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Abstract

When developing autonomous ferries, safety must be a priority. Most times a ferry will not be alone in the

water so it will encounter other objects or even humans. This thesis aims to develop a model that detects

humans in water to increase the operational safety of an autonomous ferry. The images used are taken

from an RGB camera aboard the ferry. The method used in this thesis is object detection which is based

on Machine Learning (ML). In this task, the object to be detected is a swimmer. Two different network

architectures will be used to detect the swimmer, namely Faster R-CNN and YOLOv8. These models

will be trained by using transfer learning with two existing datasets and a newly created dataset that

represents exactly the viewing angle of the ferry. Additionally, the newly created dataset features more

images in difficult situations like during sunset, with (partially) occluded swimmers and people snorkelling

under the water surface. To obtain good detection results, a temporal filtering rule was implemented:

Detections of 10 images are combined to obtain a single window detection. Our results show that with

YOLOv8x plus the use of windows, it is possible to have less than one False Positive (FP) per season

while still assuring that a potential swimmer in front of the boat will be detected.
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Resumo

Ao desenvolver ferries autónomos, a segurança deve ser uma prioridade. Na maioria das vezes, um

ferry não estará sozinho na água pelo que encontrará outros objetos ou mesmo humanos enquanto

opera. Esta tese visa desenvolver um modelo que detete humanos na água para aumentar a segurança

operacional de um ferry autónomo. As imagens utilizadas são tiradas de câmaras (RGB e IR) instaladas

a bordo do ferry. O método utilizado nesta tese é a detecção de objectos com base na aprendizagem

mecânica (ML). Nesta tarefa o objeto a detetar é um nadador. Três arquiteturas de rede diferentes

serão utilizadas para detetar o nadador, nomeadamente a Faster R-CNN e a YOLO. Estes modelos

serão treinados usando a aprendizagem por transferência com dois conjuntos de dados existentes e

um conjunto de dados recentemente criado que representa exatamente o ângulo de visão do ferry. Além

disso, o conjunto de dados recém-criado apresenta mais imagens em situações difı́ceis, como durante

o pôr do sol, com nadadores (parcialmente) ocultos e pessoas a fazer snorkelling sob a superfı́cie

da água. Para obter bons resultados de deteção, foi implementada uma regra de filtragem temporal:

As detecções de 10 imagens são combinadas para obter uma única janela de deteção. Os nossos

resultados mostram que com o YOLOv8x e a utilização de janelas, é possı́vel ter menos de um Falso

Positivo (FP) por época de operação e, ao mesmo tempo, garantir que um potencial nadador em frente

ao barco seja detectado.
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Safety is of utmost importance in the development of autonomous ferries. Given that ferries typically

operate in shared waterways, encounters with other vessels or even humans are likely. Therefore,

ensuring the safe navigation and interaction of autonomous ferries with their surroundings is crucial.

This master thesis aims to be part of the development of autonomous ferries by increasing opera-

tional safety. This is done by creating a model that automatically detects swimmers in water. To set

up this model, a dataset of swimmers seen from the camera on board the ferry is formed and then an

algorithm is trained on this dataset.

1.1 Motivation

When aiming to build autonomous ferries, safety is an important aspect. Between 2014 and 2020

7,501 marine casualties and incidents in waters of EU Member States involved people (either injured or

dead) [EMSA, 2021]. This high number shows how important safety aspects for ships are.

Chances are very low that the ferry will be completely alone in the water. Most times it will encounter

other ships. Several research ( [Shin et al., 2020], [Prasad et al., 2017], [Benderius et al., 2021]) has

already been done on automatically detecting these ships. However, it is always possible that there are

humans in the water. Even in a harbour where people are forbidden to swim, no one can guarantee that

there are no swimmers.

When a human is swimming in water, it is normally not possible to see the full body of that person

due to reflections and diffraction of the water. Most times only the head and one or two arms will be

visible. Figure 1.1 shows an example of a person swimming to visualize the commonly noticeable body

parts of a swimmer.

Figure 1.1: Example picture from that dataset of [Lygouras et al., 2019]
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Every ship nowadays has a captain (and crew) on board. The captain or one of the officers is always

scanning the water when the ship is moving to check for anything that might be in the water. Even

though these people are not searching for a swimmer in front of the ship, they would recognize one. To

allow any autonomous driving, the machine has to be at least as good as a human to be accepted by

society. Consequently, it is essential that an autonomous ferry would recognize not only other ships but

also humans in front of it.

1.2 Problem definition

Object detection is a computer vision problem that aims to find objects in an image and correctly classify

them. The basic inputs needed are at least one image and an algorithm to find the object in the image.

In this master thesis, the object to be found is a swimmer. The thesis is developed in cooperation

with the company Callboats. They operate a ferry in Helsinki, Finland. The boat is shown in Figure 1.2.

The work in this thesis is based on this ferry but can potentially be transferred to any ferry operating

under similar conditions.

Figure 1.2: Electrical ferry from Callboats

The ferry operates in an environment where it is unlikely to find people swimming in the water. It is

assumed that, at any given time, a maximum of two individuals may be present in the water. The boat

has an Red-Green-Blue (RGB) camera and a thermal camera installed which will be used to create a

new dataset of swimmers from the perspective of the ferry.

The environment, in which the ferry is navigating, is limited to calm open water like urban waterways,

rivers, or lakes. This, on first sight, simple environment comes with several challenges: reflections and

diffraction on the water surface, waves, that might occlude the swimmer, as well as sunlight reflecting on

the water surface can lead to camera sensor saturation.
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As stated in [Jacquelin et al., 2022] most public datasets do not feature people in water. Section 3.2

will focus on the already existing datasets that try to fill this gap. However, there is no dataset available

for this specific scenario. Therefore, a new dataset is being created as part of this thesis.

The detection of humans in the newly created dataset will be done by using Machine Learning (ML)

techniques which are able to cope with big amounts of data. The performance of different ML algorithms

on the newly created dataset will be compared to find out which one works best in this specific scenario.

The goal for the ML algorithms’ performance is based on the travelling conditions of the ferry:

• Immediate ferry stop if a swimmer is in close proximity.

• Maximum of one unnecessary immediate stop per season.

• Zero false negatives near the ferry.

• Final detection results rely on a sequence of images, considering consecutive image scenarios.

1.3 Challenges

The problem presented in Section 1.2 indicates several challenges. Current state-of-the-art algorithms

do not detect perfectly every human in every potential image (see results in Table 3.1). Hence it is not

yet possible to guarantee that every swimmer will be detected. Additionally, the ocean is a challenging

environment due to its reflections and diffraction on the water surface, waves, that might occlude the

swimmer, and sunlight reflections on the water surface, that might saturate the camera sensor.

As shown in Figure 1.3 people in water create several challenges based on the occlusion of most

body parts as well as the constant environmental changes due to waves. In calm water situations, the

real body part of the human might be reflected almost like a mirror by the water surface as shown in

Figure 1.4. The difficulty for a detector is to decide which part of the image is the human and which part

is the reflection.
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Figure 1.3: Person occluded by swell [Lygouras et al., 2019]

Figure 1.4: Hand reflected by water surface
[Images, 2020]

Figure 1.5: Sunlight reflected by water surface [Todabasi, 2022]

On a bright day, sunlight will be reflected by the water’s surface. As Figure 1.5 shows this reflected

sunlight is very bright and may over-saturate the camera sensor making it difficult to see anything else

in the image.

1.4 Aim and objective

The aim of this thesis is to create a model to detect swimmers in open water. Due to limited data

available, a new dataset of swimmers based on the perspective of a ferry will be created. This dataset

will be evaluated by using 2 different ML algorithms to determine which model performs the best for the

given situation. The model has to be accurate and work in real time.
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1.5 Contribution

The practical contribution of this thesis is a fine-tuned model that is fast enough to detect potential

humans in water while the ferry is moving. This will make autonomous driving on the water surface safer

in the future.

This model includes a filtering technique specifically designed to address the challenges outlined in

Section 1.3. The filter reduces the impact of individual images on the final detection result of the model,

through the implementation of various decision rules.

Additionally, the company Callboats will be provided with a dataset featuring humans in water based

on the ferry’s perspective. As well as the assessment of the performance of a swimmer detection model

which will help Callboats determine if this technology works as intended. Both contribute to the social

acceptance of an autonomous ferry.

6
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Traditional object detection as part of Computer Vision (CV) is based on handcrafted features. These

models are cannot optimize the features extracted from the images and were therefore replaced by more

powerful Deep Learning (DL) techniques. The networks used for this master thesis are all Convolutional

Neural Network (CNN) type networks due to their good performance in object detection tasks [Zhao

et al., 2019].

2.1 Object Detection

The goal of object detection is to locate an object in an image and classify it correctly. To indicate where

the object is in the image, a bounding box is used.

Originally object detection was based on hand-crafted features (edges and corners inside the image)

to detect objects. With the introduction of CNN algorithms more complex features are used as each

pixel of an image is represented by a feature description. The usage of these more complex features

improved the performance of the detectors [Janai et al., 2020].

Nowadays there exist two object detectors: ”Two-stage detectors” and ”One-stage detectors”. Two-

stage object detectors propose first a region where an object could be and in the second stage what

object is in this region. One-stage object detectors do the full process in one step [Jiao et al., 2019].

2.1.1 Backbone Network

Most modern object detectors use a backbone network. The backbone network is a basic feature extrac-

tor. It uses images as input and outputs a feature map. As shown in Figure 2.1 the backbone network

consists mainly of convolution layers that down-sample the image to extract the features.

A backbone network is trained through supervised learning with a labeled dataset. The network

is initialized with random weights, and iterative training involves forward and backward propagation,

adjusting parameters to optimize predictions.

Due to its ability to extract features, which is very important to obtain good results, a backbone

network can be an adequate tool to improve the performance of an object detector [Jiao et al., 2019].

2.1.2 Two-stage Detector

Two-stage detectors first suggest candidate object bounding boxes. Then what class of object could be

inside this bounding box.

In the first stage, proposal generation, the algorithm proposes a region where an object could be in

the image without proposing a category of the image yet. The image passes through several convolution

layers which extract features. Proceeding from the extracted features the algorithm finds the contours
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of objects. Based on these contours, the Region Proposal Network (RPN) proposes regions where the

object could be [Bappy and Roy-Chowdhury, 2016].

Figure 2.1: Basic architecture of a two-stage detector [Jiao et al., 2019]

In the second stage, a Region of Interest (RoI) Pooling operation combines the features extracted by

the backbone with the proposed region. After another convolution layer, the object is classified (cls) and

its bounding box/location is given (loc). Figure 2.1 shows the basic architecture of a two-stage detector,

including the backbone network [Jiao et al., 2019].

Two-stage detectors usually have high accuracy on where the object is in an image and what ob-

ject it is. The two-stage detector that will be used in this master thesis is called Faster Region-Based

Convolutional Neural Network (R-CNN). It will be discussed in more detail in Section 4.1.1.

2.1.3 One-stage Detector

In contrast to a two-stage detector, a one-stage detector directly predicts where the object could be in

the image without the need for an RPN.

Figure 2.2: Basic architecture of a one-stage detector [Jiao et al., 2019]

Figure 2.2 shows a one-stage detector with a backbone network. The one-stage detector uses a fixed

set of regions (anchors) instead of an RPN. The RoI Pooling layer uses the features from the backbone
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network that are inside each of these anchors to detect and classify the object and the bounding box

around the object [Jiao et al., 2019].

One-stage detectors are usually fast and good for real-time devices. The one-stage detector used in

this master thesis is called You Only Look Once (YOLO). It will be explained in more detail in Section

4.1.2.

2.2 Dataset split

To train an object detector it is important to split the data into a training and a validation set. The training

set is used to train the algorithm. To prevent the algorithm from overfitting on the given dataset, a

validation set is used to test the algorithm’s performance after training. The best model parameters are

chosen based on the performance of the model on the validation set. Additionally, a certain amount of

data should be used as a test set. After the model training and validation, the test set is used to get an

idea of the general performance of the model [Xu and Goodacre, 2018].

2.3 Evaluation

The performance of an algorithm is evaluated based on the detection results on the test set, not the

training set or validation set. The four basic terms used to evaluate the performance of a detection

algorithm are [Minaee et al., 2022]:

• Ground Truth (GT): accurately labeled objects (annotations) in an image

• True Positive (TP): an object that is detected correctly

• False Positive (FP): the algorithm detected an object that does not exist

• False Negative (FN): an object (GT) was not detected

Based on these parameters it is possible to calculate Precision (P) (how many positive identifications

are correct identification) and Recall (R) (how many GT objects were identified).

P =
TP

TP + FP
(2.1)

R =
TP

TP + FN
(2.2)

2.3.1 Log Average Miss-Rate

The Log Average Miss-Rate (LAMR) is a common value to determine the performance of a human

detector. It is based on the Miss Rate (MR) (percentage of FN) and False Positives Per Image (FPPI)
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for a definite number of images N . Nine FPPI reference points in the range of [10−2, 100] are used to

calculate the LAMR with the following equations [Zhang et al., 2020]:

MR =
FN

TP + FN
(2.3)

FPPI =
FP

N
(2.4)

LAMR = exp(
1

9

∑
f

log(MR(argmax FPPI))) (2.5)

The smaller the LAMR the better the model performed.

2.3.2 Intersection Over Union

In CV especially when using bounding boxes to define an object in an image, it is important to define the

Intersection Over Union (IoU) metric. IoU defines the ratio between the overlapping area of two bounding

boxes and the area of their union (see Figure 2.3). The two bounding boxes are the box around the GT

object and the box around the Predicted Object (PO).

IoU =
area(GT ∩ PO)

area(GT ∪ PO)
(2.6)

The IoU score of detection is between 0 and 1, where 0 means no overlap and 1 means perfect overlap

[Koech, 2020]. Typically, scores from 0.5 up to 1 are counted as TP. However, selecting this threshold

is up to the designer.

Figure 2.3: IoU formula; adapted of [Koech, 2020] Figure 2.4: Precision-recall curve example; adapted of
[Minaee et al., 2022]

Figure 2.4 shows an example of the precision-recall curve which states how the trade-off between

P and R changes when changing the IoU threshold. Based on this curve, the user can select the right

threshold that fits to the given problem.

In the case of detecting humans in water, it is better to have false positives than to not detect a

person. Consequently, the threshold in this thesis is set to improve recall and reduce precision.
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2.3.3 Average Precision

Nowadays a common value to evaluate the performance of a system is the Average Precision (AP) value

that describes the area under the precision-recall curve. It offers a single value to describe the average

of all predictions. The value AP is used, for example, by [Varga et al., 2022] and [Cafarelli et al., 2022]

to evaluate different algorithms on their newly created datasets. The AP value at a certain IoU threshold

α is defined by:

APα =

∫ 1

0

P(R)dR (2.7)

Common metrics are AP50 (IoU = 0.5) and AP75 (IoU = 0.75).

Since AP is determined for each class individually, there are usually several values for the same

dataset. To get a single value, the mean Average Precision is introduced. The mean Average Precision

(mAP) defines the average of all AP values determined for all classes. [Koech, 2020]

mAPα =
1

n

n∑
i=1

APifor n classes (2.8)

2.4 Fusion of detections

In addition to the selection and training of an individual model, the choice of fusion method for combining

detections is important to achieve good results. Many successful classification methods combine results

to improve the model’s performance [Trick and Rothkopf, 2022].

Bayesian models are used to compute the likelihood of an observation and combine it with the Bayes’

rule (probability of an event happening, depending on prior knowledge of conditions associated with the

event). It is assumed that the detections are independently of each other. In a simple case considering

only two images A, B and the detection results DR to be true or false, the OR rule, denoted ∨ gives:

∨ Atrue Afalse

Btrue DRtrue DRtrue

Bfalse DRtrue DRfalse

Table 2.1: OR rule

In this case DR is only false if both A and B are false. Thus the probability of DR being false is:

PropDRfalse = PropAfalse × PropBfalse (2.9)
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Assuming DRfalse is a FN detection, the probability of DR being a TP (PropDRTP), is simply:

PropDRTP = 1− PropDRFN (2.10)

[Schubert et al., 2004].

The concept given in Table 2.1 can be extended to a set of several observations. Each image adding

another dimension to the table. In these more complex cases a detection result might be negative even

through a certain amount of images show correct detections. For three images A, B, C considering DR

to be a TP if at least two images have a TP, PropDRTP is:

PropDRTP =PropATP × PropBTP × PropCTP

+ PropATP × PropBTP × PropCFN

+ PropATP × PropBFN × PropCTP

+ PropAFN × PropBTP × PropCTP

(2.11)

If the probability for A, B, and C to be a TP is the same, (2.11) can be pooled together:

PropDRTP = PropA3

TP+3×PropAFN×PropA2

TP =

3∑
i=2

PropAi

TP×PropA3−i

FN× 3!

(3− i)!× i!
(2.12)

For indefinite number of images NI, with a minimum of N TP images, PropDRTP is:

PropDRTP =

NI∑
i=N

PropAi

TP × PropANI−i

FN × NI!

(NI − i)!× i!
(2.13)

Using (2.13) any number of detection results can be fused to determine the likelihood of a certain

observation. Since PropATP and PropAFN function as a weight, this type of fusion is called Linear

Opinion Pool [Berger, 2013].
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Lots of research in the field of human detection has already been done. Table 3.1 gives an overview

of the research papers related to this thesis. The table is divided into two-stage and one-stage detectors

to focus on comparing similar approaches while recognizing how different data/sensors collect that data,

and influence the resulting model.

Two-stage detectors Algorithm Data Sensor Results
[Varga et al., 2022] Faster R-CNN Swimmers in open water RGB cameras, including near to Infrared (IR) 54.7 AP50
[Cafarelli et al., 2022] Faster R-CNN Swimmers in open water RGB camera 12.4 AP50
[Zhang et al., 2020] Faster R-CNN Different amounts of pedestrians RGB camera 12.8 MR
[Nguyen et al., 2017] CNN Single pedestrians RGB + Thermal camera 6 % EER
[Li, 2021] Faster R-CNN Pedestrians in different light settings IR camera 26.2% mAP

One-stage detectors Algorithm Data Sensor Results
[Varga et al., 2022] CenterNet Swimmers in open water RGB cameras, including near to IR 22.2 AP50
[Cafarelli et al., 2022] YOLOX Swimmers in open water RGB cameras 12.6 AP50
[Lygouras et al., 2019] YOLOv3 Swimmers in open water RGB Camera 67% mAP
[Jacquelin et al., 2022] tiny-Unet model Videos of Swimmers in Pool RGB camera 45 mAP 50
[Zhang et al., 2020] RetinaNet People on land in different amounts RGB camera 31.47 LAMR
[Li, 2021] YOLOv3 Pedestrians in different light settings IR camera 34.9% mAP

Table 3.1: Overview Research Papers

Part of this master thesis is the creation of a new dataset that features swimmers from the point of

view of an autonomous ferry. Table 3.2 provides an overview of existing datasets that feature swimmers,

are taken from a boat perspective or are commonly used in human detection. To be aware of how others

are creating their datasets, the number of images, the resolution of the images and the annotations

are compared. Since this work relies on the ability to use existing datasets, it is important to provide

information if a dataset is open source or not.

Swimmers Dataset Name Amount of Images Resolution Data Open Source Single/Multi-Shot Annotation
[Varga et al., 2022] SeaDronesSee 54000 3840 x 2160

√
both manually

[Cafarelli et al., 2022] MOBDrones 126170 1920 x 1012
√

multi-shot manually
[Leira et al., 2015] not named 3000 720 x 480 x multi-shot manually
[Lygouras et al., 2019] Swimmer Dataset 4500 416 x 416

√
single-shot automatically

[Jacquelin et al., 2022] Swimm400 403 256 x 256 x multi-shot manually

Pedestrians Dataset Name Amount of Images Resolution Data Open Source Single/Multi-Shot Annotation
[Zhang et al., 2020] WiderPerson 13382 1400 x 800

√
single-shot manually

[Nguyen et al., 2017] DBPerson-Recog-DB1 8240 204 x 20
√

single-shot manually

Table 3.2: Overview Datasets

3.1 Detecting people on land overview

There are lots of different positions a human body can take. Based on that, there are also several

different areas of detecting humans. Since there is more work already carried out detecting humans on

land, an overview of this work is given first.
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3.1.1 Pedestrian detection RGB camera

To detect pedestrians [Zhang et al., 2020] used an improved Faster R-CNN [Ren et al., 2015] and a

RetinaNet (one-stage detector) [Lin et al., 2017] architecture to detect people and compare their created

dataset (examples in Figure 3.1) with other existing datasets. To evaluate the model performance the

authors used the LAMR. They obtained a 12.8 LAMR for Faster R-CNN, while only 31.47 LAMR for

RetinaNet.

Figure 3.1: Example detection results [Zhang et al., 2020]

3.1.2 Pedestrian detection using thermal and IR cameras

The goal of [Nguyen et al., 2017] is to reduce noise in pedestrian detection by combining RGB and

thermal cameras. They achieved an Equal Error Rate (EER) below 6% following this process: Both

images were captured at the same time by a dual camera. The algorithm was trained separately with

each type of image. In the end, the extracted features were combined to detect the person correctly

(Figure 3.2).

Figure 3.2: Combining RGB and Thermal Images Figure 3.3: Usage of IR cameras

To decrease the influence of high-heat objects close to human bodies, [Li, 2021] suggests to use IR

cameras instead of thermal cameras. The authors obtained better results using YOLOv3 [Redmon and

Farhadi, 2018] (mAP 34.9) to detect pedestrians in IR images (Figure 3.3) than using Faster R-CNN [Ren

et al., 2015] (mAP 26.2).
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3.2 Existing water-based datasets

There are several big datasets available when it comes to detecting people in land-based scenarios.

Among the biggest are INRIA, Caltech and KITTI. On contrary, the amount of datasets including people

in water is very small.

3.2.1 Detecting people in water from Unmanned Aerial Vehicle (UAV)

The SeaDroneSee dataset [Varga et al., 2022] aims to fill this gap by creating a UAV dataset for Search

and Rescue (SAR) missions. The dataset includes 54,000 images (examples in Figure 3.4) divided into

swimmer, floater (swimmer with a life jacket), life jacket, swimmer on a boat, floater on a boat, regions to

ignore (like land) and unlabeled objects (for example, wood). Pictures were taken with several cameras

(including an IR camera) to minimize the effect of camera bias (all images taken from the same viewing

angle). They obtained the best result (54.7 for AP50) using a Faster R-CNN [Ren et al., 2015] while only

22.2 for AP50 when using the one-stage detector CenterNet [Zhou et al., 2019].

Figure 3.4: Categories in [Varga et al., 2022]

Another big UAV based dataset is the MOBDrones [Cafarelli et al., 2022] dataset with 125,000 drone-

view images (examples Figure 3.5) of which 72% feature humans in overboard situations. To annotate all

these images, the open-source software Computer Vision Annotation Tool (CVAT) [opencv, 2022] was

used. Based on these annotations the authors were able to obtain a 37.8 AP50 with a two-stage detector

(12.4 AP50 using Faster R-CNN [Ren et al., 2015]), and 12.6 AP50 with YOLOX [Ge et al., 2021].

Figure 3.5: Zoomed in detection results [Cafarelli et al., 2022]
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SAR missions using UAVs might also happen at night or during weather conditions with poor visibility.

Therefore, [Leira et al., 2015] used IR cameras to detect people in open water. While using a simple

edge detector, 98.5% of humans were detected correctly and 93.3% were classified correctly. However,

the model did not perform well whenever the horizon was in the image due to the simplicity of the used

edge detector. This shows that within certain limits, using thermal images in an ocean scenario gives

good detection results.

As [Leira et al., 2015] does not offer its dataset publicly, the only available IR images from the dataset

is given in Figure 3.6.

Figure 3.6: Example edge detector [Leira et al., 2015]

3.2.2 Working with small datasets

In [Lygouras et al., 2019], it is presented the Swimmer Dataset containing images with people swimming,

captured from various angles and altitudes (example images Figure 3.7). Since the dataset only contains

4500 images, the author used the negative of each image as well. Additionally, they retrained their

algorithm with all the images containing FP detections to improve their network. With this approach,

they obtained 67% mAP and 70% recall on a YOLOv3 [Redmon and Farhadi, 2018] network. While

using MobileNetV2 [Sandler et al., 2018] they only achieved a mAP of 21%.

Figure 3.7: Examples Swimmer Dataset
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The Swimm400 dataset created by [Jacquelin et al., 2022] is a very small dataset with only 403

images. They were still able to obtain a 45% mAP50 by using the following augmentation strategies to

increase the model’s performance:

• Zoom-in: cropping the image to make the swimmer be bigger

• Zoom-out: adding neutral colour around the swimmer to make the swimmer look smaller

• Side-switch: moves swimmer from the center to the side of the image

• random left-right flip: to double the dataset

• colour change: thus the water had all different types of blue and even green

• contrast and brightness variations: to simulate different weather conditions

• Gaussian blur: for overall robustness

Figure 3.8 shows examples of seven different augmentations used in [Jacquelin et al., 2022]. From

left to right, top to bottom: original image, blur, contrast and brightness change, crop, horizontal flip, hue

change, side switch, zoom out.

Figure 3.8: Augmentation examples [Jacquelin et al., 2022]
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3.3 Variance in existing datasets

To gain a better understanding of the available data, the variance in the existing two datasets - SeaD-

ronesSee [Varga et al., 2022] and Swimmer Dataset [Lygouras et al., 2019] - was analyzed. Table 3.3

and Table 3.4 show the number of images per defined category. The categories for the two datasets

are unrelated because the two datasets focus on very different situations. Most images in the SeaD-

ronesSee dataset include more than two people and show them in the same size or smaller than the

people in the ”Far away” category of the Swimmer Dataset. In contrary the Swimmer Dataset features

swimmers in very different sizes with the biggest ones almost filling the full image.

Table 3.3 shows that the amount of swimmers in the SeaDronesSee dataset is minimal. However,

they do have a lot of floaters. A floater is a swimmer with a life jacket on. For the ferry, it does not matter

if the person has a life jacket (it is not in an SAR mission). Thus the floaters and swimmers fall in the

same category for further training of the models (see Appendix A.1.1 for verification).

Training set Test set Validation set
Only swimmers 5 15 7
Only floaters 207 184 96
Swimmers & others 349 24 147
Images with black squares 87 81 62
Images with a very small swimmer 1669 1156 409

Table 3.3: Amount of images per category in the SeaDronesSee dataset

As Table 3.4 shows, the amount of black people and children in the Swimmer Dataset is small (SeaD-

ronesSee does not have any nonwhite people or children). The same accounts for the situation of sun-

rise/sunset, a partially occluded person, a person reflected by the water surface and a swimmer with

their head underwater.

Close to the camera Medium distance Far away
1 person 234 394 224
2 people 122 129 408
3 or more people 198 293 451
people of color 12 1 ( +10 crowd scene) 1
kids 36 0 0
Partially occluded person 0 5 297
Sunrise/Sunset 6 0 0
Swimmer reflected by water surface 4 1 0
No head shown 0 14 0
Swimmer + Animal 4 120 161
Swimmer + Other objects 18 353 60
people in a swimming pool 336 404 0

Table 3.4: Amount of images per category in the Swimmer Dataset
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3.4 Literature Gaps

In this chapter, the relevant state of the art was reviewed. The most recent work done on swimmer

detection is either limited to swimming pools or based on the view of a UAV during an SAR mission. A

detection model meant to detect swimmers in open water from the perspective of a small vessel is not

yet created. This is the gap we aim to address in this work.
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The goal of this master thesis is to create a model to detect swimmers in open water. The developed

approach starts with collecting the data from the viewpoint of a ferry. Then two different CV algorithms

will be trained with that collected data as well as with already existing datasets of swimmers. Finally, the

performance of each algorithm will be evaluated.

4.1 Algorithms

As explained in Section 2.1 different algorithms can be used for object detection. Similar to [Varga et al.,

2022] and [Zhang et al., 2020] the performance of the dataset will be evaluated on both a two-stage and

a one-stage detector. Based on the current state of the art, the two-stage detector is Faster R-CNN and

the one-stage detector YOLO.

4.1.1 Faster R-CNN

The network Faster R-CNN evolved from R-CNN. It is a two-stage detector. Consequently, the network

first proposes a region where an object could be and then in the next step, classifies what object is there.

While R-CNN relied on a selective search algorithm to create region proposals, [Ren et al., 2015] has

replaced the selective search algorithm with an RPN to create Faster R-CNN. RPN is a neural network

that determines anchor boxes. It is able to create several anchor boxes simultaneously, as shown in

Figure 4.1. This improved the network’s efficiency.

Figure 4.1: Region Proposal Network (RPN) [Ren et al., 2015]

The RPN uses the output of the backbone network as the RPN’s input. A sliding window moves

over the feature map given by the backbone network. Based on the output of the sliding window, the

box-classification layer (cls layer) predicts the probability of objects being in the image. Simultaneously,

the box-regression layer (reg layer) determines where in the image the potential object is and what size

it has. Thus, the RPN outputs anchors of three scales and three ratios which are further used in the

Faster R-CNN network to classify the object and create the bounding box around it. Faster R-CNN is

built to compute faster than a traditional R-CNN. At the same time, it is precise and efficient. [Jiao et al.,

2019] For this work Faster R-CNN with a Resnet50 backbone was used.
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4.1.2 YOLO

The YOLO network was first developed by [Redmon et al., 2016]. It is a one-stage detector designed for

real-time object detection. The architecture of the network is shown in Figure 4.2.

Figure 4.2: Region Proposal Network (RPN) [Ren et al., 2015]

YOLO has 24 convolution layers followed by two fully connected layers. The network divides the

image into grid cells and predicts the bounding boxes in the pixel that contain an object as well as

the probability of the cell belonging to a certain class. The network is trained on a loss function that

corresponds to how well it performs the detection task. It is a mix of cross-entropy (how likely the

object belongs to a certain class) and regression loss (if the box has the right size). The loss function

is the same for big and small objects. It focuses on bounding box predictions rather than confidence

predictions. Classification errors are only penalized if there is an object present in that grid cell.

After the first YOLO algorithm was released, there were several improvements. YOLOv2 and YOLOv3

were improvements made by the creator of YOLO by changing the backbone of the network. Both times

the algorithm became faster than it was before. The newest version is YOLOv8 created by ultralytics.

YOLOv8 is an anchor-free model with a decoupled head (Figure 4.3) similar to YOLOv7 that indepen-

dently processes object detection, classification and regression tasks due to its decoupled head. It

uses a modified CSPDarknet53 [Wu et al., 2020] backbone related to YOLOv5. Based on this design

the authors were able to improve the model’s accuracy compared to other YOLO models. [Terven and

Cordova-Esparza, 2023]
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Figure 4.3: YOLOv8 architecture [Terven and Cordova-Esparza, 2023]

4.2 Swimmer detection model

To set up a good model, several steps are needed after creating a dataset and deciding on the algorithm

to use. Due to the size of the dataset the data will first be augmented. Then, the different algorithms will

be trained and finally evaluated. This process will lead to a good swimmer detection model.

4.2.1 Data augmentation

Since the dataset, as described in Chapter 6, will be created in several sessions, there will be some

variation in the data. However, it is important to acknowledge that it won’t be possible to cover all

imaginable situations. Thus, the variation of the training data will be increased by using the augmentation

methods suggested in [Jacquelin et al., 2022]. That means that for the RGB images different weather

conditions will be simulated by changing the contrast and brightness of the images, as well as adjusting

the colour to create different shades of blue for the water. Additionally, for both image types, swimmers
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will be positioned in different spots of the image by using side-switch, random left-right flip and zoom-

in/zoom-out. Lastly, Gaussian blur will be used to increase the overall robustness of the model.

4.2.2 Training

The training of the two algorithms introduced in Section 4.1 (Faster R-CNN and YOLOv8) is based on

the benchmark SeaDronesSee data set from [Varga et al., 2022] which features images of swimmers

taken by RGB cameras and near to IR cameras. They only obtained results for Faster R-CNN which will

be verified with their available dataset. In reference to this Faster R-CNN and YOLOv8 will be trained

on the new dataset plus some images from the Swimmer Dataset [Lygouras et al., 2019] which come

closer to the camera position of the ferry.

4.2.2.A Transfer Learning

Training a model from scratch takes a lot of time and resources. However, it is possible to reuse a CNN

on related problems. Transfer learning means that the weights of the pre-trained model are reused.

Consequently, researchers often use transfer learning ( [Lygouras et al., 2019], [Zhang et al., 2020],

[Yassine et al., 2020]) to retrain an already well-trained model on new limited data.

The data available in this thesis is also limited. Therefore, algorithms that are already trained on

detecting humans will be retrained with the newly created dataset. Both Faster R-CNN and YOLOv8

pre-trained on MS COCO are available [PyTorch, 2017], [Ultralytics, 2023] and will be used for this

master thesis.

4.2.2.B Cross-validation

During the training of the algorithm, it is important to check the model’s robustness across different

parts of the dataset. To make sure that the dataset division presented in Section 6.3.1 is not biased,

cross-validation will be used.

Cross-validation means that the dataset is randomly divided into k mutually exclusive subsets, in this

case, k = 5. Then the training, validation and testing of the model are done k-times. Based on this

the variance of the predictions can be checked. If the predictions show only a small variance, it means

the model performs consistently in various dataset splits and is assumed to achieve good results with

similar new data as well. [Kohavi et al., 1995]
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4.2.3 Evaluation

Based on the problem given in Section 1.2 two different parameters are important for a good-performing

model: AP (to make sure every swimmer is detected) and speed (aim to work in real-time).

4.2.3.A Object detection performance

For an autonomous ferry, it is very important to detect every possible obstacle on its path while not

misclassifying open water as an obstacle. As a missed swimmer means the ferry might harm a person,

the model should maximize its recall rate (detecting as many swimmers as possible) to secure a safe

journey. As described in Section 2.3.3 the performance of the model can be evaluated using the AP

value. Since the results are compared to the baseline [Varga et al., 2022], the AP50 will be used to

compute the detector’s performance.

4.2.3.B Detection Speed

When navigating anywhere the captain has to make decisions very fast. Consequently, the machine

also has to be very fast to detect objects to give time for the rest of the system to decide how to operate

the ferry. Proceeding from there, the different algorithms will be compared with regard to the time each

algorithm needs to process a certain amount of information. To compare the speed, all algorithms will

be trained with the same images and afterwards tested with the same test set on the same device to

reduce biases based on different equipment.
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Prior to creating a new dataset, several tests with the existing two datasets - SeaDronesSee [Varga

et al., 2022] and Swimmer Dataset [Lygouras et al., 2019] - have been done to understand which images

exactly are needed. With the goal in mind to assure that a swimmer in every possible situation in front

of the ferry will be detected, a Faster R-CNN model was trained and tested on various situations which

will be explained further in this chapter. For these tests Faster R-CNN was chosen because it offers to

randomly assign images to the training and validation set which decreases the volatility in the training of

the algorithm.

5.1 Influence of distance between camera and swimmer

Section 3.3 showed that both datasets have images featuring swimmers close to the camera and far

away. To get a better understanding of the influence the size of a swimmer in the image has on the

detection results, experiments with different setups were done.

When training the algorithm only with people far away from the camera (using images from both

datasets), people close by might not be detected at all as shown in Figure 5.1. Adding images featuring

swimmers at a medium distance to the training set increases the performance of the model. However,

the same swimmer might still not be detected correctly as shown in Figure 5.2.

Figure 5.1: Swimmer not detected Figure 5.2: Swimmer detected as several swimmers

In the opposite way training the algorithm only with images featuring swimmers close to the camera

- again containing images from both datasets - will affect the results on swimmers far away from the

camera. As Figure 5.3 shows only the rescue can was detected twice but no swimmer. After adding the

images featuring swimmers in a medium distance, at least one of the swimmers was detected as well

(Figure 5.4).
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Figure 5.3: Swimmers not detected Figure 5.4: One swimmer detected

Based on these findings, it is important that the newly created dataset features swimmers at different

distances from the camera.

5.2 Influence weather

The ferry will run no matter the weather. Hence, it might be rainy, it might be sunny, and it might be

cloudy. Additionally, the sea might be rough or very calm. If the sea is rough, people might be occluded

by waves and swell.

The Swimmer Dataset includes 297 images with people far away from the camera that are partially

occluded by waves. As SeaDronesSee has no occluded people in its images (all taken during a calm

day), images from this dataset were not included in this test. Without having any pictures with occluded

people in the training set, the model was still able to detect all swimmers in 249 images. In 19 images

the model had at least one false negative.

Figure 5.5 to 5.8 show the three situations when the model did not detect all the swimmers. In Figure

5.6 it would not be problem because the two humans are close together. In contrary in Figure 5.7 and

5.8 the ferry would hit the not detected swimmer by trying to avoid the detected ones. This will cause

dangerous situations.

Figure 5.5: Swimmer occluded Figure 5.6: One swimmer detected
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Figure 5.7: One swimmer detected Figure 5.8: Two out of three detected

In opposite to a very rough sea, on a very calm day, the water’s surface reflects the shore but also

everything on the water. As the Swimmer Dataset and SeaDronesSee both feature images of people

swimming during a calm day, they were mixed to have people of both datasets present in the training

and in the test set.

In the Swimmer Dataset are five swimmers who are reflected on the surface while swimming. All

of them were detected correctly. Two detections included the swimmer and their reflection (example

in Figure 5.9) and one image had the reflection detected as a separate swimmer (Figure 5.10). The

increment in size as shown in Figure 5.9 makes the algorithm believe the swimmer is closer to the

camera than it actually is. Even though this will cause the ferry to stop earlier, it is not considered a

problem since the ferry stopping earlier does not harm the swimmer.

Figure 5.9: Reflection as part of swimmer
Figure 5.10: Reflection as separate swimmer

Besides swimmers being reflected while swimming, humans sitting on a boat (images from SeaD-

ronesSee) can also be detected as swimming in the water (Figure 5.11 and 5.12). Since it is a reflection,

the ”swimmer” will always stay close to the boat. This false positive will therefore not influence the

performance of the ferry.
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Figure 5.11: Reflection of person on boat Figure 5.12: Reflection of person on boat

In the morning or in the afternoon when the sun is low in the sky it will get reflected by the water.

As shown in Figure 1.5 the reflected sunlight might over-saturate the camera sensor making it difficult

to recognize swimmers. As all the images in the SeaDronesSee dataset were taken during the middle

of the day, their images were neither included in the training set nor in the test set. There are only six

images which are taken during sunrise/sunset in the Swimmer Dataset. However, the model can only

detect half of them correctly (example Figure 5.13). In the other three images, the reflected sun is part

of the detections (example Figure 5.14).

Figure 5.13: Correct detection

Figure 5.14: Reflection of the sun detected as a swimmer

5.3 Influence variety of swimmers

An algorithm needs to be shown images of various people to assure it does not specialize on one person.

Even with a variety of people in the image, they might still all belong to the same social group or just do

similar gestures.

All images in SeaDronesSee show white swimmers while the Swimmer Dataset has 12 images with

people of color. As there is an image sequence in the SeaDronesSee which matches closely to the

images of people of color, these images form the training set, together with images of white people

from the Swimmer Dataset. The results for black swimmers were good (example Figure 5.16) while the
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algorithm has trouble detecting humans with brown skin (example Figure 5.15). While the amount of

images with people of colour is very small there are a lot of white swimmers wearing black wetsuits,

especially in the images from SeaDronesSee. Thus, the model is used to see body parts (example

arms) in different tones. Based on these detection results, it is helpful to have some swimmers wear

wetsuits when recording images.

Figure 5.15: Swimmer with brown skin Figure 5.16: Swimmer with black skin

Another group of swimmers, who are underrepresented in the datasets, is children. SeaDronesSee

only features students, while the Swimmer Dataset has people of all ages. There are 36 images with

only children on them and 8 with a child and an adult. As there are no children in SeaDronesSee,

the model was only trained with images from the Swimmer Dataset. The test set had all images with

children on it, independently is they depicted adults as well or not. Most of the children were detected

correctly. An interesting fact is: None-white children were all detected accurately in this trial (example

Figure 5.17). In the test regarding the influence of human skin colour, they were not detected correctly.

(example Figure 5.15). This suggests that training the model with people with different skin colours is

more important than training with people from different age groups.

All images that missed a detected child were group images with the group being detected as a

person, not the individuals. This is not a problem for the situation considered in this thesis. First, it will

not be likely for the ferry to encounter a group of children as shown in Figure 5.18. Second, even if

exactly this situation will happen, it is good when the ferry stops immediately upon detecting this person

very close to the camera to assure that the children are safe.

As there was no image showing children where the children were not detected at all, we can expect

the model to detect children with the same probability as adults even if it is only trained on adults.
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Figure 5.17: Single child Figure 5.18: Group of kids

Typically, when a person is swimming, their head will be above the water or very close to the water’s

surface. This could cause the model to detect a swimmer only based on their head. In case someone

is drowning, their head might not be above the water but it is very important to detect this person.

Thus, images of humans without a visible head will form another group of swimmers. For the recordings

of SeaDronesSee, swimmers were offered live jackets and are mostly floating on the water’s surface

consequently there are no images without a visible head. To reduce the influence of different datasets

on the detection results, only images from the Swimmer Dataset were used to train the Faster R-CNN

model.

The model had a lot of trouble detecting people without a visible head. Out of 15 images only three

were detected correctly. Often the human was just expected to be a lot bigger than the ground truth (see

example Figure 5.19). When having several ”not connected” body parts, they are detected but might

not be detected as one person (example Figure 5.20). The expected size of the ”two” humans (each

represented by one arm) is at maximum half the size of the real human in the image. This is a problem

because the ferry would expect the swimmer to be further away than they actually are.

Figure 5.19: Person detected too big Figure 5.20: Only arms
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5.4 Influence amount of people in the image

For this work, we expect to have a maximum of two swimmers in front of the ferry. In both datasets

SeaDronesSee and Swimmer Dataset there are a lot of images showing more than one person. When

using these datasets the algorithm will consequently get used to having several positives in the image.

The goal of this test was to determine if the amount of FN and FP changes depending on the amount

of swimmers on the images the model is trained with. For this test two sets of images were created

featuring images from both datasets: One with images with a maximum of one swimmer in the image

and the other set with images with more than two swimmers in the image. To obtain results in both

directions, each set was once used as the training set and once as the test set.

Training the algorithm only with images with more than two swimmers leads to more false positives

compared to training with only one swimmer and testing on images with several swimmers. Table 5.1

indicates that training the algorithm exclusively on images containing a single swimmer will result in the

algorithm not detecting all swimmers when there are multiple individuals present.

Test set More than 2 people One person
Correct detections 631 555
False positives 116 377
False negatives 598 88

Table 5.1: Influence amount of people

Consequently, it is important to have images with different amounts of swimmers in the dataset. This

holds true even if the situation this work is based on will never have more than two swimmers in front of

the camera.

Many images with several swimmers on them also show objects and/or animals. Since this work uses

transfer learning and models, which are trained on MS COCO, it is likely that the algorithm will detect the

animals and objects as well. This is good as the ferry should not ram any object or kill animals. Appendix

A.1.2 and A.1.3 verify that anything in the image which is not a human does not affect the detection of

swimmers even if these objects and/or animals were not in the training images.

SeaDronesSee also features images with black squares which are used to reduce the number of

boats in the image. For this thesis the ratio between boats and swimmers is not important, thus we will

not work with images with black squares.

The Swimmer Dataset includes 740 images taken of people in a swimming pool. Even though these

images show swimmers, they will not be included in this work, after all a passenger ferry will never be

found in a swimming pool. Additionally, the conditions of the water surrounding the swimmer are a lot

different from an open-water scenario.
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6
Dataset creation
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The swimmer dataset needed for this thesis will be acquired in Portugal due to the good weather

conditions in spring. Since this work is based on a ferry, its travel conditions are taken into account

when creating the dataset. Figure 6.2 shows the area where the ferry is operating. The ferry transports

day tourists to an island. Thus the dataset acquisition will happen during the daytime. There will be

three recordings at the beach (Figure 6.1) as well as one at a lake to include different weather and water

situations.

Figure 6.1: Beach (image recording location) Figure 6.2: Helsinki (ferry operation location)

6.1 Cameras

The equipment used to record data are a RGB camera and a thermal camera provided by Callboats, as

well as the camera of an iPhone 12 mini. As shown in Figure 6.2 the water is calm and open space.

Based on the dimensions of the ferry the cameras are mounted 2.5− 3m above the water level.

6.1.1 RGB Camera

Most swimmer datasets use RGB cameras ( [Varga et al., 2022], [Cafarelli et al., 2022], [Lygouras et al.,

2019]). The advantage of an RGB image is that there is more information in the image that can be used

for detection than in a grey-scale image.

The RGB camera that is used in this thesis is shown in Figure 6.3. It is a GV-TDR2700 camera from

geovision. The resolution of the images is 1280 x 720 and the camera is able to record 30 images per

second. However, due to the segmentation task splitting the water area from the shore and the limited

computational power on board the ferry, only one image per second can be processed. The camera has

a defog option for better visibility in bad weather.
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Figure 6.3: RGB Camera [Inc, 2021]

Figure 6.4: Thermal Camera [LLC, 2021]

6.1.2 Thermal Camera

In times with poor visibility, thermal cameras have the advantage of looking for heat radiation. Addition-

ally, they reduce the effect of background, clothing and accessories when recognizing humans during

the day. [Leira et al., 2015] proved that object detectors can score good results when using thermal

images. The thermal camera used in this work is FLIR E4. Figure 6.4 shows an image of the camera.

It has an IR resolution of 80 x 60 and a thermal accuracy of ±2C for ambient temperature 10C to 35C.

The camera can record 9 images per second. Nevertheless, each image has to be taken manually ergo

it is not likely to record 9 images per second.

6.1.3 iPhone Camera

To decrease the influence of the used camera on the model, the camera of an iPhone 12 mini will be

used as a third device to record images. It has a resolution of 2340 x 1080 for taking images and is able

to record videos with 30 images per second at a resolution of 1920 x 1080. Thus, the iPhone will be

used for both: Recording videos and single images. Combining these two creates a larger amount of

images, while obtaining some images in a high resolution at the same time.

6.2 Annotation Method

After the images have been recorded, they have to be manually annotated to provide the ground truth

for the CV algorithm. As suggested by [Cafarelli et al., 2022] the software CVAT [opencv, 2022] will

be used to help annotate the images. CVAT is an open-source software which describes itself as an

”industry-leading data engine for machine learning” [opencv, 2022]. The software was created by Intel

to facilitate image and video annotation through interpolation and segmentation.
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6.3 New dataset

Based on the results of Section 3.3 specific situations were selected to focus on with the new dataset.

As Section 5.2 has shown the weather has a big influence on the performance of the detector. As a

result, additional images were captured during sunset, as shown in Figure 6.5, as well as more images

that contain people partially (Figure 6.6) and fully (Figure 6.7) occluded by waves.

6.3.1 Dataset size

As explained in Section 6.1, three different cameras were used to record the data. Table 6.1 shows how

many images were recorded with which camera and what the resolution of the recorded images is.

Camera Recorded Images Image Resolution
RGB Camera 1119 1280 x 720
Thermal Camera 76 80 x 60

iPhone 206 2340 x 1080
10 videos 1920 x 1080

Table 6.1: Recorded images per camera

To have a better variety in the dataset, there have been four individual recording sessions. Table 6.2

gives an overview of the distribution of how many images were recorded during each session as well as

an average of the swimmers annotated per image.

Recording Recorded data Average Number of Annotations
Sunset 1 2 videos 9

Beach daylight 608 images 7,7
2 videos 1,5

Sunset 2 793 images 9,6
5 videos 3,8

Lake 1 video 1

Table 6.2: Recorded images per recording

Table 6.3 shows how many images of each category the new dataset contains. Some images could

fit into several categories so they were placed in the category containing fewer images. For example, all

images with the black person were taken during sunset (see Figure 6.9). However, they were still placed

in the category ”people of colour”.
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Type Annotated Images
People of color 99
People without a visible head 191
Occluded people 51
Sunset 989
One person 358
Two people 49

Table 6.3: Overview images per category

6.3.2 Example Images

After having an overview of all the images taken during the recordings, this section presents examples of

the images in the dataset. As presented in Table the images where divided in several categories. Figure

6.5 shows examples of the images recorded during sunset. The left two images were recorded with the

iPhone during the first sunset recording while the two images on the right side were recorded during the

second sunset with the camera from Callboats (upper right), as well as with the iPhone (lower right).

Figure 6.5: Examples of swimmers during sunset

Figure 6.6 shows images of partially occluded swimmers recorded with the camera from Callboats.

Figure 6.7 shows on the bottom left an image of a swimmer underwater recorded with the iPhone and

on the top right a swimmer under water recorded with the camera from Callboats. Most images with

occluded people were taken during daytime. Only three images with partially occluded people were

taken during sunset.

Figure 6.6: Examples of swimmers partially occluded Figure 6.7: Examples of swimmers fully occluded
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As presented in Section 5.3, the variety of swimmers especially if their head is visible or not had a

big influence on the detection result. Thus, a commercial diver and an athlete swimmer ensured that it

was possible to create images of only feet or arms being visible in the image through diving in the water

and freestyle swimming. People jumping into the waves also created images of humans in the water

without a visible head. Figure 6.8 shows examples of both scenarios. The two images on the left side

were taken with the camera from Callboats, the two on the right were taken with the iPhone.

Figure 6.8: Examples of swimmers without a visible head

Section 5.3 also experimented with the influence of kids on detection results. As all the kids were

detected even when only training with adults, kids were not included in this dataset.

To assure detection results are not based on race, a black swimmer participated on the recordings

during sunset. The image on the left side in Figure 6.9 is was recorded with the camera from Callboats,

the image on the right side with the iPhone.

Figure 6.9: Examples of a black swimmer during sunset
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Some of the images taken during the recordings do not show any special situation or person. These

images are placed in the groups ”one person” (Figure 6.10) and ”two people” (Figure 6.11) in Table 6.3.

All images shown in Figure 6.10 were taken with the iPhone during daytime. The leftmost image shows

the recording taken at the lake, the other two are from the beach during daytime. The images depicted

in Figure 6.11 are all taken at the beach during daytime. The leftmost image was taken with the camera

from Callboats, while the other ones were taken with the iPhone.

Figure 6.10: Examples of images with one person Figure 6.11: Examples of images with two people

Lastly, there were also 25 images taken (Examples in Figure 6.12) with the thermal camera presented

in Section 6.1.2. As the camera used IR to create the thermal images, it did not provide the results hoped

for. For a human, it is a lot harder to detect a swimmer in these thermal image than in a normal images.

The model showed the same results. Thus, only RGB images taken with this camera were included in

the final dataset.

Figure 6.12: Images taken with a thermal camera
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This thesis aims to create a model that detects swimmers in water, based on the view of a ferry.

The new dataset presented in Section 6.3 was combined with some of the images from the Swimmer

Dataset, which are taken from a similar perspective, to create a dataset with a big variety of images that

all come close to how the ferry will see a swimmer.

Before Faster R-CNN and YOLO can be trained with this combined dataset, there was some prepa-

ration done:

• A cross-validation was done to check the variance of the dataset.

• The dataset was split into training, validation and test set.

• To improve the training results, the data was augmented which increased the variety.

Then Faster R-CNN and YOLOv8 have been trained and evaluated individually. After fine-tuning the

results of each model they are compared to determine which model performed better on the given task.

7.1 Dataset preparation

As CV tasks highly depend on the data used and having more data implies covering more situations. The

new dataset was combined with some images from the Swimmer Dataset that have a similar perspective

as the viewing angle the camera on the ferry has.

The dataset used to obtain the results presented in this thesis includes a total of 3865 images.

Approximately half of the images are from the new dataset and half are from the Swimmer Dataset.

Table 7.1 gives an overview of how many images from each dataset belong to which category. By

including images from both datasets, it is possible to have a well balanced dataset with more than 100

images for each distinct category.

Type Images New Dataset Images Swimmer Dataset Total images
People of color 99 12 111
People without a visible head 191 15 206
Occluded people 51 297 348
Sunset 989 6 995
One person 358 613 971
Two people 49 578 627
More than two people 0 607 607

Table 7.1: Overview images used for final training

7.1.1 Cross-Validation dataset

As presented in Section 4.2.2.B the dataset was divided into 5 equal, randomly chosen sets for the

cross-validation. After running the cross-validation with Faster R-CNN for the first time, the AP50 varied

46



between 21.7% and 27.7%. This difference in AP score is big and might be caused by diversity. To make

sure it is not an accidentally created epistemic cause (meaning the images in the testset are completely

different from the ones in the training set), the cross-validation was run two more times, each time with

a different random mixture in each set. The three runs’ outcomes differed a bit in the AP ranges but all

of them showed similar gaps between the random sets as the first cross-validation.

To gain a clearer understanding of the unsatisfactory cross-validation results, specific experiments

were conducted using YOLOv8n. The algorithm was trained exclusively on sunset or non-beach swim-

mer images and tested on daytime beach images to intentionally create an epistemic difference between

the training and testing sets. The results were not satisfying. Figure 7.1 shows that the algorithm de-

tected the swimmers in the back (but only with a low confidence score) while missing the swimmer in the

front. While this happened in a few other images as well, the swimmer in the front was detected in most

images so given a sequence it would be fine.

Figure 7.2 shows good detections of the swimmers on the right side of the image while no swimmers

are detected on the left side. In the other images of this sequence, the detection results are similar to

this image which is very dangerous (see Appendix A.2.1 for the full sequence). Overall, it can be stated

that it is very important to have images of a similar condition at a similar place in the dataset to avoid

FNs.

Figure 7.1: Dangerous missed detection Figure 7.2: Swimmers on the left not detected

The only category with three different recordings at the same place during a similar light situation

but on a different day is Sunset. Thus, it is possible to train the algorithm on a set of images that shows

completely different people than the other sets. While two sets are almost in the exact same condition

(Figure 7.3 and Figure 7.4), the third recording is very different (Figure 7.5).
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Figure 7.3: Sunset recording 1

Figure 7.4: Sunset recoding 2

Figure 7.5: Sunset recording 3

When training YOLOv8n on the third set and testing on the first or second set, the algorithm is unable

to detect the images correctly. When trained on the second set and tested on the thrid set, the algorithm

is able to detect the swimmer in some images but mostly with a low confidence score (example Figure

7.6). However, by training on the first set and testing on the second set, the algorithm is able to detect

most swimmers even though the confidence score is still very low (example Figure 7.7).

Figure 7.6: Correct detection in Sunset 3

Figure 7.7: All correct in Sunset 2
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Going from the result of the cross-validation it is assumed that the epistemic difference between the

images of the dataset is very big. Consequently, the dataset will be split similarly to [Varga et al., 2022]

randomizing the frames while assuring that every situation is present in the training set, the validation

set and the test set. This means that most situations in the test set will be in a similar way found in the

training set as well (example Figure 7.8). It is clear that this means that the final model might not behave

the same way on completely different images.

Figure 7.8: Example Dataset Split SeaDronesSee [Varga et al., 2022]

To check the final model’s behaviour on completely different images, a partition of SeaDronesSee

will be used. It needs to be acknowledged that this data will not represent the viewing angle of the ferry.

However, testing on these images will help understand how the model behaves on any random image of

a swimmer.

7.1.2 Dataset split

As explained in Section 2.2 the dataset is split into training, validation and test set. To determine how

big the test set needs to be and based on this how big the training and validation set can be, some

assumptions about the ferry are taken:

• The minimum distance (MD) between the ferry and the swimmer when detecting the swimmer is

70m.

• The ferry is travelling at its average speed (v) of 6knots (3 m/s) when the swimmer is detected in

front of the ferry.

49



• The ferry travels 10m while making a decision (D) due to the computational power on board.

• The ferry takes one image per second (IpS).

• The ferry needs 20m for an emergency stop (ES).

• The minimum distance (MS) between the swimmer and the ferry needs to be 10m at any given

time.

Going from the taken assumptions the minimum amount of images available to detect a swimmer in

front of the ferry while travelling is:

MD −D − ES −MS

v
× IpS

=
70m− 10m− 20m− 10m

3m/s
× 1image/s

= 10s× 1image/s

= 10images

(7.1)

The model should have no FNs close (70m distance) to the camera and less than one FP close (70m

distance) to the camera per season. The route the ferry takes is a touristic route. Consequently, it only

operated during summer. It operates up to 16 hours a day but only during daylight. On average it is

expected, that the ferry to run 1500 hours per season. Since the ferry can record one image per second,

the total amount of images per season is:

1, 500
hours

season
× 3, 600

seconds

hour
× 1

image

second
= 5, 400, 000

images

season
(7.2)

For this thesis, it is not possible to test the algorithm on 5.4 million images. However, it is assumed

that the probability of having a FN or FP will stay the same throughout the season.

As the final decision, if there is a swimmer in front of the ferry or not, is based on a sequence of 10

images (result (7.1)), the probability to have a FN or FP in a sequence will be calculated and scaled up

to how many a FNs or FPs per season can be expected.

To guarantee good results in a sequence of 10 images, the test set consists of 28 sequences of 10

images. 19 sequences with situations from the new dataset and 9 sequences with situations from the

Swimmer Dataset. The test set includes images with only one swimmer, two swimmers and a few with

more than two swimmers. It has sequences taken during daylight as well as during sunset and features

images with occluded swimmers as well as swimmers without a visible head.

Due to the input format of YOLOv8, the split between training and validation set had to be made by

hand. It was attempted to randomize the split as much as possible, randomly picking 800 images for the

validation set while making sure that all important situations are captured in images in the validation set

as well as in the training set. The training set for YOLO consists of 2780 images.
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For the training of Faster R-CNN the remaining data was split randomly by the algorithm. To obtain a

similar training/validation set size, the data was divided into 77% training data (2862 images) and 23%

validation data (718 images).

7.1.3 Data augmentation

When working with small datasets it is important to use data augmentation to improve the detection

results. As described in Section 4.2.1 several types of data augmentation are used. The data is aug-

mented by using the transforms function from PyTorch.

7.2 Faster R-CNN

Before training Faster R-CNN with the combined dataset, it was trained with the data from [Varga et al.,

2022]. They offered their code as well as the exact split of the dataset and their results online. Based

on that Faster R-CNN was trained and obtained an AP50 of 54.8% for the validation set which verifies

the results given in Table 3.1 of 54.7%.

Proceeding from these good results, the same method was used as [Varga et al., 2022] to train

Faster R-CNN with the combined dataset. As mentioned in Section 7.1.2 the data was split randomly

between training and validation set using 77% of the data for the training set. During the training of

Faster R-CNN, it achieved validation results of 26.1 for AP50 for the validation set. On average it took

the model 21.5ms to process each test set image and make a prediction on a GPU 1070.

7.2.1 Optimizing Faster R-CNN

To optimize the detector’s performance Optuna was used. Optuna tried the optimizer Adaptive Mo-

ment Estimation (Adam), Root Mean Squared Propagation (RMSprop) and Stochastic Gradient De-

scent (SGD) with a learning rate between 10−5 and 0.1. After several trials, Optuna was able to improve

the performance of Faster R-CNN to 31.4 AP50 on the validation set using SGD and a learning rate of

0.002748.

As the cross-validation in Section 7.1.1 showed, the random subset used to validate the model can

heavily influence the performance of the model. Using a different training validation set combination, the

model improved its AP50 to 39.7 for the validation set with a P of 0.71 and an R of 0.95.

7.2.2 Performance on test set

To get a good ratio between FNs and FPs on the test set, Faster R-CNN was evaluated using several

different Non-Maximum Suppression (NMS) thresholds. The NMS threshold is a parameter used to filter
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out redundant bounding box predictions. It determines the minimum confidence score required for a

bounding box to be considered during the suppression process.

To visualize better the confidence of the model for each bounding box, bounding boxes with a confi-

dence score above 0.9 are marked in green, and bounding boxes with a confidence score below 0.9 are

marked in yellow. As the figures in this chapter will show, most times Faster R-CNN detects swimmers

with a confidence score above 0.9.

With a threshold of 0.01, the model had trouble with detecting people in a group during sunset. Most

sunset images had a FN. As Figure 7.9 shows, both FNs are in a group with other swimmers. Since

both times the swimmers around that person are detected with a high confidence score, the ferry would

stop anyway.

On the other hand, there are 23 images with a FN that would be dangerous when not detected.

For example in Figure 7.10 the ferry needs to stop immediately because there is a swimmer close by.

Exactly this swimmer is not detected which is very dangerous.

Figure 7.9: Example FNs during sunset

Figure 7.10: Example dangerous FN

If the goal was to have no FPs, this would have been a very good threshold considering there were

almost no images with FPs. However, in this case, it is most important to detect every swimmer so as to

have no FNs. To reduce the amount of FNs the NMS threshold was increased to 0.05.

With the new NMS threshold the amount of FNs was reduced. There are still several FNs in the

group images like in Figure 7.9 but only four FNs that would have been very dangerous because the

swimmer was alone on their part of the image. The swimmer on the right side of Figure 7.11 was not

detected in 3 images in a row, while the swimmer on the left side (in the sunlight) of Figure 7.12 was

detected in all the other images.
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Figure 7.11: Example FN far from camera Figure 7.12: Only dangerous FN close to camera

To check if it is possible to have no critical FNs the NMS threshold was increased to 0.1, 0.15 and

finally 0.2. With a higher NMS threshold, it is possible to reduce the amount of FNs in the test set.

However, the model never detected the three critical swimmers. At a threshold of 0.2 the amount of

FPs increased a lot. Thus, it will not be helpful for the overall performance of the model to increase the

threshold further.

After a close comparison of the results using a threshold of 0.1 and a threshold of 0.15, 0.15 is the

better threshold: The test set had 4 FNs less than 0.1 and 2 FPs less. Anyhow, even with a threshold of

0.15, there are still the same FNs as presented in Figure 7.11 and Figure 7.12.

Nevertheless, as the goal is to detect a swimmer correctly in a sequence of images, this will be

possible for all swimmers in the image sequences besides the FN in Figure 7.11. In this specific case,

the third swimmer enters the scene shortly before the sequence in the test set ends. As the swimmer is

not detected immediately but a few images after entering the scene, it can be expected that the algorithm

would detect the swimmer correctly in further images as well.

Overall, there are 14 sequences of 10 consecutive images without any FN or FP.

7.3 YOLO

Ultralytics offers different YOLOv8 models. Since for the detection of swimmers in water both speed

and correct results are important, the fastest YOLOv8n, as well as the most precise YOLOv8x, have

been trained with the training and validation data presented in Section 7.1.2. Then both models made

predictions on the test set which were manually checked and compared to decide which YOLOv8 model

to improve further.
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7.3.1 YOLOv8n

First, YOLOv8n was trained. During validation, the model achieved an AP50 of 34.8%, a P of 0.86, and

an R of 0.66 with the validation set. It took the model 10.8ms to process each test set image and make a

prediction. When manually checking the detection results on the test set, 21 images had an obvious FNs

or FPs. Most incorrect detections showed one person detected as two individual swimmers (example

Figure 7.13).

Figure 7.13: One person as two

YOLOv8n had only two FPs that are actually water. Figure 7.14 and Figure 7.15 show that both

times the water is very crowded which does not correspond with the expected situation that the ferry will

encounter a maximum of 2 people at the same time.

Figure 7.14: One false positive Figure 7.15: Two false positives

In the predictions, there are eighth images with a FN. It happened three times in two consecutive

images that the same person was not detected. To make sure that there are no FNs, it is important

to compare several images of a sequence. This also includes comparing the position of each detected
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swimmer, not only the amount of swimmers in the image.

For example Figure 7.16 shows three detections as the image beforehand in this sequence (see

Appendix A.2.2 for the full sequence). However, one swimmer is detected twice while the other one is

not detected. Based on the former images in the sequence, the algorithm can still assume correctly

where the third swimmer is as he was detected correctly at the beginning of that sequence (while he is

not visible for the camera later in the sequence).

Figure 7.17 shows that only one of the hands is detected as a human. This is already good as the

human is detected. If there was only this swimmer, it would be an issue: the swimmer is estimated to be

further away than it actually is. But in this situation, the ferry would stop for the swimmer closer to the

camera anyways.

Figure 7.16: One false positive Figure 7.17: Only one foot detected

Overall, there are 17 sequences of 10 consecutive images without any FN or FP.

7.3.2 YOLOv8x

According to Ultralytics, YOLOv8x is the most precise detector version of YOLOv8. During validation, the

model achieved an AP50 of 40.4, a P of 0.84, and an R of 0.72 with the validation set. The model took

18ms to process each test set image and make a prediction. When manually checking the detection

results on the test set, 17 images had obvious FNs or FPs. Half of the detections were FNs, and the

other half FPs.

All of the images with a FP show the same person twice (example in Figure 7.13). Only in one image,

the beach sand is detected as a swimmer. Since the ferry will know if there is water or land, FPs on land

can be ignored. Detecting the same person as two people who are at the same spot, will not interfere

with the ferry’s actions towards that FP. Based on these two assumptions, YOLOv8x does not have any

FPs.

There are nine images with a FN. Three times the FN occurs in two consecutive images. In Figure

7.18 and Figure 7.19 the person on the left is not detected while in Figure 7.19 and Figure 7.20 the
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right person is not detected. This is a dangerous situation because the algorithm could assume that

the swimmer moved under the surface from the right position to the left position. However, all three

swimmers are detected in the rest of the sequence (given in Appendix A.2.3) thus it will be possible for

the ferry to detect the three swimmers correctly.

Figure 7.18: Left person FN Figure 7.19: Two FNs Figure 7.20: Right person FN

Overall, there are 21 sequences of 10 consecutive images without any FN or FP.

7.3.3 Comparison YOLOv8n and YOLOv8x

Section 7.3.1 and Section 7.3.2 have shown that both YOLO algorithms work well. As expected YOLOv8x

needs longer to predict on an image while being more precise.

Out of all test images, there are 10 images where both YOLO algorithms detected a FN or FP. On

half of these images the prediction of both YOLOs was exactly the same. On the other five, they have

missed a different swimmer or one had a FP that the other one did not.

All the FNs are in the same sequences for both YOLO algorithms. This shows that they share

common difficulties. All FNs are in images with more than two swimmers so overall, both algorithms

detect well swimmers in the range of one to two.

Based on the slightly better detection results of YOLOv8x and the fact that the ferry takes a second

to process each image, it does not make sense to use YOLOv8n which is only 8ms faster in predicting.

7.3.4 Improving performance on test set

To improve the output of YOLOv8x, YOLOv8x was reevaluated using several different NMS thresholds as

well as changing the confidence score. The initial NMS threshold used by Ultralytics to predict images

is 0.7. Decreasing this threshold improved detection results as the amount of FNs decreases. Once

the NMS threshold is below 0.25, there is a big increment in the amount of FPs. Most of them are two

bounding boxes marking the same swimmer.

Another variable that influences if a bounding box becomes are prediction or not, is the confidence

score. It describes how sure the model is that there is an object inside the bounding box. The initial

value set by Ultralytics is 0.25. By reducing this value to 0.01, it was possible to see which is the lowest

confidence score corresponding to a TP. In the case of the test set, the lowest confidence score for a TP
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was 0.08 shown in Figure 7.21. However, allowing bounding boxes with this low of a confidence score

to be counted as a detection also creates lots of FPs. Figure 7.22 shows an example of an image with

several FPs.

Figure 7.21: Lowest confidence score for a TP Figure 7.22: Several FPs with a low confidence score

Both Figure 7.21 and Figure 7.22 are from the same scene. As in most images (example Figure 7.22)

the confidence score on TPs is a lot higher than 0.08. At the same time, many FPs have a confidence

score below 0.2 thus it is a good compromise to set the confidence score to 0.2.

To improve the model’s performance further [Lygouras et al., 2019] suggested to retrained the model

with all images that had a FN or FP from the validation set. Accordingly, YOLOv8x was retrained with

these images from the validation set. However, this did not improve the models’ performance on the test

set but increased the amount of FPs in the test set. Thus, the best model obtained before retraining with

the validation set will be compared to Faster R-CNN.

7.4 Comparison Faster R-CNN and YOLOv8

As the cross-validation in Section 7.1.1 has shown that the used samples for training, validation and test

set, heavily influence the model’s performance, it is important to train YOLOv8 and Faster R-CNN with

exactly the same data.

Faster R-CNN was retrained using the same dataset split as for YOLOv8 to ensure this is the case.

With the same dataset split as YOLOv8 the AP50 increased a lot to 59.5%, P and R increased as well

to 0.76 and 0.99. The overall performance of the model on the test set did not change significantly from

the results presented in Section 7.2.
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Faster R-CNN YOLOv8x
Detection speed 21.5ms 18ms

Validation set
AP50 59.5% 40.4%

Test set
AP50 46.4% 51.2%
Windows without mistakes 14 21

SeaDronesSee
AP50 42.7 % 48.3%
Windows without mistakes 4 (+5) 4 (+2)

Table 7.2: Comparison Performance Faster RCNN YOLO

Table 7.2 shows a simple comparison of the performance of the two models. Since the epistemic

difference in the combined dataset is so big (see Section 7.1.1), the test set featured images that are

similar to the images used to train both models. To see how Faster R-CNN and YOLOv8x behave on

completely new data, both models were also tested on 160 images from the SeaDronesSee dataset.

Table 7.2 gives the result of their performance on the test set, as well as on these 160 images from

SeaDronesSee. The row FNs gives the number of images that have a FN while FPs gives the number

of images that have a FP. If an image has both a FN and a FP, it will be counted twice. In the test set,

each image sequence had 10 images. Thus, it is simple to determine how many sequences are without

a mistake.

The images used from SeaDronesSee are not that clearly distributed. Thus, each different situation is

counted as a correct sequence if the full sequence or at least 10 consecutive images from it are without a

detection mistake. Faster R-CNN had an additional five times ten consecutive images that were without

a mistake while YOLOv8x had additional two times ten consecutive images that were without a mistake.

7.4.1 Comparison on the test set

As given in Table 7.2 there are more FNs in the results from Faster R-CNN than in the results from

YOLOv8x. Some of their mistakes are in the same sequence, some are in different sequences. Overall,

YOLOv8x made more mistakes with swimmers close to the camera while Faster R-CNN made more

mistakes with swimmers far from the camera. With swimmers at a medium distance, they had similar

problems.

Table 7.3 gives examples of these FNs. Each image in this table with a FN represents a sequence

with several FNs. As shown, the FNs at a medium distance are the same for both detectors. However,

this is only the case in exactly this image. In the rest of the sequence it varies a bit in which images the

models miss a swimmer.

58



Faster R-CNN YOLOv8x

close to the camera

at medium distances

far away

Table 7.3: Comparison Results on Test Set

Both detectors had FPs. However, if they appear in a group (example Figure 7.14) or if a person

is detected twice (example Figure 7.13), they can be ignored since these FPs will not influence the

detection results. Based on this it was stated in Section 7.3.2 that YOLOv8x does not have any FPs.

As shown in Table 7.2 most FPs from Faster R-CNN fall into this category too. The remaining six FPs

will not influence the final detection results of each sequence as explained in Section 7.2. Thus, FPs do

have a significant influence of the detection performance on either of the two models.

7.4.2 Comparison on images from SeaDronesSee

To better understand the detector’s performance on completely new data, both models were tested on

160 images from SeaDronesSee. As given in Table 3.3 most images from the SeaDronesSee dataset

had only very small swimmers. The 160 images chosen for this test only showed swimmers easily

detectable to a human and without several boats in the image. Additionally, it is important to emphasize

that these images mostly do not represent the viewing angle of the ferry.

Table 7.2 shows that Faster R-CNN had more FNs than YOLOv8x. At the same time Faster R-CNN

had more sequences without mistakes. This means that in the remaining sequences mistakes from

Faster R-CNN might affect the detector’s performance more than in the results from YOLOv8x.
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In contrast to the behaviour of the two models on the test set, here there was not a clear separation

between the detection results. The only situation without any mistakes is this single swimmer shown in

Figure 7.23.

Figure 7.23: Full sequence detected correctly

In all the other situations both models make mistakes. There is one scene where the UAV is first

further away from the swimmer and then comes closer to him. In the far-away scene (Figure 7.24),

Faster R-CNN has a FN in three images with two of them being consecutive images. Taking into account

that the swimmer is detected in most of the images in the sequence, the model will still be able to detect

the swimmer correctly.

Once the camera is closer to the swimmer (Figure 7.25), YOLOv8x has two images (with 12 correct

images between them) with a FN. Since the gap between these two FNs from YOLOv8x is so big, it

won’t change the detection results in the sequence.

Figure 7.24: FN Faster R-CNN Figure 7.25: FN YOLOv8x

In the remaining two situations, the mistakes are similar, even though Faster R-CNN has some

more than YOLOv8x. Figure 7.26 shows a group scene with several swimmers. While these people

float through the image, both models make mistakes with up to three FNs in the same image (image

sequence from Faster R-CNN given in Appendix A.2.4). Nevertheless, it is a group scene thus, the ferry

would stop for the remaining detected swimmers anyway.

The scene given in Figure 7.27 has dangerous results for both detectors. In this sequence of ten

images, Faster R-CNN has six images where the left swimmer is not detected while YOLOv8x has

seven images with the left swimmer not being detected. Since the boat is also visible on the right side
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of the image, the ferry would most likely move to the left side to avoid the boat and the swimmer.

Figure 7.26: Scene with group of swimmers Figure 7.27: Scene with two swimmers and a boat

Both algorithms had several images with a FP. As shown in Figure 7.27, there are scenes with a

boat in the image. As expected in Section 5.4 both algorithms did detect the boat in the images from

time to time. Independently if the boat is detected or not, it will not be counted as wrong as detecting

boats is not part of this thesis.

Most of the FPs detected by Faster R-CNN are in group scenes. There is a sequence of six images

with a FP at almost the same spot in every image. This sequence is given in Appendix A.2.4. This FP

might be detected as a swimmer in the sequence. However, since there is an actual swimmer almost

next to this FP, the ferry would choose to sail only a slightly larger distance to the actual swimmer, it

would not drive differently than without the FP.

YOLOv8x never has more than 2 FPs in a sequence of 10 consecutive images. Thus, none of them

will be detected as a swimmer when considering the full sequence.

7.5 Probability FN and FP per season

Based on the results achieved with Faster R-CNN and YOLOv8x, the probability of having FNs and FPs

per season was calculated. As given in (7.2) there will be 5.4million images per season thus, half a

million windows of 10 images. Within these windows, the goal is to have a maximum of 1 FP and zero

FNs. Consequently the probability of having a FPw in the test set should be below 1.852 × 10−6. While

the probability of having a FNw should be as close to 0 as possible.

To calculate the probability of a FNw in the test set, first, all TPs and FNs per swimmer (bounding

box) are counted. Coming from the values per swimmer, the TPs and FNs were determined as explained

in Section 2.3.

Based on (7.1) a swimmer counts as detected if it is detected in several frames in a window of 10

images. To determine the probability of a swimmer being detected correctly, the true positive rate TPR

or Recall (R) is calculated. The probability of a swimmer not being detected is called false negative rate
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FNR. It is given as:

TPR = Prob(detection | Swimmer) = Recall =
TP

TP + FN
(7.3)

FNR = Prob(¬detection | Swimmer) = 1− TPR (7.4)

The probability for each window being a TPw is calculated with:

• n, the number of detections in a time window

• N , the minimum of detection in a time window to count a swimmer as detected correctly

• W the number of frames per window (which is 10)

Based on these parameters, the formulas to calculate the TPw and the FNw are:

Prob(TPw) = Prob(n ≥ N | Swimmer) =

W∑
i=n

FNRW−i × avgTPRi × W !

(W − i)!× i!
(7.5)

Prob(FNw) = Prob(n < N | Swimmer) =

n∑
i=0

FNRW−i × avgTPRi × W !

(W − i)!× i!
(7.6)
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The probability of each window being a TPw for Faster R-CNN and YOLOv8x given a certain N is

represented in Table 7.4 belonging to the detection results of the test set and in Table 7.5 appertaining

to the results of the unknown examples from SeaDronesSee.

To calculate the probability of having a FP in a window, theoretically, the amount of True Negatives

(TNs) would be used. Since swimmers are not always the same size, the surrounding water cannot be

divided into a certain amount of empty boxes to determine the TNs per window.

The ferry does not travel in a water area where humans normally swim. Thus, the ferry should

normally not encounter a human. Referring to this assumption it was estimated that there would be a

maximum of one swimmer per season found in the water. This implies, that there would never be more

than one swimmer in the frame. Thus, FPPI (2.4) will be used to determine the probability of having a

FP in the image, which is called false positive rate FPR.

Taking into account that all FP plus all TN must cover all GT negatives, the probability of having a TN

is 1− FPR. It is called true negative rate TNR. The probability of a window having a FPw is calculated

similarly to the probability of a window being a TPw:

Prob(FPw) = Prob(n ≥ N | noSwimmer) =

W∑
i=n

FPRW−i × TNRi × W !

(W − i)!× i!
(7.7)

Prob(TNw) = Prob(n < N | noSwimmer) =

n∑
i=0

FPRW−i × TNRi × W !

(W − i)!× i!
(7.8)

The probability of each window having a FPw for Faster R-CNN and YOLOv8x given a certain N is

represented in Table 7.4 based on the detection results of the test set and in Table 7.5 appertaining to

the results of the unknown examples from SeaDronesSee.

Faster R-CNN YOLOv8x
N Prob(TPw) Prob(FNw) Prob(FPw) Prob(TPw) Prob(FNw) Prob(FPw)
1 1 1.8 ∗ 10−17 0.986 1 1.2 ∗ 10−14 0.505
2 1 8.3 ∗ 10−15 0.910 1 2.8 ∗ 10−12 0.144
3 1 1.7 ∗ 10−12 0.731 1 3.0 ∗ 10−10 0.026
4 1 2.2 ∗ 10−10 0.477 0.999 1.9 ∗ 10−8 0.003
5 0.999 1.8 ∗ 10−8 0.241 0.999 8.1 ∗ 10−7 2.7 ∗ 10−4

6 0.999 9.8 ∗ 10−7 0.091 0.999 2.3 ∗ 10−5 1.6 ∗ 10−5

7 0.999 3.8 ∗ 10−5 0.025 0.999 4.6 ∗ 10−4 6.6 ∗ 10−7

8 0.999 0.001 0.004 0.994 0.006 1.8 ∗ 10−8

9 0.982 0.018 4.9 ∗ 10−4 0.941 0.059 2.8 ∗ 10−10

10 0.807 0.193 2.5 ∗ 10−5 0.66 0.339 2.1 ∗ 10−12

Table 7.4: Probability for a window detection results - test set
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Faster R-CNN YOLOv8x
N Prob(TPw) Prob(FNw) Prob(FPw) Prob(TPw) Prob(FNw) Prob(FPw)
1 1 1.5 ∗ 10−10 0.772 1 7.0 ∗ 10−11 0.509
2 0.999 1.3 ∗ 10−8 0.409 0.999 6.6 ∗ 10−9 0.147
3 0.999 5.2 ∗ 10−7 0.148 0.999 2.8 ∗ 10−7 0.027
4 0.999 1.2 ∗ 10−5 0.038 0.999 7.2 ∗ 10−6 0.003
5 0.999 1.9 ∗ 10−4 0.007 0.999 1.2 ∗ 10−4 2.9 ∗ 10−4

6 0.998 0.002 8.6 ∗ 10−4 0.999 0.001 1.7 ∗ 10−5

7 0.985 0.015 7.6 ∗ 10−5 0.989 0.011 7.2 ∗ 10−7

8 0.922 0.078 4.4 ∗ 10−6 0.936 0.064 1.9 ∗ 10−8

9 0.720 0.280 1.5 ∗ 10−7 0.750 0.250 3.2 ∗ 10−10

10 0.333 0.667 2.4 ∗ 10−9 0.363 0.637 2.4 ∗ 10−12

Table 7.5: Probability for a window detection results - SeaDronesSee examples

YOLOv8x has better probabilities for not having a FP in both tables while the probability of having a

FN is a little higher in the test set than for Faster R-CNN. This is caused by 80 FN very far away from

the boat which were not counted in the comparison in Section 7.4 as they do not influence the behaviour

of the ferry considering that the swimmer close to the camera is detected correctly (see full sequence in

Appendix A.2.3).

As mentioned earlier, the goal is for the ferry to at most have one FP per year. Therefore the value

for Prob(FPw) must be below 1.85 ∗ 10−6. Choosing an N equal to or higher than seven will guarantee

that. To get as little FNs as possible as well, the best option is to choose N = 7. Based on the values

from Tables 7.4 and 7.5 and the assumption for the ferry to encounter a maximum of one swimmer per

year SpY , the number of years until a swimmer will be missed can be calculated:

1SpY

Prob(FNw)forN = 7

= 2174years when knowing similar images (7.9)
= 91years when not knowing similar images (7.10)

Referring to (7.9) it will take 2174 years until a person is at risk if there are similar images in the

training set. On the other hand, according to (7.10) it only takes 91 years until a person may be harmed

by the ferry if there are no similar images available in the dataset. Based on these two numbers, having

similar photos to what the ferry is seeing in the dataset will be very important.

64



7.6 Implementation model

The comparison of the detection results of Faster R-CNN and YOLOv8 in Section 7.4 has shown that

YOLOv8x has less FNs than Faster R-CNN plus less or none FPs. With the faster detection speed, it is

at clear advantage to produce good detection results for swimmers faster.

By combining the initial problem presented in Section 1.2 with the probabilities for FNs and FPs

calculated in Section 7.5, it is highly probable that when using the model developed with YOLOv8x, the

ferry will avoid hitting anyone in the water under the specified assumptions. Additionally, the ferry is

expected to make stops no more than once per season. These results suggest that the YOLOv8x model

provides a reliable and safe solution for detecting swimmers in front of the ferry, mitigating potential

accidents while minimizing unnecessary interruptions during its operations.
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To finalize this thesis, the outcome will be summarized and proceeding from there some ideas for

future improvement will be given.

8.1 Outcome

The aim of this master thesis was to create a model that automatically detects swimmers in water. As

presented in Chapter 3 there are only a few existing datasets that feature swimmers. Since most of

these datasets are based on UAVs and do not represent the view of a ferry on the water, a new dataset

was created.

As presented in Chapter 6 first the existing two datasets SeaDronesSee [Varga et al., 2022] and

Swimmer dataset [Lygouras et al., 2019] were analyzed to see how important it is to cover different

distances between the camera and the swimmer, different weather situations, and the variety of swim-

mers in the dataset. The results emphasized the need for additional images from the ferry’s perspective,

including coverage of swimmers occluded by waves and images captured during sunset/sunrise.

The newly created dataset addresses these requirements by including images taken during sunset on

two different days. These images feature both groups of swimmers and individual swimmers positioned

beside and in front of the reflected sun. Furthermore, the dataset includes various images featuring

partially and fully occluded swimmers. Additionally, there has been an augmentation of swimming styles

in the dataset, with images of freestyle swimming and diving captured of a commercial diver and an

athlete swimmer. Lastly, a few images with the thermal camera presented in Section 6.1.2 were captured

but as the camera uses IR to create the images, the visibility of the swimmer did not increase thus, these

images were not included in the final dataset.

The cross-validation presented in Section 7.1.1 showed that there is a big epistemic difference in

the dataset as it now features images of several different situations. Thus, the dataset was split similarly

to [Varga et al., 2022] which decreases the originality of the test set but allows the use of all the situations

in the new dataset to train the model.

To still get a good feeling of how Faster R-CNN and YOLOv8x perform on completely new data of

swimmers, 160 images from SeaDronesSee were used to test the models’ performance after being

trained. A comparison of these detection results to the test set, emphasized again how important it is to

have similar images in the training set as the ferry will encounter while travelling as well as the influence

of the camera angle on the swimmer. The swimmer from SeaDronesSee with a camera angle similar to

the one of the ferry (and thus the training set) was always detected correctly (example in Figure 7.23).

Independently of detection results on single images, it is important to see how the models perform

on a sequence of images as the ferry will not take its decisions based on a single image but always

compare results of a sequence of images. Overall, detection results in image sequences were very
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good with only one sequence containing a dangerous situation where a swimmer was rarely detected in

the sequence.

As it was not possible to have a test set with as many images as the ferry will take during one season,

the probability of Faster R-CNN and YOLOv8x having a FNW or FPW per season was determined in

reference to the outcome of the test set. Using YOLOv8x and data similar to the training set, it is

possible to have less than one FPW per season while still guaranteeing that nobody will be harmed by

the ferry over the course of 2000 years

With this outcome, we are able to fulfil the goal of this thesis to create a model that safely detects

swimmers in open water and improves the operational safety of an autonomous ferry in the future.

8.2 Future work

As shown in Section 7.4 and Section 7.5, it is very important to have images similar to the test set in the

training set. As it was not possible due to the limited time of this thesis to take images with swimmers

directly from the ferry at Helsinki where it travels, it would be very important to create these images and

finetune YOLOv8x with them to increase detection results in this specific travel area.

For the current probability calculation to classify a window as a swimmer, the position of the swimmer

was not taken into account. Since the FPs in a sequence would often appear in random places, com-

paring the spot where a swimmer is detected in different images will decrease the probability of having

a FPwindow. ByteTrack could be used for to track the swimmer. This would enable us to decrease the

probability of missing a swimmer in front of the ferry as well by needing fewer correct frames per window,

as well as making sure, that FNs as presented in Section 7.3.1 Figure 7.15 will be less likely to happen.

Additionally, the company is planning to increase the fps rate of the final solution to have more

images for the same distances. Thereby, increase the chances of detecting a swimmer. Together

with implementing a safety margin that the ferry will already start slowing down at a certain amount of

detections without fully stopping, the FN rate especially for completely unknown situations will drop even

lower.
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A
Appendix A

A.1 Proofs Generalisation

The dataset for this thesis was created based on certain assumptions (Section 1.2). Based on the

analysis of the two existing datasets in Chapter 7 some of the initial generalizations had to be proven

to not lose important data. The experiments taken to validate the generalizations are provided in this

appendix.

A.1.1 Floater vs Swimmer

In the SeaDronesSee dataset, the authors divide between swimmers and floaters (swimmers wearing a

lifejacket). We will not have this distinction because it does not matter for our purpose. To ensure that

grouping them together will not influence the detection rate of the model, I trained a FasterRCNN model

once with only floaters, testing it on swimmers and once with only swimmers, testing it on floaters.

When training on floaters and testing on swimmers, all of the validation set images which only con-

tained swimmers were detected correctly. In the test set some images contained false positives but all
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of them were far away from the camera (example see Figure A.2) thus only little influence on the ship’s

behaviour. Figure A.1 shows that the model performed very well.

Figure A.1: Training floaters

Figure A.2: Example far away false positive

When training with swimmers and testing with floaters, the overall result was worse than in the

opposite direction, see Figure A.3. However false positives were either reflections of people sitting on

a boat (example Figure A.4) or humans that were classified as two swimmers while both body parts

belonged to the same floater (similar to Figure 5.20). The only false negatives were images of floaters

far away and seen from a drone.

Figure A.3: Training swimmers

Figure A.4: Example far away false positive

Overall there is no big difference in the performance of the algorithm if the person is wearing a life

jacket or not.

A.1.2 Object in the image

The testset of images with swimmers and objects featured only 78 images. However, none of these

images had a false negative. In very few the swimmer was predicted in a wrong size which then included

the object as well (example Figure A.5). More common was that the object was detected beside the

swimmer without any influence on the detection of the swimmer. Especially when the detection is outside
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of the water as in Figure A.6 it does not influence the behaviour of the ferry at all since it is already given

that the ferry knows which part of its surrounding is water and which is shore.

Figure A.5: Swimmer and Object detected as one

Figure A.6: Detections on shore

A.1.3 Animal in the image

When training the model on images with only swimmers and then testing on images with swimmers and

animals (in total 258 test images), the results first showed lots of false positives. However out of 150

images with false positive detections, only six images actually showed false positives. In all the other 144

images the model detected an animal that was not marked in the ground truth since it is not a swimmer

(example Figure A.7).

There were a few images where the model only detected the animal but not the swimmer (example

Figure A.8). All false negatives were swimmers far away from the camera. Taking into account that the

animal was detected, the ferry would already know that there is something in the water. Swimmers close

to the camera were all detected. Therefore it is assumed that if the swimmer gets closer to the camera

they would have been detected too despite the animal.

Figure A.7: Animal and swimmer detected Figure A.8: Animal detected but not swimmer
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A.2 Detection results in sequence

Since the final detection of a swimmer always depends on the results in an image sequence, this section

will present the full image sequence of a detector.

A.2.1 Cross-Validation

The full sequence talked about in Section 7.3.1 is given here. As mentioned the model has difficulties to

detect swimmers on the left side.

Figure A.9: Image 163953 071 Figure A.10: Image 163954 135

Figure A.11: Image 163955 227 Figure A.12: Image 163956 319

Figure A.13: Image 163957 412 Figure A.14: Image 163958 477
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Figure A.15: Image 163959 574 Figure A.16: Image 164000 648

Figure A.17: Image 164001 742 Figure A.18: Image 164002 813

A.2.2 YOLOv8n

The full sequence talked about in Section 7.3.1 is given here. The images come exactly like presented

here as a sequence in the Swimmer dataset. However, estimated by the naming of the images there are

most likely some images missing in comparison to the original recording.

Figure A.19: Image 6482 Figure A.20: Image 6484
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Figure A.21: Image 6489 Figure A.22: Image 6494

Figure A.23: Image 6495 Figure A.24: Image 6498

Figure A.25: Image 6505 Figure A.26: Image 6507
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Figure A.27: Image 6509 Figure A.28: Image 6511

A.2.3 YOLOv8x

The full sequence talked about in Section 7.3.2 is given here. Since these images are taken with the RGB

camera presented in Section 6.1.1, the image name refers to the time when the image was recorded.

Figure A.29: Image 183539 481 Figure A.30: Image 183540 556

Figure A.31: Image 183539 481 Figure A.32: Image 183542 725
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Figure A.33: Image 183543 828 Figure A.34: Image 183544 907

Figure A.35: Image 183545 983 Figure A.36: Image 183547 083

Figure A.37: Image 183548 171 Figure A.38: Image 183549 274

A.2.4 Faster R-CNN

As described in Section 7.4.2 there is a sequence with several FPs at the same spot. The image names

are copied from the name given by [Varga et al., 2022].

Figure A.39: Image 2104 Figure A.40: Image 2105
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Figure A.41: Image 2106 Figure A.42: Image 2107

Figure A.43: Image 2108 Figure A.44: Image 2109

Figure A.45: Image 2110 Figure A.46: Image 2112

Figure A.47: Image 2113 Figure A.48: Image 2114
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