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DYNAMIC POSITIONING OF A ROV USING
REINFORCEMENT LEARNING
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MOTIVATION

Classical control has successfully drive the ROV industry for
several years, but as technology advances challenges

advance as well. Models have nonlinearities, singularities N DIeS/QP'h’mp;e”;?‘t/OD”g ?St d .RL
and difficult to model phenomena such as waves and algorithm tor (Rotation
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Compare to most used methods
e, PID.

e Find an alternative solution through Reinforcement
Learning RL.

o [et's make the ROV learn from experience and make
its own decisions to unknowns!
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Classical control approach diagram' RL control approach diagram’ . . .
Define and discretize RL

STATE OF THE ART Environment and States.

Define and discretize Agent

RL CUI ET AL. RL OVERENG ET AL. RL ANDREW ET AL. Actions.
Reward Shaping.
* Actor-Critic NN. o Actor-Critic NN. e Helicopter flight. Create simulation.
* Robust against e Transfer learning to sea e Pegasus Algorithm. Train Agent
unknown. model trial. e Model fitting. Transfer training to BlueROV
params, unknown. Fine train on BlueROV
disturbances.
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e Easy to implement. e Optimal control
e Low resource usage. e Optimizes output w.r.t a criterium.
e Needs tunning. e Ricatti Equation can be hard to approximate.
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PID depth control on BlueRov LQR depth control on SPARUS AUV
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