functional principle can be seen in figure 3.2. It works by emitting multiple
pulses of sound, called pings, through a transducer at a specific frequency. The same
pulse is then received through a receiver placed very close to the transducer. The time
it takes for the sound pulse to reflect off the bottom and return to the receiver is used
to calculate the water depth [27].
Unlike other sonars and echo sounders, MBES use beam forming to extract directional
information from the returning sound waves, producing a swath of depth soundings
from a single ping (Figure 3.3). The swath angle varies per system, but is generally
somewhere between 120° and 170°, giving swath widths on the bottom in the order of
3.5 to 25 times the water depth. Most MBES have a single transmit beam and a number
of receive beams. The received beams are formed on reception [15].

Figure 3.3: Angles for the Multibeam [15]

The final data density is defined by the number of beams (depths) and the ping
rate, or the number of swaths that the MBES can measure per second. The ping rate
depends on the water depth, but can be as high as 60 pings per second in shallow water.
The accuracy of the depth measurements depends on several factors, such as the sound
velocity, the pulse length, the bandwidth, and the motion compensation of the system.
The advantage of MBES lies in its ability to provide high-resolution and accurate bathy-
metric data over a large area in a short time. They can also detect objects in the water
column or along the seafloor, such as underwater features, fish, floating nets, wrecks,
or pipelines. This technology is widely used for different applications like hydrographic
surveying, seabed mapping, and underwater exploration [15].

3.2.2 Blueview Multibeam

The Teledyne BlueView MB2250 is a high-frequency (2.25 MHz) micro-bathymetry echo
sounder, it delivers high-resolution data in a proprietary ".son" format. Equipped with
built-in data logging capabilities, this system has a local storage capacity up to 240 GB.
One of the key features is the use of a Pulse-Per-Second (PPS) signal on the Gavia
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BUS, facilitating clock synchronization. This synchronization ensures precise alignment
between the sonar ping and navigation data, enabling accurate association of each ping
with its corresponding geographical location [10]. The module is displayed in the fol-
lowing figure 3.4.

Figure 3.4: Teledyne BlueView MB2250 [10]

Table 3.1 lists important parameters for the BlueView Multibeam system.

Table 3.1: Blueview’s multibeam parameters [10]

Parameter Value
Number of beams 512
Frequency 2250 kHz
Resolution 6 mm
Ping rate up to 30 Hz
Ping period 50 ms
Maximum range 10 m
Swath Range 15° (3 m) to 120° (8.5 m)
Beam width 1° x 1° (nominal)

3.2.3 R2Sonic V-2026 Multibeam

The R2Sonic V-2026 Multibeam Echosounder is an advanced component of the Sonic™-
V Series, designed to provide high-resolution bathymetric data with a focus on user-
friendliness and operational flexibility. This boat mounted MBES offers a range of
features that enhance its performance for marine surveying applications. The R2Sonic
incorporates the Compact VOX-IM system, which features serial connectors for integrat-
ing motion sensors, GPS time messages, and sound velocity probes, ensuring comprehen-
sive and accurate data collection. The system supports a wide range of voltage inputs,
both AC and DC, making it compatible with various vessel power systems. Its VOX
Control User Interface has a modern and intuitive design, which simplifies operation and
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configuration through improved logic, configurable hotkeys, language translations, and
a detailed help feature [24].

One of the standout features of the R2Sonic V-2026 is its Ultra High Density (UHD)
data acquisition capability, which allows for up to 1024 true soundings per ping, providing
high data density across the swath and enabling detailed seabed mapping. The system
also supports remote upgrades to technical modes, allowing for ongoing enhancement of
its capabilities. It offers Ultra High Resolution (UHR) at 700 kHz for certain models
and extended sounding depth with 90/100 kHz for the 2026-V model. Additionally,
it includes TruePix® / Multispectral backscatter with compressed water column and a
switchable forward-looking sonar (FLS). The R2Sonic V-2026 is available with depth
ratings of 100 meters, 4000 meters, and 6000 meters, making it suitable for a variety of
surveying depths.
How the Multibeam looks and how it can be mounted on a Boat can be seen in the
figure 3.5. The used boat was a special hybrid that could also drive on land and in the
sea, what made surveying different locations and unmounting the Multibeam easy. [24].

Figure 3.5: R2Sonic V-2026 Multibeam [24]

In the following table 3.2 are important parameters listed for the R2 Sonic Multi-
beam:
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Table 3.2: R2- Sonic V-2026 multibeam parameters [24]

Parameter Value
Number of beams 1024
Frequency 170kHz - 450kHz, Low: 90kHz - 100kHz
Resolution 3 mm
Ping rate up to 60 Hz
Ping period 15µs -2ms
Maximum range 800 m
Swath Range 10° to 160°
Beam width 0.45° x 0.45° at 450kHz

When compared to AUV-mounted Multibeam systems, such as the Gavia from Tele-
dyne BlueView, the R2Sonic V-2026 offers several advantages. Boat-mounted systems
benefit from a stable power supply provided by the vessel, avoiding the limitations of
battery life associated with AUVs. They also allow for real-time data processing and
immediate access to results, which can enhance decision-making during surveys. Addi-
tionally, boat-mounted systems are easier to maintain and upgrade due to their accessi-
bility from the vessel [24].
However, boat-mounted systems have some downsides compared to AUV-mounted sys-
tems. They may have limited access to deeper or more challenging environments where
AUVs excel. AUVs offer greater mobility and can operate autonomously in a wider
range of conditions and locations, making them suitable for surveys in deeper waters
and confined spaces. Furthermore, the performance of boat-mounted systems is subject
to the vessel’s stability and environmental conditions, while AUVs can mitigate some of
these external factors due to their autonomous nature [15].

In summary, the R2Sonic V-2026 MBES is a robust and versatile solution for high-
resolution bathymetric surveys from a boat. It provides significant benefits in terms of
power supply stability, real-time data management, and ease of maintenance. However,
for surveys requiring greater mobility and access to challenging underwater environ-
ments, AUV-mounted systems like the Gavia may be more suitable. The choice between
these systems should be guided by specific survey requirements, including operational
depth, accessibility, and environmental conditions.

3.3 Photogrammetry Model

The 3D photogrammetry models of the three plane wrecks already existed. Figure 3.6
till 3.8 show the plane wrecks that are of interest for this thesis. They were created with
the assistance of divers who used cameras to capture images of the wrecks underwater.
The divers, needed special equipment to access the wrecks because some of them are in
a depth of over 100 m. Part of their equipment was for diving, rebreather technology
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and for the high-resolution images, powerful cameras and special underwater lights to
systematically record the sites [8].

Figure 3.6: 3D Photogrammetry Model JU88 South [8]

Figure 3.7: 3D Model JU88 North [8] Figure 3.8: 3D Model Spitfire [8]

Afterward, the 3D models were generated using a software called Agisoft Metashape,
which employs photogrammetry techniques to reconstruct three-dimensional objects
from two-dimensional images. Photogrammetry is a method used to measure and create
accurate 3D models from photographs. It involves analyzing the position, orientation,
and scale of objects in multiple images to recreate their spatial properties. Underwater
photogrammetry, in particular, is widely used for documenting submerged structures,
archaeological sites, and marine life.
Agisoft Metashape is one of the leading software solutions for photogrammetry and 3D
modeling. It allows users to process large sets of images, align them, and generate de-
tailed 3D models with textures and colors. Additionally, the software calculates the
position of the camera for each picture. In the post-processing of the model, it is also
possible to adapt the scale of the model and give it specific positions like the world
coordinates instead of a local coordinate system [2].
The models of the plane wrecks can be viewed on the website of the Underwater Museum
Malta [8], where they serve as educational resources and tools for underwater exploration
and research.
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3.4 Libraries to compare point clouds

To reach the final goal of comparing the point clouds, different tools were explored.
The main points of interest included their accuracy, along with the time and technical
resources required. Therefore, the existing program CloudCompare was used, in addition
to the Library Open3D to generate an own customized code.

3.4.1 Software CloudCompare

To get a first and fast overview of the models and compare the results generated by
different technologies (Multibeam and Photogrammetry), the tool CloudCompare was
employed. CloudCompare is a powerful open-source software designed for processing
and visualizing 3D point cloud data. The software offers a comprehensive suite of tools
for analyzing, comparing, and manipulating point cloud datasets.
It is programmed in C++ with a user-friendly interface and robust feature set. It
empowers users to efficiently perform tasks such as registration, alignment, segmentation,
and mesh generation on large-scale point clouds. The program has already the Iterative
Closest Point (ICP) registration as a function included for point clouds. [7]

3.4.2 Open 3D Python Library

In the next step, for a more detailed insight and testing of further registration methods,
different Python Libraries that are joined under Open3D [1] were introduced. It was
important to be careful with the different versions of this Library, ensuring that they
were not mixed and that the fitting modules were properly installed.
Open3D was designed with a modular architecture, comprising distinct modules for
different functionalities. These modules can be combined flexibly to address specific
requirements, ensuring scalability and extensibility. The core components include data
structures for representing 3D geometry, algorithms for processing and analyzing 3D
data, and utilities for visualization and interaction.
The key features are the following ones:

• 3D data I/O: Support for loading and saving various 3D data formats, such as
point clouds and meshes.

• Geometry processing: Operations for mesh simplification, smoothing, and align-
ment, as well as point cloud registration and downsampling.

• 3D visualization: Interactive visualization tools for exploring and analyzing 3D
data in real-time.

• Deep learning integration: Seamless integration with popular deep learning frame-
works like TensorFlow and PyTorch for tasks such as 3D object detection and
segmentation [1].
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For the project also the Visualizer with multiple drawing options was installed, as
well as the different methods for pre-processing, like for example transformations or
point removal. Another function to work with multiple clouds was the registration
tool, which was employed to align them. For alignment, there were different options
available, including the Iterative Closest Point (ICP) and the Random sample consensus
(RANSAC) methods [1].

3.5 Methods to compare point clouds
Python Libraries and CloudCompare used different methods for registration. In the
following part, more details are provided to each one, it is explained what are the differ-
ences and the advantages. The focus lays here in the already existing libraries, without
introducing additional algorithms or providing more details here.

3.5.1 Iterative Closest Point (ICP)

The Iterative Closest Point (ICP) algorithm serves as a fundamental technique in the
field of 3D point cloud processing, aimed at finding the optimal transformation between
two point clouds by minimizing the distance between corresponding points. Originally
proposed in the early 1990s, ICP evolved into several variants and adaptations, each
tailored to specific scenarios and requirements.
ICP operates on the principle of iteratively refining the transformation (translation and
rotation) between two point clouds to minimize the distance metric, typically the sum
of squared distances or Point-to-Point distance. The basic workflow of ICP involves the
following steps:

• Correspondence estimation: Establishing point correspondences between the source
and target point clouds.

• Transformation estimation: Computing the optimal transformation that aligns the
source points with the target points.

• Transformation update: Updating the transformation and repeating the process
until convergence criteria are met [5].

In general, the ICP algorithm served as a cornerstone in the field of 3D point cloud
processing, providing a robust and efficient framework for point cloud alignment and
registration. The advantage of the ICP algorithm lies in its ability to iteratively mini-
mize the distance between corresponding points in two point clouds, thereby achieving
accurate registration. However, the ICP algorithm requires high-density point clouds
and an accurate initial alignment for optimal performance. Additionally, the computa-
tional complexity of the ICP algorithm can be high, especially for large-scale point cloud
datasets. Despite these challenges, the ICP algorithm remains a popular choice for fine
registration due to its effectiveness in achieving precise alignment [5].
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Over the years, numerous variants and extensions of the original ICP algorithm have
been proposed to address specific challenges and enhance its performance. Some notable
variants include:

• Point-to-Plane ICP: Minimizing the distance between points and the tangent plane
of the target surface.

• Point-to-Point ICP: Minimizing the distance between points in the two surfaces.

• Robust ICP: Incorporating robust estimation techniques to mitigate the influence
of outliers and noise.

• Multi-resolution ICP: Employing multi-scale representations to improve conver-
gence and efficiency [28].

In this thesis, the first two extensions (Point-to-Point and Point-to-Plane) will be
researched in more detail. A mathematical description of both of these can be seen
below. The function contains always two point clouds as follows:
Source point cloud P with N points:

P = {pi | i = 1, . . . , N}

Target point cloud Q with M points:

Q = {qj | j = 1, . . . , M}

Point-to-Point:
The goal of the algorithm is to find the rigid transformation (rotation and translation)
that minimizes the distance between corresponding points in the source point cloud
P and the target point cloud Q. Therefore, the rotation matrix R ∈ R3×3 and the
translation vector t ∈ R3 for the source point cloud that minimize the following cost
function needs to be found:

Epoint(R, t) = 1
N

N∑
i=1

∥Rpi + t − qi′∥2

where qi′ is the closest point in Q to the transformed point Rpi + t. The Cost Function
Epoint(R, t) measures the sum of squared distances between each point pi in the source
point cloud after transformation (R and t) and its closest point qi′ in the target point
cloud [1].

Point-to-Plane:
The goal of the Point-to-Plane ICP algorithm is similar to that of the Point-to-Point
algorithm, but instead of minimizing the distance between corresponding points, it min-
imizes the distance between each point in the source point cloud and the plane defined
by its corresponding point in the target point cloud. This approach often leads to faster
convergence, especially when the initial alignment is already close.
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The cost function to be minimized in the Point-to-Plane ICP is defined as follows:

Eplane(R, t) = 1
N

N∑
i=1

((Rpi + t − qi′) · ni′)2

ni′ is the normal vector at the point qi′ in the target point cloud Q and therefore
(Rpi + t − qi′) · ni′ represents the scalar projection of the vector from qi′ the trans-
formed point Rpi + t onto the normal vector ni′ .
The cost function Eplane(R, t) measures the sum of squared distances between each
transformed point pi in the source point cloud and its corresponding plane in the target
point cloud, defined by qi′ and its normal vector ni′ . This method minimizes the or-
thogonal distance to the planes rather than the Euclidean distance to the points, which
can provide a more robust and stable alignment in cases where the surface normals are
well-defined and reliable [1].

3.5.2 Random sample consensus (RANSAC)

Random sample consensus (RANSAC) is a powerful iterative algorithm designed to ro-
bustly estimate model parameters from a set of observed data points containing outliers
and noise. Proposed in the early 1980s, RANSAC has since become a cornerstone in
many computer vision and geometric modeling applications, owing to its ability to han-
dle data with significant levels of corruption. [4]
The RANSAC is a random feature based algorithm, because of the random factor of each
runtime, the results differ from the one before. Feature-based registration methods lever-
age distinctive features extracted from point clouds, such as points, lines, or surfaces,
that help in identifying, matching, or analyzing objects and achieve coarse registration.
Features refer to specific descriptors or characteristics calculated from the point cloud
data, like the Fast Point Feature Histograms (FPFH). These features capture local geo-
metric properties of the points, such as their spatial arrangement and relative distances.
They simplify and enhance the process of aligning or classifying point clouds by focus-
ing on key attributes rather than raw data. These methods are efficient in reducing
computational demands by providing a good initial alignment for subsequent fine reg-
istration steps. However, feature-based methods may encounter challenges in scenarios
with sparse or unevenly distributed features, leading to registration errors. Furthermore,
the selection of appropriate features is crucial for the success of feature-based methods,
and extracting relevant features can be challenging in certain environments. [4]
The RANSAC algorithm operates on the principle of iteratively sampling subsets of
data points, fitting models to each subset, and evaluating the quality of the fit through
a predefined criterion. The basic workflow of RANSAC consists of the following steps:

• Sample selection: Randomly select a minimal subset of data points to form a
potential model hypothesis.

• Model fitting: Estimate model parameters using the selected subset of data points.



System Analysis and Design 33

• Inlier detection: Determine the subset of data points that are consistent with the
model within a predefined tolerance threshold.

• Model evaluation: Assess the quality of the model based on the number of inliers.

• Iteration: Repeat the process for a specified number of iterations or until conver-
gence criteria are met.

• Model refinement: Optionally, refine the model using all inliers found during the
iterations [4].

RANSAC stands as a cornerstone algorithm in computer vision, image processing,
and geometric modeling, providing a robust and efficient framework for fitting models
to noisy data contaminated with outliers. Despite its widespread success, RANSAC ex-
hibits certain limitations, such as sensitivity to parameter settings and computational
complexity, which necessitate careful consideration and optimization in practical appli-
cations. Nonetheless, RANSAC remains a versatile and indispensable tool for robust
estimation and model fitting in a wide range of real-world scenarios [5].

3.6 Values to compare the matching process
In the context of point cloud registration, where the objective is to align multiple sets
of 3D points into a single coordinate system, it is essential to have quantitative metrics
that can evaluate the quality of the registration. Among the commonly used metrics are
Final Root Mean Square Error (RMSE), Fitness, Mean Distance, and Standard Devia-
tion. These metrics provide a comprehensive understanding of how well the point clouds
have been aligned and help in assessing the accuracy and precision of the registration
process.

Final Root Mean Square Error (RMSE):
The Final RMSE is a measure of the average distance between corresponding points in
the registered point clouds. It is calculated as the square root of the mean of the squared
differences between the points. Mathematically, for two sets of corresponding points P
and Q, the RMSE error is given by:

RMSE =

√√√√ 1
N

N∑
i=1

∥Pi − Qi∥2

where N is the total number of points, and ∥Pi − Qi∥ represents the Euclidean distance
between the corresponding points Pi and Qi. The Final RMSE is crucial because it
gives a single scalar value that summarizes the overall alignment error. A lower RMSE
value indicates a better fit between the point clouds, implying that the registration has
been performed more accurately. This metric is widely used due to its simplicity and
effectiveness in providing a quick assessment of the registration quality [23].
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Mean Distance:
Mean Distance measures the average Euclidean distance between each pair of corre-
sponding points in the registered point clouds. It is calculated as:

Mean Distance = 1
N

N∑
i=1

∥Pi − Qi∥

Unlike RMSE, which squares the distances, the Mean Distance provides a more direct
measurement of the average error. It is particularly useful for understanding the over-
all displacement or shift between point clouds. A lower mean distance suggests a closer
alignment, making it a valuable metric for evaluating the quality of the registration [23].

Standard Deviation:
Standard Deviation in the context of point cloud registration refers to the variability or
spread of the distances between corresponding points after registration. It is defined as:

Standard Deviation =

√√√√ 1
N

N∑
i=1

(∥Pi − Qi∥ − Mean Distance)2

This metric is important because it provides insights into the consistency of the regis-
tration. A low standard deviation indicates that the distances between corresponding
points are similar across the entire dataset, suggesting uniform alignment. Conversely, a
high standard deviation reveals variations in alignment quality across different regions of
the point clouds, which could indicate potential issues with the registration process [23].

Fitness:
Fitness refers to a metric that quantifies how well two point clouds are aligned based on
the number of good matches or correspondences between the points in the source and
target point clouds. Fitness measures the quality of this alignment by looking at how
many points from the source point cloud have close correspondences in the target point
cloud after applying the transformation (rotation and translation). Fitness is typically
defined as the fraction of points in the source point cloud that finds a corresponding
point in the target point cloud within a certain distance threshold. Mathematically, it
can be expressed as:

Fitness = Number of inlier correspondences
Total number of points in the source point cloud

Where Number of inlier correspondences are pairs of points (one from the source and
one from the target point cloud) that are close enough to each other after applying the
current transformation. The "closeness" is determined by a predefined distance thresh-
old, and Total number of points in the source point cloud is the number of points in the
source point cloud.
High Fitness: A high fitness value (close to 1) indicates that a large proportion of the
points in the source point cloud have found good matches in the target point cloud. This
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suggests a good alignment between the two point clouds.
Low Fitness: A low fitness value indicates that fewer points in the source point cloud
have close correspondences in the target point cloud, suggesting poor alignment [23].

These four metrics—Final RMSE, Fitness, Mean Distance, and Standard Devia-
tion—are vital for several reasons:

• Comprehensive Assessment: Together, they offer a complete picture of the regis-
tration quality. While RMSE provides a general error estimate, Fitness measures
the proportion of points in the source point cloud that have corresponding points
in the target point cloud within a specified distance threshold, indicating how well
the point clouds are aligned. Mean Distance gives an intuitive average alignment
error, and Standard Deviation indicates consistency across the point cloud.

• Objective Comparison: They allow for objective comparison between different reg-
istration algorithms or configurations, helping in identifying the most effective
method for a given dataset. Fitness, in particular, helps in evaluating how thor-
oughly two point clouds are aligned by comparing the proportion of successfully
matched points.

• Optimization Guidance: By analyzing these metrics, one can fine-tune the registra-
tion parameters to achieve the best possible alignment. Lower RMSE and Mean
Distance values generally indicate better registration performance, while higher
Fitness values suggest a more robust alignment with more point correspondences.

• Error Diagnosis: High values in RMSE or Mean Distance, low Fitness, or large
Standard Deviation can help diagnose problems with the registration, such as
noise, outliers, or incorrect correspondences, which may require further refinement
or preprocessing [18].

In summary, the use of Final RMSE, Fitness, Mean Distance, and Standard Devi-
ation as evaluation metrics provides a robust framework for assessing and comparing
the quality of point cloud registrations. These metrics help ensure that the alignment is
both accurate and consistent, which is crucial for applications that rely on precise 3D
modeling and reconstruction [1].

3.7 Combining Photogrammetry and Multibeam
A combination of two techniques is known from the terrestrial and aerial background.
There it is explored in what way Lidar and Photogrammetry can be combined to get
better and faster results for a final point cloud. A similar idea came up for the combi-
nation with Multibeam and Photogrammetry. The idea was to take the pictures from
the Divers that were used to generate the 3D model and color the Multibeam point
cloud with them. To achieve this, different methods were explored. The main issue is
that the position of the camera in respect to the Multibeam point cloud needs to be
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known. Therefore, during the registration process the transformation matrix needs to
be calculated. With the transformation matrix known, the Multibeam point cloud can
be changed, so that the location of both planes are at the same position and the point
clouds match. The position of the camera in x, y and z can be plotted directly in the
Multibeam point cloud. As a second step, it is important to know how the camera is
angled. Finding the values for the angles is much more difficult. However, if both the
location and angles are known, it should be possible to place the picture in the correct
position and then rotate it accordingly [26].

With the camera position known in the room, the next steps are the camera intrinsic
and extrinsic parameters that need to be added to the code.
In computer vision, understanding the geometry of image formation is crucial for tasks
such as 3D reconstruction, camera calibration, and object recognition. The process of
capturing an image involves projecting a three-dimensional scene onto a two-dimensional
image plane, and this transformation is governed by both intrinsic and extrinsic camera
parameters [26].

3.7.1 Intrinsic Parameters

The intrinsic parameters of a camera define the internal characteristics of the camera’s
lens and sensor, which influence how the camera captures an image. These parameters
are specific to each camera and include:

• Focal Length (f): This parameter determines the camera’s field of view and the
scale at which objects are projected onto the image plane. It is often represented as
two values, fx and fy, corresponding to the focal lengths in the x and y directions
of the image plane.

• Principal point (c): The principal point (cx, cy) is the point on the image plane
where the optical axis intersects it. Ideally, this point is at the center of the image,
but in practice, it may deviate slightly due to lens imperfections.

• Skew Coefficient (s): This parameter accounts for the angle between the x and y
axes of the image plane. In most cases, the skew coefficient is zero, meaning that
the axes are perpendicular.

• Distortion Coefficients: These parameters model the radial and tangential distor-
tions caused by the lens. Radial distortion occurs because light rays bending near
the edges of the lens cause straight lines to appear curved. Tangential distortion
happens when the lens and image plane are not perfectly parallel [26].
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Mathematically, the relationship between the 3D coordinates of a point (X,Y,Z) and
its 2D image coordinates (u,v) is given by the intrinsic camera matrix K, which is defined
as:

K =

fx 0 cx

0 fy cy

0 0 1


3.7.2 Extrinsic Parameters

The extrinsic parameters define the position and orientation of the camera in the world
coordinate system. They describe how the camera is situated in the scene, which is
crucial for understanding the perspective from which the image is captured. The extrinsic
parameters include:

• Rotation Matrix (R): This 3×3 matrix describes the orientation of the camera
relative to the world coordinate system. It rotates the world coordinates into the
camera’s coordinate frame.

• Translation Vector (T): This 3×1 vector describes the position of the camera in the
world coordinate system. It translates the origin of the world coordinate system
to the camera’s position [26].

The extrinsic parameters form the transformation matrix that converts 3D world
coordinates (Xw, Yw, Zw) into 3D camera coordinates (Xc, Yc, Zc)Xc

Yc

Zc

 = R ·

Xw

Yw

Zw

 +

Tx

Ty

Tz


3.7.3 Complete Projection Model

The complete process of mapping a 3D world point to a 2D image point involves both
intrinsic and extrinsic parameters. The projection can be expressed as:

u
v
1

 = K ·
[
R T

]
·


Xw

Yw

Zw

1


Where

[
R T

]
is the concatenation of the rotation matrix and translation vector,

forming a 3×4 extrinsic matrix. This equation summarizes the entire imaging process,
converting world coordinates into image coordinates [26].
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In the following section, a detailed description of the work, the achieved results, and
the obstacles encountered are presented. These are listed in chronological order, from
the Autonomous Underwater Vehicle (AUV) preparation through the post-processing to
the data analysis and comparing.

4.1 Work Development to get the MBES point cloud

The section explains how the Multibeam Echosounder (MBES) and Side Scan Sonar
(SSS) data is collected and the various steps leading to the final result. In chapter 2,
the project timeline is displayed, that this chapter follows.

38
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4.1.1 Side Scan Sonar data in 3D

As an initial test to delve deeper into the post-processing program SonarWiz, an attempt
was made to generate a point cloud from SSS data. Once again, a plane was used, the
data collection process was described in the paper by [14]. The final dataset was acquired
during a dive in 2020 for high-resolution documentation at 1600 KHz while maintaining
a distance of 6 m from the seabed. The aircraft identified is a Fairey Fulmar, which
played a crucial role in convoy protection to and from Malta. Four lines of SSS data
were collected from this aircraft during the mission.
The data is illustrated in figure 4.1. It is evident that there are four distinct files along
the same axis, overlapping each other.

Figure 4.1: Side Scan Sonar data of the Fairey Fulmar

The subsequent step involved integrating the SSS image with the actual depth data
obtained from the AUV. The actual depth of the seafloor can be determined by combining
the sensor depth from a pressure sensor with the altitude. When both datasets are
merged within a 3D viewer, the resulting visualization is depicted in figure 4.2.

Figure 4.2: 3D view of the Side Scan Sonar data

It is evident that the results are unsatisfactory. One reason for this discrepancy is
that SSS is not intended for use in three dimensions. Rather, it is a technology employed
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to capture two-dimensional images of the seafloor, utilizing shadows and varying colors
to roughly indicate the height of objects on the seabed. To achieve better results with
SSS data, additional lines are required along different axes.
From this observation, it can be inferred that the existing SSS data is not suitable for
producing satisfactory outcomes in a three-dimensional environment.

4.1.2 Pre-processing AUV mission

As a first step, the different missions for the AUV were planned in the Software Control
center, and the parameters were adjusted accordingly. The mission was always pre-
pared in advance, with only minor changes anticipated, primarily depending on local
conditions, such as nearby fishing gear. Additionally, the state of the seafloor is checked
beforehand, if any data is available.
As an example, the mission for the JU88 South is used in the following section. For
other planes, nearly the same parameters are applied, with only the width and location
being changed. In the figure 4.3, the GUI for the Gavia Control Center is shown. It is
evident that the mission requires planning both a descent and ascent, as well as defining
the area to be surveyed. To achieve optimal results, the AUV passed over the plane from
two different angles in a crosshatch pattern. This pattern was chosen because, tests on
another plane demonstrated that only parallel lines can be post-processed together, and
from a time management perspective, two directions provide a sufficiently good result
within an acceptable time frame.

Figure 4.3: Mission planning AUV JU88 South
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Table 4.1 shows all the important parameters for the mission. One critical aspect is
ensuring that there were no obstacles higher than 6 meters on the seafloor. The AUV
has an obstacle avoidance sensor in the nose cone, but it needs time to adjust and can
only handle smaller elevations or those with a gradual slope, depending on its speed.
Additionally, it was important to cover a sufficiently large area to ensure the plane is
within it. The data cannot be checked on-site, therefore it was better to plan for a larger
area to avoid needing to return to the location.

Table 4.1: Mission Parameters for JU88 South

Parameter Value
Name JU88 South-2024
Location 35 53.122N 14 37.954E
Angle 0.0°
Width 100 m
Spacing 4.0 m
Bottom Track 6.0 m
Speed 700 rpm
Dive Time 01:55:34 seconds
Dive Length 12.2 km
Power consumption 20.4 Ah

The next two tables, 4.2 and 4.3, show the specific values used for the SSS and MBES
sonars. These values needed to be adapted to the height above the seafloor. Addition-
ally, the survey lines required sufficient overlap so that in the post-processing, the edges
with outliers could be cut out while still maintaining enough overlap for a good display
of the data.

Table 4.2: Mission Parameters for JU88 South: BlueView Bathymetric Sonar

Parameter Value
Start range 3.0 m
End range 8.5 m
Ping period 50 ms

Table 4.3: Mission Parameters for JU88 South: EdgeTech Side Scan Sonar

Parameter Value
Frequency Low (600 kHz)
Range 30.0 m
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Primarily due to unstable weather conditions and large waves, the data collection
phase was started later than expected, when conditions were more favorable. For data
collection at sea, a risk assessment was generated, and a mission protocol was com-
pleted. The risk assessment was a general document for surveying days from a dive
boat. The mission protocol contained important information and observations for the
mission. Both can be found in the appendix under A.3 and A.2

During the data collection at sea, there were no issues. One observation was that the
AUV required a wave to submerge, as it was a calm day without waves and not enough
ballast was added to the vehicle. Additionally, there was a significant depth variation
when passing over the plane, which could also be related to the ballast. Otherwise, it was
a quiet day with no other issues, and the connection via Ultra-short baseline underwater
positioning system (USBL) to the AUV was stable throughout the mission. This means
there was a regular update of the AUV’s status approximately every 30 seconds in the
monitoring software. The status update included internal pressure, calculated position,
depth, and height above the seabed.

4.1.3 Post-Processing AUV Multibeam data

As the next step, after the data were successfully collected at sea, it needed to be cleaned
and post-processed. The post-processing was done using the software SonarWiz. To im-
port the files into this software, their format needed to be changed from .son to .s7k.
This conversion was performed using the Teledyne PDS Control Center software. The
reason for this was that .son files can only be opened in the internal Teledyne software,
and there was no license for additional post-processing options.
After changing the format, the data were imported into SonarWiz. It was possible to
import both SSS data and MBES files.

SonarWiz already has various functions for post-processing implemented. A more
detailed description of these functions and the program in general can be found in the
User Manual [6].
There was no clear guide on how to post-process the data step by step. Therefore, it
involved trying different filters to see how they affected the data. It was important to
note that the same filters do not work the same way for all the planes, which made this
process take longer than planned.

In this chapter a description of the process is made, additionally in figure 4.4 the
process is visually presented.
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Figure 4.4: Steps during the cleaning process
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When importing the data, the correct coordinate system (WGS84 UTM33N) and the
appropriate import configuration must first be selected. In the next step, the vessel with
the sensors was configured in the project. The tide and sound velocity can be neglected
because the sensors were mounted on an underwater vehicle that flies over the seafloor
at a fixed height [6].

After setting up the project parameters, all the files were imported into the project.
In the first step, lines that were completely off and or don’t hold any important detail
were deleted. In the case of the JU88 South the lines were offset, possibly due to the
suboptimal ballast and the presence of strong currents. In the next steps, they needed
to be filtered and merged. Merging was necessary to compensate for time, position, and
attitude offsets between the lines [6].

Several filtering options were available, but only the ones applied are described here.
One filter that helped remove outliers and peaks at the edges was the Static Box Fil-
ter. It flags soundings that were shallower than the minimum depth or deeper than the
maximum depth. The filter can also flag soundings that were to the port of the mini-
mum horizontal range or to the starboard of the maximum horizontal range. Horizontal
ranges were negative to port and positive to starboard [6]. For example, for the JU88
South plane, the horizontal swath range was reduced from -4 till 4 m. Therefore, the
swath width was cut off to a maximum of 8 m instead and all outliers that were bigger
deleted [6].

Additionally, a height filter was implemented for the depth measurement so that
outliers below the seafloor or far above were removed. Mainly because the AUV did
adjust his height over the plane strongly, that lead to uneven MBES lines [6].

Moreover, the Cutoff Angle Filter was applied, which flags all soundings between the
inner minimum cutoff angle and the inner maximum cutoff angle (the nadir region). It
also flags all soundings beyond the outer minimum cutoff angle and beyond the outer
maximum cutoff angle (the outside beams) [6].

To remove as many outliers as possible also the Sample Density Filter was used.
It divides the swath cross-section into bins. The filter flags all soundings in bins that
do not have the minimum number of samples in them. There were two types of bins
equidistant and equiangular: Equidistant bins are defined by horizontal and vertical bin
size and Equiangular bins are defined by angle and range [6].

An observation made during the merging process was that the positioning was not
accurate, like you can see in figure 4.5. Therefore, it was only possible to merge parallel
lines, but not lines with different angles. It is clearly visible that the final position of
the plane is in different locations than in the merged patches. There was no way to
determine the true coordinates versus measurement errors. It was assumed that the first
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pass is more accurate, so this data batch was used for further work if it had sufficient
quality.

Figure 4.5: Position Offset Spitfire

Another observation made during the post-processing was that the model was dis-
played 180° rotated and needed to be inverted.

The final step to clean the data as thoroughly as possible was to create a depth
grid with only a small area around the plane. This removed most outliers from the file,
leaving a merged and filtered small bathymetric point cloud that can be exported as a
.xyz file. The document contained three columns: WGS84 UTM33 coordinates for x
and y, and the depth in negative values for z. The .xyz file can then be used in the next
step for further comparison with other point clouds.
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4.2 Registration Process
The following section describes the steps to compare point clouds and register them.
Starting with the different programs and then different methods. For the registration
methods, the first test was done with the same point cloud but one manually changed.
The python code can be found in the appendix.

4.2.1 Registration in CloudCompare

The initial tests were conducted using the existing Software CloudCompare. Chapter
3.4.1 the fundamentals of registration and explained the values for comparison. The
software included a basic Iterative Closest Point (ICP) registration function.To achieve
optimal results, first the center of the bounding boxes for the point clouds was aligned.
In the next step, the pre-programmed ICP algorithm was applied. This function needed
to be reapplied until both point clouds were fully aligned. For comparison purpose, the
values: Final Final Root Mean Square Error (RMSE), Mean Distance, and Standard
Deviation were used. The RMSE represented the square root of the mean square errors.
Therefore, it was nearly equivalent to the standard deviation of the relative distances
between the two clouds. The primary difference was that it was computed on fewer
points—in this case, 50000 points.

In the first test phase, the same point cloud was used. The reason was the weather
dependency, therefore the MBES data collection on the planes started later. For the first
tests, the photogrammetry point cloud was compared. One point cloud was transformed
and snipped by hand, the other one was not changed. The other tests were comparing
the point cloud from different sources with each other. The center of the bounding boxes
paired and afterward the ICP algorithm run till they equal. The amount of overlap was
tested exclusively on the plane by removing the seafloor, as the size of the seafloor varied
depending on the collection method.

In table 4.4 the parameters for the registration of different point cloud combinations
are displayed, allowing for numerical comparison. Subsequently, figure 4.6 illustrates the
differences between the point clouds using colors. Blue shows the non-overlapping areas,
while green means differences.

Table 4.4: Comparing point clouds in CloudCompare

Point cloud Combination Final RMSE Mean Distance Std Derivation
Photogrammetry- Photogrammetry 0.12945 0.119071 0.112123
Photogrammetry- Gavia MBES 0.21479 0.179959 0.169478
Photogrammetry- R3Vox MBES 0.51913 0.41805 0.407169
R3Vox MBES - Gavia MBES 0.151015 0.202256 0.182296
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Figure 4.6: Registration in CloudCompare with ICP

The registration values for the two point clouds- Photogrammetry and Photogrammetry-
with the lowest numbers were logical, as most of the points aligned in the same positions
for the majority of the point cloud, given that they originated from the same source.
In contrast, the other three cases exhibited different numbers of points and varying po-
sitions from cloud to cloud, which naturally increased the values for all three metrics.
The largest discrepancy was observed between the photogrammetry and R3Vox MBES
point clouds. One possible explanation for this discrepancy was the quality of the point
cloud data: the R2Sonic Multibeam, being a surface-mounted system on a boat, was
affected by approximately 0.5 meters of swell on the day of data collection, with the
wreck located at a depth of 100 meters. As a result, the data quality was suboptimal.
When the Gavia MBES point clouds were compared to the other two, the values fell
within a similar range. This suggested that the number of points in the point cloud was
intermediate compared to the others, providing a plausible explanation for the observed
results.
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4.2.2 Registration in Open 3D Libraries

Like described in 3.4.2 the library includes different functions that can be used for
working with point clouds. In the following figure 4.7 the process is displayed for the
final registration.

Figure 4.7: Registration process

Each box is described in the following section in a chronological order and there are
given additional information to each one:

Move both PC to Center of Bounding Box:
For the subsequent steps, the first box was modified so that only one point cloud was
transformed while the other retained its original parameters. This adjustment elimi-
nated the need to transform both point clouds each time, simplifying the process for
coloring. In cases where the point cloud was already saved in a georeferenced x and y
coordinate system, this step was not necessary.

Optional Segment PC:
Some tests were conducted with segmenting the point cloud and saving it before regis-
tration. However, this approach did not significantly improve the registration process.
Additionally, it was difficult to establish a general guideline for when this method would
be beneficial or when it would fail to offer improvements. For the test cases, a visual
inspection was used to assess its effectiveness.

RANSAC:
The RANSAC algorithm was explained in more detail in 3.5.2. It is a random algorithm
that produced different results with each execution. To standardize the process and use
the values for comparison, a variable icp.fitness was used, which was set to be smaller
than 0.25 for the registration to stop. Additionally, a manual solution was tested and
repeatedly run until the fitness value was also smaller than 0.25. Once this condition was
met, the values were saved in a pickle variable, and these values could then be loaded
and used for the ICP registration.
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The execute_global_registration function, as described in Listening 4.1, aligned two
downsampled point clouds by performing global registration using the RANSAC algo-
rithm with feature matching. It computed a distance threshold based on the voxel size
to filter valid correspondences. The function utilized the Open3D library’s registra-
tion_ransac_based_on_feature_matching to estimate the best transformation between
the source and target point clouds. Mutual filtering was applied to refine the corre-
spondences, and Point-to-Point transformation estimation was used, incorporating edge
length and distance checkers for validation. The Point-to-Point function was used be-
cause it relied on matching feature descriptors, such as FPFH, and did not inherently
require surface normals, which are necessary for the Point-to-Plane transformation. The
RANSAC convergence criteria were set with high iteration and validation limits to thor-
oughly search for an optimal alignment. The function returned the registration result,
which included the transformation matrix and inlier information.

1 def execute_global_registration(source_down, target_down, source_fpfh,

2 target_fpfh, voxel_size):

3 """

4 Perform global registration between source and target point clouds using

5 RANSAC based on feature matching.

6

7 Parameters:

8 - source_down: Downsampled source point cloud.

9 - target_down: Downsampled target point cloud.

10 - source_fpfh: Fast Point Feature Histograms (FPFH) features of the source

11 point cloud.

12 - target_fpfh: Fast Point Feature Histograms (FPFH) features of the target

13 point cloud.

14 - voxel_size: Voxel size used for downsampling. This parameter influences

15 the distance threshold.

16

17 Returns:

18 - result: Registration result containing the transformation matrix and

19 inlier information.

20 """

21

22 # Set a distance threshold for RANSAC. This threshold determines the

23 # maximum distance between corresponding points in the source and target

24 # point clouds to be considered as inliers.

25 distance_threshold = voxel_size * 1.5

26

27 # Perform global registration using RANSAC based on feature matching

28 result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(

29 source_down, # Source downsampled point cloud
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30 target_down, # Target downsampled point cloud

31 source_fpfh, # FPFH features of the source point cloud

32 target_fpfh, # FPFH features of the target point cloud

33 True, # Use mutual filter, which helps filter out bad correspondences

34 distance_threshold, # Maximum allowable distance between correspondences

35 o3d.pipelines.registration.TransformationEstimationPointToPoint(False),

36 # Estimation method (Point-to-Point)

37 3, # Number of RANSAC iterations

38 [

39 # Check if the relative lengths of edges between corresponding

40 # points are similar

41 o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(

42 0.9),

43 # Check if the distance between corresponding points is within the

44 # threshold

45 o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(

46 distance_threshold)

47 ],

48 # Convergence criteria for RANSAC

49 o3d.pipelines.registration.RANSACConvergenceCriteria(

50 max_iterations=8000000, # maximum number of iterations of algorithm

51 max_validation_step=400) # maximum number of validation steps

52 # performed for each model

53 )

54

55 # Return the registration result which contains the transformation matrix

56 # and inliers

57 return result

Listing 4.1: Python code for global registration with RANSAC

ICP:
The ICP algorithm was explained in more detail in 3.5.1. For the different algorithms,
both the ICP Point-to-Point and Point-to-Plane methods were tested, as both were al-
ready implemented in the library and accessible via different commands. The method
that worked best and produced the most favorable results was the ICP Point-to-Plane
algorithm, as determined through test runs, that will be described later.

The code: Listing 4.2 refined the alignment of two point clouds using the ICP al-
gorithm by invoking the registration_icp function from Open3D’s pipeline. The ICP
algorithm aligned the source point cloud with the target point cloud through an iterative
process that minimized the distance between corresponding points. In this function, the
TransformationEstimationPointToPlane method was utilized, which computes transfor-
mations based on minimizing Point-to-Plane distances. Additionally, the ICPConver-
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genceCriteria was set with a max_iteration parameter of 2000, limiting the number of
iterations the ICP algorithm could perform. This ensured that the algorithm stopped
either when a satisfactory alignment was achieved or when the maximum number of
iterations was reached, preventing excessive computation time.

1 def refine_registration(source, target, voxel_size, initial_transformation):

2 """

3 Refines the registration of two point clouds using the Iterative Closest

4 Point (ICP) algorithm.

5

6 Parameters:

7 - source: The source point cloud to be registered (an

8 ‘open3d.geometry.PointCloud‘ object).

9 - target: The target point cloud to which the source will be aligned (an

10 ‘open3d.geometry.PointCloud‘ object).

11 - voxel_size: The size of the voxel grid used to downsample the point

12 clouds (a float).

13 - initial_transformation: The initial transformation matrix (4x4 numpy

14 array) to align the source to the target before refining.

15

16 Returns:

17 - result: The result of the ICP registration as an

18 ‘open3d.pipelines.registration.RegistrationResult‘

19 object.

20 """

21 # Set the radius for normal estimation based on the voxel size.

22 radius_normal = voxel_size * 2

23

24 # Estimate normals for the downsampled source point cloud.

25 # Normals are needed for point-to-plane ICP.

26 source.estimate_normals(

27 o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))

28 # Estimate normals for the downsampled target point cloud.

29 target.estimate_normals(

30 o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))

31

32 # Set the distance threshold for the ICP algorithm, based on the voxel size.

33 # The threshold determines the maximum distance between corresponding points

34 distance_threshold = voxel_size * 0.4

35

36 # Perform the ICP (Iterative Closest Point) registration to refine the

37 # alignment

38 # between the source and target point clouds.
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39 # - Uses Point-to-Planr ICP, which minimizes the Euclidean distance between

40 # corresponding points and a plane.

41 # - The ’max_iteration’ parameter specifies the maximum number of ICP

42 # iterations (2000 in this case).

43 result = o3d.pipelines.registration.registration_icp(

44 source, # Source point cloud

45 target, # Target point cloud

46 distance_threshold, # Max. distance threshold

47 for point pairs

48 initial_transformation, # Initial transformation matrix

49 o3d.pipelines.registration.TransformationEstimationPointToPlane(),

50 # Point-to-Plane distance minimization

51 o3d.pipelines.registration.ICPConvergenceCriteria(

52 relative_fitness= 1e-5, # Smaller value for more precise alignment

53 relative_rmse= 1e-5 , # Smaller value for more precise alignment

54 max_iteration=2000 # Increase for more iterations

55 )

56 # Convergence criteria for ICP

57 )

58

59 # Return the result of the ICP registration.

60 return result

Listing 4.2: Python code for refine registration with ICP
Save transformed PC in new file and Transformation Matrix for PC:

As a final result, once the point cloud was registered, it could either be saved as a file
or the transformation matrix could be stored and used by another program for further
modifications.

This process was initially tested on a single point cloud. The primary reason was
to verify the functionality of the code and then determine the optimal parameters while
testing the RANSAC and ICP algorithms. The goal was to fine-tune the parameters so
that the registration process would be both reliable and reproducible. The second objec-
tive was to accelerate the process, making it as efficient as possible. To optimize the code,
various parameters were tested. For instance, downsampling the point clouds reduced
the number of points and improved algorithm performance. Feature computation was
implemented to assist in finding correspondences between point clouds. Adjustments
were made to the voxel size and thresholds to suit the density and quality of the point
clouds.

4.2.3 Tuning parameter in Open 3D Libraries

The following section describes which parameters can be changed in the code to speed
up the process of registration or to achieve more accuracy.
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Adjusting Voxel Size:
The voxel size was critical for down sampling and feature computation. It should be
chosen based on the density and scale of the point clouds. Starting with a moderate
value (e.g., 0.05) and adjust based on the point cloud size and density.

• Larger Voxel Size: Coarser downsampling, faster computation, but may lose fine
details.

• Smaller Voxel Size: Finer downsampling, slower computation, preserves more de-
tails.

Adjusting Distance Thresholds:
Distance thresholds are used in various parts of the algorithm to determine if points are
close enough to be considered corresponding. Started with 1.5 times the voxel size for
RANSAC and 0.4 times the voxel size for ICP, then both were adjust as necessary.

• RANSAC Threshold: This should be set based on the scale of the point clouds.
Too large can result in incorrect correspondences, too small might miss valid cor-
respondences.

• ICP Threshold: Typically smaller than the RANSAC threshold for fine tuning.

RANSAC Convergence Criteria:
These criteria determine how long RANSAC will run and when it should stop. Adjusting
these can help balance between speed and accuracy. it was started with the provided
values and adjusted based on the complexity and quality of the initial alignment.

• Max Iterations: More iterations can improve accuracy but take longer.

• Max Validation: The number of times the algorithm validates a hypothesis.

ICP Convergence Criteria:
These criteria determine how long the ICP algorithm runs and when it should stop.
Adjust these values based on the required precision and computational resources. The
optimal settings for these thresholds depend heavily on the specific dataset and the
nature of the point clouds. Experiment with different values to find what works best for
the application were done.

• Max Iterations: More iterations allow the algorithm to converge more finely, but
take longer.

• Relative Fitness: Set this parameter to a small value to allow the algorithm to con-
tinue refining even when the improvement in fitness (alignment quality) becomes
minimal. Increasing this value will stop the algorithm earlier, potentially reducing
runtime but possibly at the cost of less precise alignment.
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• Relative RMSE: Similar to Relative Fitness, this parameter controls how small the
change in RMSE needs to be for the algorithm to stop. A smaller value means the
algorithm will run longer in search of an even smaller error, whereas a larger value
will stop sooner.

Adjusting Feature Radius:
The radius used for normal estimation and features computation affects the feature
quality.

• Normal Radius: Affects how normals are estimated, influencing the feature quality.

• Feature Radius: Affects the robustness of feature matching.

4.2.4 Tuning Results in Open 3D Libraries

The following section lists the results of the registration process and explains why dif-
ferent values were chosen.

Comparing Point-to-Point and Point-to-Plane registration
All tests were conducted using the JU88 South plane wreck. The two point clouds used
are from photogrammetry and multibeam data, both in lower resolution. The number of
points in the photogrammetry point cloud is 522,703, while the multibeam point cloud
contains 556,494 points. These two point clouds were selected because, in previous tests
using CloudCompare, they produced the best results for two different source point clouds.

The code used to obtain the results follows the algorithm described in figure 4.7,
excluding the optional segmentation block. To ensure the results were as consistent as
possible, RANSAC and ICP were repeatedly run until the final fitness value in ICP
was smaller than 0.25. The main reason for that can be seen in figure 4.8. It shows
the final registration result for fitness values that are larger than 0.25. The results
are not satisfactory. Also, running only the ICP algorithm repeatedly is insufficient,
as it requires a well-established initial alignment to be effective. As demonstrated in
the images, this initial alignment was not adequately achieved, resulting in suboptimal
registration outcomes.

Figure 4.8: Insufficient result of Registration
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The code was run multiple times for each algorithm. In the ICP block, the function
alternated between the function:
o3d.pipelines.registration.TransformationEstimationPointToPoint() (Point in the
table) and o3d.pipelines.registration.TransformationEstimationPointToP lane() (Plane
in the table). For comparison purposes, the RMSE and correspondence set values are
provided in table 4.5 for the ICP registration.

Table 4.5: Numerical comparing Point-to-Point and Point-to-Plane function

ICP registration Fitness Inlier RMSE Correspodence Set
Point 0.2547 0.0274 133124
Plane 0.2572 0.0725 134440

The results in the figure 4.9 show that the Point-to-Plane algorithm performed
slightly better. But it is from the visual picture hard to tell, the result look nearly
the same when comparing point clouds from different sources. Only in the last picture
to the right, it is possible to see the difference, when comparing the same point cloud.

Figure 4.9: Visual comparing Point-to-Point and Point-to-Plane function

The Point-to-Plane method requires accurate surface normals and was more suited
for fine-tuning alignments once a good initial alignment had been established. It mini-
mized the distance between points and planes, which proved to be more effective when
the points were already somewhat aligned.
This was confirmed through multiple test runs, with the best result displayed in the table
4.5. It is best to see when looking at the correspondence set, because again the values
are nearly the same and there is not a big difference. Still, the function Point-to-Plane
performed better consequently, this function will be used for future tests.
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Tuning the code
The parameters that were tuned are described in the previous chapter. In the first step,
adjustments were made to the parameters for the RANSAC registration. The main chal-
lenge was that RANSAC is random, making it difficult to determine the exact influence
of each change. Therefore, it was run multiple times with the recommended parameters,
and the results were compared using both lower and higher values. For comparison, both
visual results and numerical values (fitness, RMSE, and correspondence set) were used.
To select the best value, the correspondence set needed to be large, the RMSE low, and
the fitness high.

It was not always possible to find a value where all three parameters were optimal.
In such cases, the correspondence set was primarily used to determine the best result.
A trend was identified, and the parameters were tuned accordingly (Table: 4.6).

Table 4.6: Tuning parameters for RANSAC

Tuning Parameters Values
Voxel size 0.05
Distance Threshold 1.5
Max. Iterations 8000000
Max. Validation 400
Normal Radius 2
Feature Radius 13

The complete table with the results (values for the correspondence set, fitness, and
RMSE) for all tests with different parameter values can be found in Appendix A.1. The
optimal values are also highlighted in figure A.1.

The second step involved saving the optimal RANSAC results in a pickle file, which
was reloaded each time. This ensures the same starting point was used, eliminating
the randomness, making it possible to numerically compare the ICP results and obtain
consistent values for each run.
The following table 4.7 list the final values for the registration:

Table 4.7: Tuning parameters for ICP

Tuning Parameters Values
Voxel size 0.2
Distance Threshold 3
Max. Iterations 5000
Normal Radius 1
Fitness 0.06
RMSE 0.08
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The full table with all the results can be seen in figure 4.10.

Figure 4.10: Values for Tuning ICP parameters

The best results for each test parameter are highlighted in yellow. Similar to RANSAC,
the results were compared both numerically and visually. Additionally, the time required
to obtain a result was evaluated. For the correspondence set, the values should be as
large as possible, indicating more accurate registration and a more robust alignment. A
lower RMSE suggests that inliers are closer together, which reflects precise alignment.
A higher fitness value indicates that more points are correctly aligned.
For the parameters "max iterations" and "relative fitness," the values remain constant
until a small threshold was reached, after which they decline. Therefore, smaller val-
ues were preferable, as they result in faster outcomes. For the voxel size and distance
threshold, the goal was to find a balance between quick results and good performance.
These parameters are also interrelated through the following formula:

distance threshold = voxel size ∗ 3

For the "normal radius" and the "RMSE", the correspondence set was a good initial
indicator to assess the general behavior of the registration. After that, the fitness and
RMSE were evaluated.
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4.3 Results Coloring

The main concept behind the coloring process was similar to the method used in drones,
where Lidar and Photogrammetry were combined to achieve better results. This ap-
proach aimed to improve the quality of the point cloud and obtain faster results.

The process, illustrated in figure 4.11, involved various tests to verify the results and
evaluate how the process worked. In the first step, the existing photogrammetry point
cloud was utilized, and images were captured from it. Subsequently, images taken by
divers were tested to determine their applicability for coloring the point cloud. The final
step for rectifying errors involved generating an entirely new photogrammetry model
from the surface and using the same model and images for testing.

Figure 4.11: Coloring process

4.3.1 Pictures taken from existing point cloud

In the initial tests, the existing photogrammetry point cloud was used, and images were
captured from it. This involved loading the point cloud in Python and generating a
virtual camera to take various pictures with known positions, rotations, and intrinsic
and extrinsic parameters. Starting with the two registered point clouds, the position
was verified by running ICP registration again on the multibeam point cloud. After
aligning the multibeam point cloud, images were captured from the photogrammetry
point cloud. These images were then projected onto the multibeam point cloud, with
each point being colored based on the calculated color. To achieve this, the camera
position, rotation, and parameters needed to be known.

The final result was illustrated in figure 4.12, with the camera positions marked with
red dots in the bottom line. In the three resulting models, it is clearly visible that the
plane can be nearly perfectly reproduced and the colors are looking close to the original
model. Therefore, with a known camera position, the MBES point cloud can be colored.
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Figure 4.12: Colored multibeam point cloud with camera position

To verify that the model was recreated with, different camera position and numbers of
cameras and pictures taken of the original model.

The following section, Listing: 4.3 describes the code for capturing images from the
3D point cloud. The input consists of the point cloud and the camera trajectory, and
the output is the set of images that will be used in the next step.

1 def capture_images_from_trajectory(pcd, trajectory, dimension=640):

2 """

3 Captures RGB images from a 3D point cloud at different viewpoints along a

4 trajectory.

5

6 Parameters:

7 - pcd (open3d.geometry.PointCloud): 3D point cloud from which images are

8 captured.

9 - trajectory (list of open3d.camera.PinholeCameraParameters): A list of

10 camera viewpoints defining the trajectory.

11 - dimension (int, optional): The resolution of the captured images

12 (default is 640x640).

13

14 Returns:

15 - images (list of np.ndarray): List of captured RGB images as float buffers.

16 """

17 vis = o3d.visualization.Visualizer()

18 print(f"Creating visualizer window with dimension: {dimension}x{dimension}")

19 vis.create_window(visible=False, width=dimension, height=dimension)
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20 vis.add_geometry(pcd)

21 images = []

22

23 for idx, viewpoint in enumerate(trajectory):

24 # Set camera parameters

25 ctr = vis.get_view_control()

26 ctr.convert_from_pinhole_camera_parameters(

27 viewpoint, allow_arbitrary=True)

28 vis.poll_events()

29 vis.update_renderer()

30

31 # Capture image

32 image = vis.capture_screen_float_buffer(do_render=True)

33 images.append(np.asarray(image))

34

35 # Save the images for review

36 plt.imsave(f’image_{idx}.png’, np.asarray(image))

37

38 vis.destroy_window()

39 return images

Listing 4.3: Python code for capturing images

This function Listing: 4.4 is used to color the multibeam point cloud using the exist-
ing images. The inputs include the images, the camera trajectory, and the point cloud.
The output will be the colored point cloud. It is important to note that accurate extrin-
sic and intrinsic camera parameters are necessary for a good result. Additionally, the
point cloud must be adjusted according to each new camera position.

1 def project_colors(pc2, images, trajectory, dimension=640):

2 """

3 Projects the colors from one 3D point cloud (pc1) onto another 3D point

4 cloud (pc2) using the captured images, depth maps, and viewpoints. Rotates

5 the points before projection.

6

7 Parameters:

8 - pc2 (open3d.geometry.PointCloud): Target point cloud onto which colors

9 are projected.

10 - images (list of np.ndarray): List of RGB images captured along trajectory.

11 - trajectory (list of open3d.camera.PinholeCameraParameters): A list of

12 camera viewpoints used for projection.

13 - dimension (int, optional): The resolution of the images and depth maps

14 (default is 640x640).

15
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16 Returns:

17 -pc2 (open3d.geometry.PointCloud): The second point cloud with colors

18 projected from the first.

19 """

20 pc2_colors = np.zeros((len(pc2.points), 3))

21 pc2_points = np.asarray(pc2.points)

22

23 for image, viewpoint in zip(images, trajectory):

24 intrinsic = viewpoint.intrinsic

25 extrinsic = viewpoint.extrinsic

26 fx, fy = intrinsic.get_focal_length()

27 cx, cy = intrinsic.get_principal_point()

28

29 # Project colors onto the pc2 points

30 for i, point in enumerate(pc2_points_rotated):

31 # Transform the 3D point into the camera frame

32 p = extrinsic @ np.append(point, 1.0)

33

34 # Skip points that are behind the camera or at zero depth

35 if p[2] <= 0:

36 continue

37

38 # Project the 3D point to the 2D image plane

39 u = int(fx * p[0] / p[2] + cx)

40 v = int(fy * p[1] / p[2] + cy)

41

42 if 0 <= u < dimension and 0 <= v < dimension:

43 color = image[v, u, :3]

44 pc2_colors[i] = color

45

46 pc2.colors = o3d.utility.Vector3dVector(pc2_colors)

47 return pc2

Listing 4.4: Python code for coloring point cloud

This code Listing 4.5 can be found in the main file of the script. It generates the
camera trajectory and then calls the two functions described above.

1 # Generate a trajectory of viewpoints

2 for i in range(6):

3 # Create a new camera parameter object

4 view = o3d.camera.PinholeCameraParameters()

5

6 # Define the intrinsic parameters for a pinhole camera model (image

7 # dimensions, focal lengths, principal point)
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8 intrinsic = o3d.camera.PinholeCameraIntrinsic(640,640,210,210,320,320)

9 view.intrinsic = intrinsic # Set the intrinsic parameters for the camera

10

11 # Define the extrinsic parameters (4x4 transformation matrix) for camera

12 # position and orientation

13 extrinsic = np.eye(4) # Initialize as an identity matrix

14 # Set camera position in 3D space (move along a circular path with varying

15 # height)

16 extrinsic[:3, 3]=[5*np.sin(np.pi/3*i),5*np.cos(np.pi/3*i),10]

17

18 # Set camera orientation using x, y, z axes (assuming x_axis, y_axis,

19 # z_axis are predefined)

20 extrinsic[:3, :3] = np.column_stack((x_axis, y_axis, z_axis))

21 view.extrinsic = extrinsic # Set the extrinsic parameters for the camera

22

23 # Append the camera viewpoint to the trajectory list

24 trajectory.append(view)

25

26 # Capture images from the generated trajectory using the point cloud (pc1)

27 images, depth_maps = capture_images_from_trajectory(pc1, trajectory)

28

29 # Project the captured colors onto another point cloud (pc2_aligned)

30 pc2_colored = project_colors(pc1, pc2_aligned, images, trajectory)

Listing 4.5: Python code for generating trajectory for camera position

4.3.2 Pictures taken by Divers

In the next step, the goal was to use the images taken by the divers instead of capturing
new images from the photogrammetry point cloud. This meant that the images used to
generate the photogrammetry model, along with the camera position and rotation in x,
y, and z, were uploaded. The camera position and rotation were estimated using Agisoft
while generating the 3D model. Therefore, only one point cloud needed to be loaded
into the code: the MBES point cloud. However, this point cloud had to be translated
and rotated according to the matrix from the registration process. A function was added
to load the images from a specific folder. Additionally, the trajectory and intrinsic and
extrinsic matrices were loaded directly from a file generated by Agisoft. The function for
translating and rotating the point cloud for coloring remained the same, but the input
variables were adjusted.

Initially, the algorithm was tested with only one image, and then the number of
images was increased to 30 to shorten the testing time.
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Result
The result of this test can be seen in figure 4.13. There was a significant difference
between the results obtained from the images captured with Python and those taken by
the divers. It is clearly visible that the colors are completely off, and it is not possible at
all to see the structure of the plane. Also, the size of the images and the rotating is not
fitting with the model. To explore this discrepancy in more detail, different tests were
conducted.

Figure 4.13: Results of coloring MBES point cloud with pictures from divers

First, it was verified that the camera position in x, y, and z is correct, as confirmed
by the red dots. In the second step, efforts were made to determine if the rotation was
accurate and if the extrinsic and intrinsic parameters could be trusted. All these values
were taken directly from Agisoft, which means they were calculated by the software. One
approach was to use the known coordinates of the plane in the model and remove the
translation, but this did not improve the results.
After testing with different values and not achieving better results, it was decided to
start from scratch and generate a new model in Agisoft. This process will be described
in the next chapter.

4.3.3 Tests with Agisoft

To determine if there is a way to improve the results and obtain more accurate values
for the intrinsic and extrinsic parameters, a new model was created in a controlled
environment. A table in a classroom with known scales on top was chosen for this
purpose. Since the dimensions of the table and the scales were known, they could be
incorporated into the software later. The final result of the table as a 3D model can be
seen in figure 4.14. The idea was to use the generated point cloud as a base model and
then color it with the original images taken. Some of the original pictures can be seen
in the bottom of the figure 4.14.
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Figure 4.14: New Photogrammetry model in known environment

The model was generated with fixed scales and setting up the model with a local
coordinate system, this process worked without any issues. In the next step, the calcu-
lated camera position (translation and rotation), as well as the intrinsic and extrinsic
parameters, are exported to the code in python. After running, the code as usual the
result is printed, shown in figure 4.15. With this additional test, it was clearly indicated
that the exported parameters from Agisoft are incorrect. The reason was that the new
model showed the same pattern already visible as a result before.

Figure 4.15: Test in Python with new model

To verify the model, different test were made on top of generating only the model.
One was to move the zero point of the coordinate system to the first camera position,
and export all parameters and the model again. This leads to the same result, as shown
in figure 4.15. Additionally, an attempt was made using just three pictures to find an
offset that could be added. However, the rotation error varies for each picture, indicating
that it is not possible to obtain the exact rotation from Agisoft.
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In this chapter, the conclusions of the work done, as well as its future work that
could be done are shown.

5.1 Conclusions
This project aimed to explore the integration of Multibeam Echosounder (MBES) data
with photogrammetry models to enhance underwater mapping, particularly focusing on
submerged archaeological sites. The study demonstrated that automatic registration
between the two types of point clouds is possible, though with limitations in accuracy
depending on the dataset and environment. Additionally, the coloring of MBES point
clouds using images proved viable, although further refinements in the process are needed
to improve precision.

The results indicate that while MBES and photogrammetry serve different pur-
poses—MBES provides accurate bathymetric data over large areas, and photogrammetry
offers detailed surface imagery—the combination of these techniques has the potential to
enhance both accuracy and data richness in underwater mapping. This study highlights
the importance of precise registration techniques when combining different data sources.
Achieving accurate alignment between MBES and photogrammetry point clouds is crit-
ical for producing reliable, integrated models. Moreover, the study emphasizes the role
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of automated processes in improving efficiency and reducing the time required for data
post-processing in underwater surveys.

Challenges such as aligning the two types of data, tuning the registration algorithms,
getting the camera positions and being dependent on favorable weather conditions for
fieldwork were faced during the project. In general, the biggest obstacle for the project,
was to get an exact camera location for combining different source point clouds.

Given the objectives outlined at the beginning, this report has successfully achieved
its goals of investigating the limitations and options for combining MBES and pho-
togrammetry data. It also developed two key outputs: an automatic point cloud regis-
tration process and a method for coloring MBES point clouds with visual data, both of
which contribute to improving the quality and usability of underwater mapping results.

5.2 Discussion

The integration of MBES data with Photogrammetry, as explored in this thesis, builds
upon the growing body of research into underwater archaeological mapping. The sources
reviewed in Chapter 1.3 provide crucial theoretical and practical foundations for the tech-
niques employed in this work. Specifically, the literature demonstrates the evolving role
of MBES and Photogrammetry in underwater exploration, especially in mapping sub-
merged archaeological sites, such as shipwrecks and plane wrecks.

The research conducted in Malta (Gambin et al., 2021) [14] and the Virtual Un-
derwater Museum [8] outlines how underwater cultural heritage sites are increasingly
surveyed using Side Scan Sonar (SSS) and MBES technologies. This aligns with the goals
of this thesis, which sought to leverage MBES for large-area mapping and photogram-
metry for high-resolution surface details. However, as noted in studies like "Underwater
Optical and Acoustic Imaging: A Time for Fusion" (2016) [12], the fusion of acous-
tic and optical methods remains technically challenging due to differences in resolution,
data alignment, and environmental limitations.
This thesis confirmed many of the challenges identified in the literature. For example,
while MBES is well-suited for gathering bathymetric data across wide areas, it strug-
gles with the fine detail provided by photogrammetry. The photogrammetry models,
while detailed, suffer from issues related to water turbidity and light attenuation, as
previously documented. We encountered similar challenges, especially in achieving an
accurate alignment between MBES point clouds and photogrammetry data. Despite
using Iterative Closest Point (ICP) and Random sample consensus (RANSAC) methods
for registration, the accuracy of the final models was still limited by environmental fac-
tors and the difficulty in obtaining precise camera positions.

The theoretical framework provided by sources like the book"State of the Art in 3D
Recording and Mapping" (2018) [22] emphasizes the potential for combining MBES and
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photogrammetry, but also highlights the current limitations in extrinsic calibration and
feature matching. This thesis extended this research by developing an automatic reg-
istration process for aligning MBES and photogrammetry datasets, which represents a
step forward in resolving some of the identified technical issues. Nonetheless, as identi-
fied by earlier researchers, the need for better optic-acoustic calibration was evident in
our work. The variability in camera positioning and the inherent resolution differences
between the two technologies made it difficult to achieve precise alignment without fur-
ther post-processing.

The broader application of these technologies in underwater archaeology, as described
in sources like "3D Recording and Interpretation for Maritime Archaeology" (2019) [20],
highlights their value in improving the accuracy of underwater site documentation. This
thesis demonstrated that, while combining MBES and Photogrammetry can enhance
data richness, the practicality of deploying both technologies simultaneously—especially
using an Autonomous Underwater Vehicle (AUV) requires further refinement in both
hardware integration and software processing. As found in prior research, the fusion
of optical and acoustic systems is still in its infancy but holds promise for improving
underwater mapping, especially in less ideal conditions such as turbid waters.

The findings of this thesis both affirm and extend the current body of knowledge
surrounding the combination of MBES and Photogrammetry for underwater mapping.
By developing a semi-automated process for aligning point clouds and testing it under
real-world conditions, this research has contributed to the ongoing effort to integrate
these complementary technologies more effectively. However, consistent with the litera-
ture reviewed, more research is needed to overcome the intrinsic and extrinsic calibration
issues that still limit the precision of fused datasets.

5.3 Future work

Future work should focus on improving the accuracy of point cloud registration, particu-
larly in varying underwater conditions. One of the most promising avenues is enhancing
the automatic alignment algorithms. In this thesis the method of tuning parameters
was already explored and there is not a lot of improvement seen in this area. Therefore
this could be achieved through integrating machine learning models to predict optimal
registration techniques based on the specific environment and the quality of the data.
By using machine learning, adaptive models could be developed to handle different levels
of noise, water turbidity, and lighting conditions, which would significantly improve the
robustness of the registration process.

Another area for exploration is the application of segmentation techniques to improve
point cloud analysis. Segmentation could play a critical role in distinguishing different
features within both MBES and photogrammetry data, helping to separate objects of
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interest—such as shipwrecks or archaeological artifacts—from background seafloor noise.
This project briefly explored the potential of segmentation, but it was halted due to the
lack of sufficient data to effectively train a model. Future research could aim to gather
more diverse datasets to address this limitation. With enough labeled data, advanced
segmentation models could be trained to automatically classify various structures within
point clouds, which would lead to faster and more accurate analysis, especially in com-
plex underwater environments. These models could be used to segment the point clouds
before registration, improving alignment accuracy by focusing on relevant features.

Long-term monitoring of wrecks and other underwater structures also offers promis-
ing research opportunities. By developing a dynamic model for periodic data collection,
researchers could track changes in these sites over time. This would enable not only the
study of environmental impacts on underwater objects but also the detection of struc-
tural decay or erosion. Such a system would require the development of more robust
algorithms capable of integrating new data into existing models, allowing for seamless
updates. This approach would significantly contribute to both conservation efforts and
archaeological studies by offering continuous and high-precision monitoring.

A critical aspect of future work could also be exploring efficient methods for merg-
ing photogrammetry and multibeam datasets, especially in cases where data gaps exist.
These gaps can occur due to environmental factors like poor visibility or technical lim-
itations during data collection. Developing robust techniques to interpolate and merge
these datasets could help create more complete and accurate 3D models of complex un-
derwater structures, such as shipwrecks, which often feature intricate details and varying
scales. Filling data gaps would ensure more reliable models and allow for better analysis
and interpretation in underwater archaeology and related fields.

Finally, further refinement of the coloring process for MBES data should be pursued.
Utilizing more advanced image-processing techniques, such as deep learning-based image
segmentation or object recognition, could enhance the accuracy of assigning colors to
MBES point clouds. Additionally, exploring more sophisticated 3D reconstruction tech-
nologies would improve the visual representation of the data, making the integration
between MBES and photogrammetry models more seamless. These refinements could
lead to a more user-friendly interface for exploring underwater environments, benefiting
both scientific research and commercial applications like underwater inspections or vir-
tual tourism.

By addressing these areas, future work will not only refine the methodologies devel-
oped in this project but also broaden the scope of applications, making the combined
use of MBES and photogrammetry more practical and versatile in real-world scenarios.



Bibliography

[1] www.open3d.org 2018-2023. Open3d 0.18.0 documentation.
https://www.open3d.org/docs/release/getting_started.html. Accessed: 2024-
04-16.

[2] Company: Agisoft. Discover intelligent photogrammetry with metashape. https://-
www.agisoft.com/. Accessed: 2024-02-28.

[3] Zhao Bao, Xiaobo Chen, Xinyi Le, and Juntong Xi. A comprehensive performance
evaluation for 3d transformation estimation techniques. 01 2019.

[4] Chandra Prakash Bathula. Machine learning concept 69: Random sample consen-
sus (ransac). https://medium.com/@chandu.bathula16/machine-learning-concept-
69-random-sample-consensus-ransac-e1ae76e4102a. Accessed: 2024-04-16.

[5] Liang Cheng, Song Chen, Xiaoqiang Liu, Hao Xu, Yang Wu, Manchun Li, and
Yanming Chen. Registration of laser scanning point clouds: A review. Sensors,
18:1641, 05 2018.

[6] Inc. Chesapeake Technology. SONARWIZ 7.12 User Guide. Chesapeake Technology.

[7] CloudCompare Community. Cloudcomparewiki. https://www.cloudcompare.org/-
doc/wiki/index.php/Main_Page. Accessed: 2024-03-03.

[8] Underwater cultural heritage. The virtual museum underwater malta.
https://underwatermalta.org/. Accessed: 2024-02-26.

[9] Menthy Denayer, Joris De Winter, Evandro Bernardes, Bram Vanderborght, and
Tom Verstraten. Comparison of point cloud registration techniques on scanned
physical objects. Sensors, 24(7), 2024.

[10] Teledyne GAVIA ehf. User Manual Gavia AUV. Teledyne Gavia.

[11] Teledyne GAVIA ehf. Gavia AUV, Posted on January 17, 2020. Accessed:
06.02.2024.

[12] Fausto Ferreira, Diogo Machado, Gabriele Ferri, Samantha Dugelay, and John Pot-
ter. Underwater optical and acoustic imaging: A time for fusion? a brief overview
of the state-of-the-art. 09 2016.

69



70 Bibliography

[13] Ben Ford, Donny L. Hamilton, and Alexis Catsambis. The Oxford Handbook of
Maritime Archaeology. Oxford University Press, 12 2013.

[14] Timmy Gambin, Alberto Bravo-Morata Rodríguez, and Maja Sausmekat. From dis-
covery to public consumption: The process of mapping and evaluating underwater
cultural heritage in malta. Heritage, 4(4):2732–2745, 2021.

[15] Huibert-Jan Lekkerkerk Hydro International. State of the art in multibeam
echosounders. https://www.hydro-international.com/content/article/state-of-the-
art-in-multibeam-echosounders. Accessed: 2024-02-28.

[16] Infomar. Mapping the irish seabed. https://www.infomar.ie/. Accessed: 2024-02-
29.

[17] Łukasz Janowski, Maria Kubacka, Mateusz Popek, and Andrzej Pydyn. Exploration
and reconstruction of a medieval harbour using hydroacoustics, 3-d shallow seismic
and underwater photogrammetry: A case study from puck, southern baltic sea.
Archaeological Prospection, 28:1–16, 05 2021.

[18] David G. Kleinbaum and Mitchel Klein. Applied Regression Analysis. Duxbury
Press, Belmont, CA, 3rd edition, 2010.

[19] 3D Vis Lab. 3d visualisation of marine environments. http://www.serious-
animation.com/marine/. Accessed: 2024-02-29.

[20] John McCarthy, Jonathan Benjamin, Trevor Winton, and Wendy van Duivenvo-
orde. 3D Recording and Interpretation for Maritime Archaeology. 04 2019.

[21] Innes McCartney. Jutland 1916: The Archaeology of a Naval Battlefield. 04 2018.

[22] Fabio Menna, Panagiotis Agrafiotis, and Andreas Georgopoulos. State of the art
and applications in archaeological underwater 3d recording and mapping. Journal
of Cultural Heritage, 33, 04 2018.

[23] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
Cambridge, MA, 1st edition, 2012.

[24] R2Sonic. Sonic v-series 2020 /2022 / 2024 / 2026.
https://r2sonic.com/products/sonic-2026/. Accessed: 2024-08-29.

[25] Haiqing Si, Jingxuan Qiu, and Yao Li. A review of point cloud registration algo-
rithms for laser scanners: Applications in large-scale aircraft measurement. Applied
Sciences, 12(20), 2022.

[26] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[27] Wikipedia. Multibeam echosounder. https://en.wikipedia.org/wiki/Multibeam_e-
chosounders. Accessed: 2024-02-28.



Bibliography 71

[28] Zhengyou Zhang. Iterative Closest Point (ICP), pages 433–434. Springer US,
Boston, MA, 2014.



A
p

p
e

n
d

ix A
Appendices

This appendix is included to comment some aspects not considered in the rest of the
work

A.1 Tuning Results

Figure A.1: Results tuning RANSAC algorithm
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A.2 Mission Protocol JU88 South

Figure A.2: Mission Protocol JU88 South
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A.3 Risk assessment

Figure A.3: Risk Assessment for the AUV
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A.4 Checklist

Figure A.4: Checklist for the AUV
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ix B
Source code

Under the following link all the code and the used data can be found. It includes the
Point cloud files as well as used pictures.

GitHub Link for Source Code: https://github.com/Leo12Buch/PointCloud
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ix C
Additional Pictures and Videos

Under the following link additional videos and pictures can be found. It includes a folder
for getting the Multibeam data with the AUV, one to get the data with the R2Sonic
Multibeam and another one for the Photogrammetry data.

Drive Link for Pictures and Videos: https://drive.google.com/drive/folders/

1RiQywHW_eL18H1scq2NmmybObLoF0oVP?usp=drive_link
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