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Abstract

Various activities in the underwater environment traditionally involve human divers in shallow waters or
manned submersibles and Remotely Operated Vehicles (ROVs) equipped with manipulators in deeper
waters. These approaches come with inherent drawbacks, including risk to human life at dangerous
depths, operator fatigue in the case of ROVs, limited operational time, and high operational costs as-
sociated with manned submersibles or ROVs. The development Intervention Autonomous Underwater
Vehicles (I-AUVs) became of importance and, in addition, the need for effective grasp planning algo-
rithms became crucial for underwater intervention tasks. Existing methods for grasp planning often
struggle with autonomously proposing reachable grasp poses from visual data due to constraints such
as poor visibility and computational limitations. This thesis presents a semi-autonomous grasp plan-
ning algorithm that utilizes the geometric properties of target objects to propose suitable grasp poses,
assuming object uniformity and rigidity. The algorithm was developed using real-time data from stereo
cameras, yielding satisfactory grasp propositions. The results demonstrate significant improvements in

crucial subsea operations, with potential applications in cooperative grasp planning.
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Resumo

O desenvolvimento de algoritmos eficazes de planeamento de grasp € crucial para tarefas de intervencao
subaquatica. Métodos existentes frequentemente enfrentam dificuldades em propor autonomamente
posicdes de grasp alcangaveis a partir de dados visuais devido a limitagdes como baixa visibilidade e
limitacoes computacionais. Esta tese apresenta um algoritmo semi-autbnomo de planeamento de grasp
que utiliza as propriedades geométricas dos objetos-alvo para propor posicdes de grasp adequadas, as-
sumindo uniformidade e rigidez dos objetos. O algoritmo foi desenvolvido usando dados em tempo real
de cameras estéreo, resultando em propostas de grasp satisfatérias. Os resultados demonstram mel-
horias significativas em operacoes subaquaticas cruciais, com aplicagoes potenciais em planeamento

de grasp cooperativa.
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Roboética Subaquatica; Planeamento de Grasp Geométrica; Segmentacdo de Nuvem de Pontos.
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1.1 Background

Underwater technology has experienced significant advancements driven by the demand for safer and
more efficient subsea operations. The exploration and utilization of underwater environments have al-
ways been challenging due to harsh conditions, limited visibility, and the complexities associated with
deep-sea operations [11]. Initially, human divers were employed for underwater tasks, but the inherent
risks and limited operational depth and duration necessitated the development of alternative solutions.

The introduction of Remotely Operated Vehicles (ROVs) in the 1960s marked a significant milestone
in underwater technology [12, 13]. ROVs, controlled by operators from the surface via tethers, provided
enhanced safety and the ability to operate at greater depths compared to traditional diver operations
[11,14]. These vehicles played a crucial role in various underwater applications, including inspection,
maintenance, and exploration [15]. However, ROVs come with high operational costs and complexities,
requiring support ships and continuous human oversight [16].

In response to these limitations, the 1980s and 1990s saw the development of Autonomous Un-
derwater Vehicles (AUVs) [17], which offer greater autonomy and can perform remote missions without
continuous human control [13]. AUVs have been utilized in a variety of applications, such as map-
ping [18], environmental monitoring [14, 19], and resource exploration. Despite their advantages, AUVs
face challenges in performing intervention tasks due to their limited manipulation capabilities [20,21].

To overcome these challenges, researchers have proposed the development of Intervention Au-
tonomous Underwater Vehicles (I-AUVs). |-AUVs are equipped with advanced sensors, manipulator
arms, and sophisticated control systems, enabling them to interact with and manipulate objects in their
environment effectively [21,22]. They are designed to perform tasks such as retrieving seabed samples,
conducting repairs on underwater infrastructure, and other complex manipulation tasks without direct
human intervention [14]. These vehicles combine the autonomy of AUVs with the manipulation capabil-
ities of ROVs, making them versatile tools for underwater operations. Hence, researchers recently have
focused on different techniques to improve the capabilities of [-AUVs through manipulator cooperation
with grasp planning [23—-27].

Grasp planning algorithms are critical for the effective operation of I-AUVs. These algorithms usually
account for some of the known challenges of the underwater environment, such as limited visibility, vari-
able lighting conditions, and the presence of currents. By integrating advanced sensors, mathematical
models, and robust control systems, these algorithms enhance the precision and reliability of underwa-
ter manipulations [28]. Grasp planning algorithms will enable |-AUVs to perform tasks such as object
retrieval, assembly, and maintenance with high accuracy, even in dynamic and uncertain underwater
conditions.

The development of these technologies has led to significant advancements in underwater robotics,

with various projects and research initiatives contributing to the field. Notable projects include Semi-



Autonomous Underwater Vehicle for Intervention Missions (SAUVIM), which demonstrated the feasibility
of using I-AUVs for complex underwater operations [17]; Marine Robotics for Intervention (MARIS),
which focused on developing advanced autonomous systems for underwater exploration and interven-
tion [26]; and TWINBOT, which explored cooperative manipulation with multiple underwater robots [28].
These projects have paved the way for the development of sophisticated grasp planning algorithms and

control strategies that enable |-AUVs to perform a wide range of underwater tasks autonomously.

(a) COOPERAMOS Simulation Engine (b) TWINBOT Experimental Set-Up

Figure 1.1: Simulation and Experimental Set-Up from COOPERAMOS and TWINBOT projects

The COOPERAMOS project is one of the projects aimed at improving the capabilities of I-AUVs by
implementing a residual dual-arm [-AUV. This involves the coordination of two robotic arms to perform
specified tasks in the underwater environment. The conceived task involves robot cooperation in three
stages: mobile manipulation, transportation and assembly. Studies on coordinated transportation have
been done in the TWINBOT project and the algorithm was experimented on a long pipe [24]. Previous
studies within the COOPERAMOS project have demonstrated coordinated transportation and assembly
of a long pipe, showcasing the potential for advancements in multi-robot system manipulation. This the-
sis seeks to further enhance the grasp planning mission of the cooperation algorithm for the manipulation

of the multi-robot system, focusing on the transportation and assembly of some specific objects.

The evolution from ROVs to AUVs and the subsequent development of |-AUVs underscore the dy-
namic landscape of underwater technology. Ongoing research initiatives, such as the COOPERAMOS
project, signify a commitment to addressing the limitations of existing technologies and pushing the
boundaries of autonomous underwater interventions. As these technologies advance, the potential for
safer, more efficient, and versatile underwater operations continues to grow, offering promising prospects

for various industries reliant on subsea exploration and infrastructure maintenance.



1.2 Motivation of the Study

Various activities in the underwater environment, spanning marine search and rescue, underwater ar-
chaeology, dam inspections, oil well maintenance, and oceanography, traditionally involve human divers
in shallow waters or manned submersibles and ROVs equipped with manipulators in deeper waters.
However, these approaches come with inherent drawbacks, including risk to human life at dangerous
depths, operator fatigue in the case of ROVs, limited operational time, and high operational costs associ-
ated with manned submersibles or ROVs. The emergence of I-AUVs presents a transformative solution
that offers the potential to carry out these activities with reduced or eliminated drawbacks, making them

a promising alternative in underwater operations.

Semi-Autonomous Underwater Vehicle
for Intervention Missions

e

< | . 'S
ih R

e 3 |
(a) SAUVIM Vehicle (b) MARIS Single-Agent Operation

Figure 1.2: Intervention in Underwater Environment with Single-Agent Free-Floating I-AUVs

Over the last two decades, there has been significant research focused on the development of single-
vehicle |-AUVs, particularly those designed for search and recovery tasks. Notable achievements in
this domain include the SAUVIM project [29], where a free-floating autonomous vehicle accomplished
the recovery of a pre-specified object by autonomously locating the object and hooking to the vehicle
[24,30]. Similar efforts have been undertaken in projects like MARIS [31], contributing to the exploration
of autonomous search and recovery capabilities.

While single-vehicle I-AUVs have demonstrated success in some specific tasks, there is a growing
recognition of the need for more sophisticated manipulation and transport capabilities, particularly for
larger objects. To address this requirement, researchers have explored the use of dual-arm manipulators
in [-AUVs or the cooperative control of multiple I-AUVs to accomplish these more complex tasks [24,
32]. The TWINBOT project stands out as one of the pioneering efforts in this direction, showcasing
a cooperative transportation task through a leader-follower organization for cooperation and control,
coupled with a visual-servoing technique for grasping [24]. This cooperative approach introduces a new
dimension to underwater intervention capabilities, paving the way for enhanced dexterity and versatility

in handling substantial objects in the underwater environment.



(a) Simulation of Cooperative Transportation in (b) Experimental Cooperative Transportation with
MARIS Project Girona-500 in TWINBOT Project

Figure 1.3: Intervention in Underwater Environment with Multi-Agent I-AUVs

1.3 Problem Description and Objectives

This thesis is intricately linked to the ongoing COOPERAMOS project at Jaume | University (UJI) which
is funded by the Spanish Ministry of Science and Innovation. Its primary goal is to design advanced
grasp planning algorithms for an underwater scenario using two [-AUVs with coordination. This project
will build on the previous works in the TWINBOT project which uses two Girona500 AUVs equipped with
7 Degree of Freedom (DOF) robotic arm for transportation of a long pipe cooperatively. In the TWINBOT
project, the grasping points are manually computed and the robot is controlled through a planned path
to the defined point. Hence, the main objective of this project is to develop and automated grasp position
and orientation proposal algorithm.

The objectives outlined to achieve the goal are:

1. Implementation of Visual Segmentation Algorithm in Intervention Area: this algorithm would aid in

better identification of the objects in the scene by using data from stereo cameras.
2. Development of Efficient Grasp Planning Algorithm based on Visual Information.

3. Testing of Algorithms with cameras mounted on the |I-AUVs: upon completion and rigorous suc-
cessful testing in the simulation environment, the algorithms could be implemented on Girona500
AUVs at the Experimental Test Bed in Research Center in Robotics and Submarine Technolo-

gies (CIRTESU) to validate the simulation results.

1.4 Main Contribution

The project investigates the development of objective-specific geometric grasp proposals for a manipu-

lator for transportation of slender rigid rods in an underwater environment.



We:

+ design an experiment to test the applicability of plane and color segmentation methods to obtain a

target from point cloud data,

+ developed a geometric-based grasp proposition algorithm for a point cloud input or a CAD model
input of the object,

+ validated the developed algorithm on real-time data collected from stereo cameras in the lab which

produced satisfactory grasp propositions.

1.5 Thesis Outline

This thesis is structured into five chapters. Chapter 1 provides an introduction to the background and
motivation of the project, outlines the project objectives, presents the current state of the art in the field
and lists the main contributions of this work. Chapter 2 delves into description of the existing system
architecture and a review of existing techniques related to visual segmentation and grasp planning, and
discusses some methods that were applied to underwater problems. Chapter 3 outlines the methodol-
ogy that was employed in the project with some details on the mathematics underlying the segmentation
methods and the grasp planning techniques developed. Chapter 4 presents the results of the designed
experiments for visual segmentation and the geometric grasp planning. Chapter 5 presents the conclu-

sions and system limitations of this work and the proposed future works.
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In this chapter, we will review the literature on the main areas that are necessary for the development
of a comprehensive grasping algorithm: image detection, segmentation and grasp planning. During the
detection and segmentation stage, an image captured from a camera feed is processed to identify and
segment the object to be grasped within the workspace. In the grasp planning stage, the segmented
image is analyzed to determine stable and reachable grasp points, which are then output as position
and orientation vectors. The motion planning phase involves steering the underwater vehicle towards
the desired object based on the vectors obtained from the grasp planner. Finally, the manipulation
stage involves actuating the mounted arm to grasp the object. The primary focus of this review is on

applications within underwater environments.

2.1 Image Detection and Segmentation

In any process with vision capabilities, image detection and segmentation are usually the backbone or
a critical component of the architecture. These processes are important for some underwater tasks,
such as studying marine animals and plants, underwater archaeology, inspection of underwater in-
frastructures, etc. In this subsection, we will discuss different methods used in image detection and
segmentation, challenges specific to underwater environments, and how these two techniques can be

integrated.

2.1.1 Image Detection

Image detection involves the identification and localization of objects of certain classes within an image.
There are traditional approaches (i.e., non-Al) and Deep Learning (DL)-based approaches to image
detection [33].

2.1.1.A Traditional Methods for Image Detection

The traditional methods of image detection involve using some computational methods to extract some
features from the image. The extracted features are then used to make detections from the image. These
techniques have been used in Viola Jones Detectors, Histogram of Gradients (HOG), Scale Invariant
Feature Transform (SIFT), Speed Up Robust Transform (SURF) methods and many others [33, 34].
These traditional methods have been increasingly replaced by DL based approaches in many do-
mains. However, feature extraction-based approaches are still in use in the marine domain where the
processed images usually lack quality and low-level analysis is important for improved accuracy. Gupta
and Sharma [35] applied HOG and SIFT to image detection in underwater environment and also used

these techniques to improve degraded images. Manonmani et al [36] used HOG and Canny Edge De-
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tector for more accurate mine detection for naval defense applications. Wang et al [37] also used HOG
to detect sea cucumbers for fishing applications. Demir and Yaman [38] used HOG to detect garbage in
underwater environments.

Hence, traditional methods are still widely used in the marine context and could be very pertinent

when high accuracy and low-level analysis are pertinent [35].

2.1.1.B Artificial Intelligence (Al) Methods for Image Detection

The Al methods have been dominant in the computer vision literature since the introduction of AlexNet
in 2012 [39]. DL-based methods involve the learning of robust and high-level image representation with

little or no handcrafted feature extraction [40,41] unlike traditional methods.

YOLO 8sD SWIPENET YOLOv3  YOLOv4 Transformer GCCNET
(Shkurtietal.) (Zhangetal.) (Chenetal) (Yangetal) (Allaetal.) (Chen etal.)(Daietal.)
Color and Shape  Size and Contour Recg-;ig:?atcim 1 o
(Strachan et al.) (Chew etal.) (Spampinato etal) 1 ] ] ] ] ) ] ]
Color and LBP Texture and Color Hair-| lee Detedor Adaboost
(Dalal et al.) (Spampmalm etal.) (Ravanbakhsh etal.) (Kim et al.)
{ 2014 2016 1 2018 2020 2022 2024
4 [ [ [ (] (] [ >
| I I \ I I I ! I |
1993 2005 2007 ZDDB 2012 2015 2017 2019 2021 2023
Temp!ate Matching HOG Motion and MFI
(Kim et al.) (Villon et al.) (Vasamsetti et al.)

[ (] | | 1 1 [ [ | [ >
A R T
Fast R-CNN Faster R-CNN  R-FCN Faster R-CNN Lightweight DNNRolAttn  BoostRCNN
(Lietal) (Lietal) (Jietal.) Variant(Lietal.) (Yehetal.) (Liang etal.)(Song et al.)

Figure 2.1: Timeline of Image Detection Techniques (including the traditional, one-stage and two-stage detection
methods) [1].

Some of the popular Al-based techniques used in image detection include:

 Traditional Machine Learning (ML) methods: these methods usually use handcrafted methods
for image extraction then the ML technique is used only for classification. Some of the techniques

used are: Support Vector Machine (SVM) and decision trees.

» Two-Stage DL-based Detectors: in the DL methods, feature extraction is not handcrafted. Rather,
this technique uses a separate deep network for object proposal and another for feature extraction,
bounding-box regression for object localization in the image, and softmax classification. Some DL
models that use this architecture include Region-based Fully Convolutional Network (RFCN) and

Region-based Convolutional Neural Network (RCNN) as seen in Figure 2.2.

» One-Stage DL-based Detectors: these methods are developed to increase the speed of real-
time image detection. The bounding box and classes are predicted directly from the images in
one evaluation [3] without initially determining the predicting regions. Common models are the You
Only Look Once (YOLO) model [3], RetinaNet [42] and Single Shot Multibox Detector (SSD) [43].

12
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image proposals (~2k) CNN features regions

Figure 2.2: Schematics of the RCNN Detection Model, a Two-Stage Detection Approach [2].

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 2.3: Schematics of the YOLO Detection Model, a One-Stage Detection Approach [3].

Both the two-stage and the one-stage detectors have been applied to underwater image detection
problems. Some of these works have been highlighted by Sarkar et al [44]. Zhang et al [45] used
CNN-based architecture to detect sea animals and their model has a mean average precision of 63.9%
on the dataset it was tested on. Mahmood et al [46] used a VGG-based network to classify objects in
the underwater environment. Chen et al [47] proposed a single-shot detection type architecture that is
capable of detecting small objects. His model has a mean average precision of 46.3%. Although these
deep learning methods are quite advanced and robust, they are yet to be able to provide good precision
in detecting underwater objects.

2.1.1.C Challenges of Image Detection in Underwater Environment

Image Detection in underwater environment is characterized by many problems. Some of the challenges

encountered are summarized by Chen et al [1] and some of these challenges are:

* Low Quality: most of the underwater images have poor constrast, distortions, poor lighting and

problems with color.

* Small Object Size: many aquatic animals and objects to be detected in the marine environment
are small-sized and might be clustered in a small environment. This makes detection more chal-

lenging.
* Dynamic or Poor lllumination: only the first few hundred meters of the underwater environment
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is illuminated and this illumination becomes poorer with depth. Acoustic cameras are used more

commonly in the marine domain due to their applicability in low visibility [48].

(d) Low contrast (e) Color deviation (f) Small and clustered targets

Figure 2.4: Some challenges encountered with underwater images [4].

These challenges are the reasons why many underwater image detection applications are mainly

based on generic object detection models with addition of some image enhancements [4].

2.1.2 Image Segmentation

Image segmentation is an important problem in many computer vision applications. It involves par-
titioning of objects in an image into categories. Segmentation is important in robotic perception and
manipulation where it might be required that the target object be segmented from the environment [49].
This enables the robot to distinguish between the target object and the background elements. The image

segmentation techniques can be classified into the classical methods and the Al-based methods.

2.1.2.A Classical Image Segmentation Techniques

The classical techniques are broadly classified as techniques that do not involve the use of Al algorithms.
The classical method mainly relies on handcrafted metrics to segment images. Such as edges, contrast,

average intensity, etc. Some of the classical methods include the following:

* region-based segmentation: this method involves the segmentation of objects in an image by
grouping them based on similarity in properties such as color or intensity. The segmentation
begins at some initially seeded points and it progresses by including neighboring pixels with similar
properties until a specified threshold is reached. Zhang et al [50] used this region-based method

to segment fishes from complex underwater backgrounds, as seen in Figure 2.5. Li et al [51] and
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Chen et al [52] have also applied this method to segmentation of sonar images in underwater

applications.

» edge-based segmentation: this method detects the boundary of objects by identifying significant
changes in the pixel intensity. These significant changes in pixel intensity usually occur at the edge
of the segmented objects. The boundary of the identified object is simply formed by connecting
the detected edges. Some operators, such as Canny and Sobel operators, are relied upon for
this form of segmentation. Some recent research on underwater image segmentation use this
approach. Priyadharsini and Sharmila [53] used the edge-based method to detect objects on the
seabed. Setiawan et al [54] used this method for detection of edges in underwater image with very
low contrast. Afreen et al [55] also recently used this method to track the effect of climate change

on coral reefs.

+ layer-based segmentation: this method involves the segmentation of image by analyzing the
depth of the pixels. This is usually useful for scenarios where objects are layered at different
depths in an image. This technique is particularly important for object localization and manipulation

in robotics systems where the layer segmentation gives a better understanding of the scene [56].

(a) Original Image (b) Segmented Image

Figure 2.5: Region-based Segmentation of Objects in Underwater Environment

2.1.2.B Al-based Image Segmentation Techniques

Unlike the classical techniques, the Al-based segmentation techniques make use of the ML and DL
algorithms which enables more autonomous and highly adaptive image segmentation. The Al-based
segmentation methods can be classified into ML-based methods, Convolutional Neural Network (CNN)-

based methods and transformer-based methods.
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» ML-based Segementation: these methods are in use before the widespread of DL-based meth-
ods. Classical ML algorithms, such as SVMs and K-Means clustering, take specific image char-
acteristics, such as color, texture and intensity gradient, as input and thereafter group the pixels
based on their similarities. These methods are considered computationally efficient and effective

for scenarios where data is limited.

» CNN-based Segmentation: the CNN-based method revolutionarized the image segmention meth-
ods. Prior to the CNN-based methods, handcrafting of features are still required for image segmen-
tation. However, these methods automated the extraction of features from large datasets and the
segmentation of objects in the images. Some popular CNN-based segmentation models include
Mask R-CNN and U-Net. Drews-Jr et al [57] used a U-Net based architecture to segmention divers,
aquatic animals and static objects form underwater images, see Figure 2.6, with an accuracy of
91.9%.

+ Transformer-based Segmentation: although the transformer architecture was developed for NLP
applications, it has also been extended to image segmentation to capture global contexts in the
images. One of the most recent and highly used transformer-based segmentation algorithm is the
Segment Anything (SA) model [58]. Lian et al [59] adapted the SA model to underwater images

by introducing an underwater adaptive vision transformer encoder. The schematics of this new

method is shown in Figure 2.7 and its application to an underwater scenario is shown in Figure
2.8.

(a) Original Image (b) Segmented Image

Figure 2.6: CNN-based Segmentation of Objects in Underwater Environment

16



— - (' Learnable Frozen
e 2% 3Conv é Lt é Cls Head ___ Cls Loss
1 g —'ﬁ Adapter
— " ReglL
D Reg Head ~ g Loss & wap
Scale |  Seale Scale | Scale __ﬁ I3
' t DY

t

Salient Feature
Prompt Generator
RPN Head

i
T MLP
GELU
M M G
o [i'. b V] : "
Anchor “ MLP Layer Norm

Multi-Scale C 8 Feature
ulti-Scale ?HV Multi-Scale C;nv SFEM

CA

1 x 1 Conv ¢ Adapter
i t

o0 9
= = = =] 8
3 - = £l = g (. — % - & Gy Multi-head
= < = < - < T 1 £ .
£ E =] =] = ¢ ttention
3] g “1 x 1 Conv 1
P t i Layer Norm
Underwater Adaptive ViT Encoder Output Mask oto
(a) USIS-SAM framework (b) UA-VIT Block

Figure 2.7: The Framework of the Underwater Salient Instance Segmentation - Segment Anything Model.

(a) Original Image (b) Segmented Image

Figure 2.8: Transformer-based Segmentation of Objects in Underwater Environment

2.2 Grasp Planning

Grasp planning is a fundamental concept in robotic manipulation. It constitutes the determination of the
pose of the manipulator gripper to achieve a specific manipulation task. This is critical in many domains
where robotics has been applied such as in industrial robots, surgical robots, etc. For autonomous grasp

planning, perception and semantic segmentation of the target object is important.

2.2.1 Methods of Grasp Planning

Numerous approaches have been proposed for grasp planning in literature. These methods can be

broadly classified as: manual computation methods, geometric methods and DL-based methods. Each
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method has its advantages and disadvantages depending on the application scenario, availability of

computational power, and the nature of the target object.

2.2.1.A Pre-Computed Grasp Point Methods

This method involves an offline pre-computation of the optimal grasp pose of known objects. This method
is generally applicable to scenarios where the environment is structured and static and the object to be
manipulated is known prior to the manipulation task [60]. In this method, a database of object model
is created and the grasp hypothesis are defined based on simulation or empirical estimations. For
example, an industrial robot deployed for pick-and-place applications or an assembly task could have
its grasp points precomputed depending on the task and the target object. The major shortcoming of
this method is that it is neither applicable to dynamic environments nor applicable to objects that are not
previously known [61]. One application of this method in manipulation is the research of Vahrenkamp et
al [5] where they developed an algorithm to propose grasp position of familiar objects. The schematic

diagram of their method is given in Figure 2.9 and an experimental example is given in Figure 2.10.

Grasp Planning
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Figure 2.9: Part-based grasp planning for multiple known objects [5].

2.2.1.B Geometric Methods

The geometric grasp planning methods involve the identification of possible grasp pose of an object in
real time based on its shape and spatial features. These methods are very suitable for scenarios where
the geometry of the object is available either from a Computer Aided Design (CAD) model or a 3-D

segmented image (or point cloud object). This method is very efficient and robust for handling unknown
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Figure 2.10: Template grasp planning for a wrench object and application to a familiar object in workspace [5].

object shapes. However, it has drawbacks with flexible and irregular objects. Miller et al [62] applied
this technique to pick-and-place operation of service robots without explicitly defining the objects ahead.
More recently, Akbari at al [6] used this technique for defining the grasp pose of objects by fitting the
objects on an ellipsoid and grasping from one of the three focus points of the ellipsoid. The overview of

their architecture is given in Figure 2.11 and the demonstration is given in Figure 2.12.

First Type Center
Method 1:
Key Point g Offsetting Second Type Center
Generation Thrd Tone Cot
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Figure 2.11: Block Diagram of the Geometric-Based Grasp Planner [6].
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Figure 2.12: Successful grasps with geometric grasp planner from CoppeliaSim simulation [6].

2.2.1.C DL-based Methods

DL-based methods have revolutionized grasp planning in unstructured environments, enabling robots to
autonomously grasp a wider range of objects in both structured and dynamic settings. Deep learning
models are trained on large datasets of object images or point clouds, allowing them to generalize grasp-
ing strategies to unseen objects. These methods are computationally intensive but offer adaptability and

high success rates in variable environments due to their data-driven nature.

One popular framework in this category is the DexNet, introduced by Mahler et al. [63], which uses
a deep neural network trained on synthetic point clouds and grasp metrics to predict robust grasps
across various object types. DexNet has proven particularly valuable in industrial applications where the
variety of objects is extensive and handling unknown objects is necessary. Similarly, Levine et al. [64]
developed a model for real-time robotic grasping by collecting a large-scale dataset which allows the

model to adaptively plan grasps on objects of diverse shapes and textures.

Another significant contribution in DL-based methods is the 6-DOF GraspNet, which extends grasp
prediction to three-dimensional space and calculates stable grasps even in cluttered environments [7].
This capability is illustrated in Figure 2.13 which shows an overview of the architecture of the 6-DOF
GraspNet, and Figure 2.14 which demonstrates the successful application of this model in real-world

manipulation tasks.

While these methods are highly effective in complex settings, their main drawbacks include the need
for extensive training data, significant computational resources, and the inability to adapt without retrain-

ing when presented with novel object features outside of the trained dataset.
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Figure 2.13: Overview of 6-DOF GraspNet Architecture for Robust Grasp Prediction [7].

Figure 2.14: Example of successful grasps achieved by 6-DOF GraspNet on cluttered objects [7].

2.2.2 Merits of Geometric Grasp Planning

Geometric grasp planning offers multiple advantages in robotic manipulation:

Efficiency: Geometric methods are computationally efficient since they rely on the direct analysis

of the spatial properties of an object, making them suitable for real-time applications [65].

Simplicity and Generalizability: Due to their reliance on geometric features, such as edges and
shapes, these methods can be applied to a broad spectrum of objects without extensive data-

driven training [65, 66].

* Robustness in Known Object Classes: Geometric approaches provide robust results in scenar-

ios with limited object variation and where objects adhere closely to known shapes or models.

Adaptability to Limited Visibility: Underwater environments are often characterized by low vis-
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ibility, where it is easier to detect edges and shapes of objects than to detect finer details of the
object. Geometric methods relying on shape-based features can be more effective than complex
data-intensive models in such conditions, allowing for reliable performance despite environmental

limitations.

These advantages make geometric grasp planning particularly useful in many robotics applications,

where objects typically follow standard dimensions and shapes.

2.2.3 Further Review of Geometric Method: Image and Point Cloud Inputs

In underwater environments, grasp planning relies on effective segmentation and object recognition to
provide reliable object interaction, especially given visibility challenges and dynamic conditions. Two
primary input types for segmentation models used in underwater applications are RGB images [67] and
point cloud data [68, 69], each offering unique benefits and limitations. While RGB-based methods rely
on color and texture information for segmentation, point cloud-based methods leverage 3-D spatial data
to model object shapes and contours, which is crucial in environments where visibility is impaired. Each
approach can been applied to underwater manipulation in applications such as debris collection, pipe

transportation, and repair operations [68, 70, 71].

2.2.3.A RGB-Based Geometric Grasp Planning

RGB-based geometric grasp planning leverages color, intensity, and texture information to generate
grasp hypotheses based on the visible features of an object. This approach is particularly effective
for underwater environments where objects possess distinct color characteristics that contrast with the

surrounding environment.

» Contour and Edge-Based Grasp Planning: Geometric grasp planning based on RGB inputs
often relies on edge and contour detection, where edges are used to approximate the shape and
orientation of objects in the underwater scene. This approach is usually effective in identifying and

grasping objects in shallow waters where color information is not too deteriorated.

» Depth Augmented RGB Grasp Planning: Depth-augmented RGB methods, where depth cues
are overlaid onto RGB images, have shown improved performance for geometric grasp planning
in underwater environments with limited visibility. Paul et al [72] and Yang et al [8] combined RGB
image data with depth data for geometric grasping tasks, enabling precise manipulation of the
target object. This RGB-based method improved grasp success by combining surface texture with
inferred depth, accommodating environments with complex or poor lighting. Figure 2.15 gives the

architecture of the Yang et al method and Figure 2.16 gives an example application.
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Figure 2.15: Overview of architecture of the depth-augmented RGB-based grasp planner proposed by Yang et
al [8].
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Figure 2.16: Example of successful grasps achieved by the depth-augmented RGB-based grasp planner [8].

Despite their advantages, RGB-based geometric methods are limited in highly turbid waters where
visual cues degrade. Such limitations make them less suitable for dynamic underwater tasks or when ob-
jects lack sufficient contrast from the background, as encountered in deep-sea exploration or sediment-

rich areas.

2.2.3.B Point Cloud-Based Geometric Grasp Planning

Point cloud-based geometric grasp planning uses 3-D spatial data derived from sonar or stereo camera
systems to create detailed models of objects, allowing for accurate grasp point estimation [68] even in
underwater environments with low visibility. This approach is particularly advantageous for underwater
environments, where point cloud data can represent the shape and depth of objects in more details,

which is crucial for grasping tasks [68, 73].
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» 3-D Shape Fitting and Contour Analysis: Point cloud-based geometric methods often involve
fitting simple geometric shapes such as spheres or ellipsoids to approximate the contours of target
objects. Monica et al [68] developed a point cloud-based geometric grasp planner for underwater
robots, 