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Abstract

Various activities in the underwater environment traditionally involve human divers in shallow waters or

manned submersibles and Remotely Operated Vehicles (ROVs) equipped with manipulators in deeper

waters. These approaches come with inherent drawbacks, including risk to human life at dangerous

depths, operator fatigue in the case of ROVs, limited operational time, and high operational costs as-

sociated with manned submersibles or ROVs. The development Intervention Autonomous Underwater

Vehicles (I-AUVs) became of importance and, in addition, the need for effective grasp planning algo-

rithms became crucial for underwater intervention tasks. Existing methods for grasp planning often

struggle with autonomously proposing reachable grasp poses from visual data due to constraints such

as poor visibility and computational limitations. This thesis presents a semi-autonomous grasp plan-

ning algorithm that utilizes the geometric properties of target objects to propose suitable grasp poses,

assuming object uniformity and rigidity. The algorithm was developed using real-time data from stereo

cameras, yielding satisfactory grasp propositions. The results demonstrate significant improvements in

crucial subsea operations, with potential applications in cooperative grasp planning.
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Resumo

O desenvolvimento de algoritmos eficazes de planeamento de grasp é crucial para tarefas de intervenção

subaquática. Métodos existentes frequentemente enfrentam dificuldades em propor autonomamente

posições de grasp alcançáveis a partir de dados visuais devido a limitações como baixa visibilidade e

limitacoes computacionais. Esta tese apresenta um algoritmo semi-autônomo de planeamento de grasp

que utiliza as propriedades geométricas dos objetos-alvo para propor posições de grasp adequadas, as-

sumindo uniformidade e rigidez dos objetos. O algoritmo foi desenvolvido usando dados em tempo real

de câmeras estéreo, resultando em propostas de grasp satisfatórias. Os resultados demonstram mel-

horias significativas em operações subaquáticas cruciais, com aplicações potenciais em planeamento

de grasp cooperativa.

Palavras Chave

Robótica Subaquática; Planeamento de Grasp Geométrica; Segmentação de Nuvem de Pontos.
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1.1 Background

Underwater technology has experienced significant advancements driven by the demand for safer and

more efficient subsea operations. The exploration and utilization of underwater environments have al-

ways been challenging due to harsh conditions, limited visibility, and the complexities associated with

deep-sea operations [11]. Initially, human divers were employed for underwater tasks, but the inherent

risks and limited operational depth and duration necessitated the development of alternative solutions.

The introduction of Remotely Operated Vehicles (ROVs) in the 1960s marked a significant milestone

in underwater technology [12,13]. ROVs, controlled by operators from the surface via tethers, provided

enhanced safety and the ability to operate at greater depths compared to traditional diver operations

[11, 14]. These vehicles played a crucial role in various underwater applications, including inspection,

maintenance, and exploration [15]. However, ROVs come with high operational costs and complexities,

requiring support ships and continuous human oversight [16].

In response to these limitations, the 1980s and 1990s saw the development of Autonomous Un-

derwater Vehicles (AUVs) [17], which offer greater autonomy and can perform remote missions without

continuous human control [13]. AUVs have been utilized in a variety of applications, such as map-

ping [18], environmental monitoring [14,19], and resource exploration. Despite their advantages, AUVs

face challenges in performing intervention tasks due to their limited manipulation capabilities [20,21].

To overcome these challenges, researchers have proposed the development of Intervention Au-

tonomous Underwater Vehicles (I-AUVs). I-AUVs are equipped with advanced sensors, manipulator

arms, and sophisticated control systems, enabling them to interact with and manipulate objects in their

environment effectively [21,22]. They are designed to perform tasks such as retrieving seabed samples,

conducting repairs on underwater infrastructure, and other complex manipulation tasks without direct

human intervention [14]. These vehicles combine the autonomy of AUVs with the manipulation capabil-

ities of ROVs, making them versatile tools for underwater operations. Hence, researchers recently have

focused on different techniques to improve the capabilities of I-AUVs through manipulator cooperation

with grasp planning [23–27].

Grasp planning algorithms are critical for the effective operation of I-AUVs. These algorithms usually

account for some of the known challenges of the underwater environment, such as limited visibility, vari-

able lighting conditions, and the presence of currents. By integrating advanced sensors, mathematical

models, and robust control systems, these algorithms enhance the precision and reliability of underwa-

ter manipulations [28]. Grasp planning algorithms will enable I-AUVs to perform tasks such as object

retrieval, assembly, and maintenance with high accuracy, even in dynamic and uncertain underwater

conditions.

The development of these technologies has led to significant advancements in underwater robotics,

with various projects and research initiatives contributing to the field. Notable projects include Semi-

3



Autonomous Underwater Vehicle for Intervention Missions (SAUVIM), which demonstrated the feasibility

of using I-AUVs for complex underwater operations [17]; Marine Robotics for Intervention (MARIS),

which focused on developing advanced autonomous systems for underwater exploration and interven-

tion [26]; and TWINBOT, which explored cooperative manipulation with multiple underwater robots [28].

These projects have paved the way for the development of sophisticated grasp planning algorithms and

control strategies that enable I-AUVs to perform a wide range of underwater tasks autonomously.

(a) COOPERAMOS Simulation Engine (b) TWINBOT Experimental Set-Up

Figure 1.1: Simulation and Experimental Set-Up from COOPERAMOS and TWINBOT projects

The COOPERAMOS project is one of the projects aimed at improving the capabilities of I-AUVs by

implementing a residual dual-arm I-AUV. This involves the coordination of two robotic arms to perform

specified tasks in the underwater environment. The conceived task involves robot cooperation in three

stages: mobile manipulation, transportation and assembly. Studies on coordinated transportation have

been done in the TWINBOT project and the algorithm was experimented on a long pipe [24]. Previous

studies within the COOPERAMOS project have demonstrated coordinated transportation and assembly

of a long pipe, showcasing the potential for advancements in multi-robot system manipulation. This the-

sis seeks to further enhance the grasp planning mission of the cooperation algorithm for the manipulation

of the multi-robot system, focusing on the transportation and assembly of some specific objects.

The evolution from ROVs to AUVs and the subsequent development of I-AUVs underscore the dy-

namic landscape of underwater technology. Ongoing research initiatives, such as the COOPERAMOS

project, signify a commitment to addressing the limitations of existing technologies and pushing the

boundaries of autonomous underwater interventions. As these technologies advance, the potential for

safer, more efficient, and versatile underwater operations continues to grow, offering promising prospects

for various industries reliant on subsea exploration and infrastructure maintenance.
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1.2 Motivation of the Study

Various activities in the underwater environment, spanning marine search and rescue, underwater ar-

chaeology, dam inspections, oil well maintenance, and oceanography, traditionally involve human divers

in shallow waters or manned submersibles and ROVs equipped with manipulators in deeper waters.

However, these approaches come with inherent drawbacks, including risk to human life at dangerous

depths, operator fatigue in the case of ROVs, limited operational time, and high operational costs associ-

ated with manned submersibles or ROVs. The emergence of I-AUVs presents a transformative solution

that offers the potential to carry out these activities with reduced or eliminated drawbacks, making them

a promising alternative in underwater operations.

(a) SAUVIM Vehicle (b) MARIS Single-Agent Operation

Figure 1.2: Intervention in Underwater Environment with Single-Agent Free-Floating I-AUVs

Over the last two decades, there has been significant research focused on the development of single-

vehicle I-AUVs, particularly those designed for search and recovery tasks. Notable achievements in

this domain include the SAUVIM project [29], where a free-floating autonomous vehicle accomplished

the recovery of a pre-specified object by autonomously locating the object and hooking to the vehicle

[24,30]. Similar efforts have been undertaken in projects like MARIS [31], contributing to the exploration

of autonomous search and recovery capabilities.

While single-vehicle I-AUVs have demonstrated success in some specific tasks, there is a growing

recognition of the need for more sophisticated manipulation and transport capabilities, particularly for

larger objects. To address this requirement, researchers have explored the use of dual-arm manipulators

in I-AUVs or the cooperative control of multiple I-AUVs to accomplish these more complex tasks [24,

32]. The TWINBOT project stands out as one of the pioneering efforts in this direction, showcasing

a cooperative transportation task through a leader-follower organization for cooperation and control,

coupled with a visual-servoing technique for grasping [24]. This cooperative approach introduces a new

dimension to underwater intervention capabilities, paving the way for enhanced dexterity and versatility

in handling substantial objects in the underwater environment.
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(a) Simulation of Cooperative Transportation in
MARIS Project

(b) Experimental Cooperative Transportation with
Girona-500 in TWINBOT Project

Figure 1.3: Intervention in Underwater Environment with Multi-Agent I-AUVs

1.3 Problem Description and Objectives

This thesis is intricately linked to the ongoing COOPERAMOS project at Jaume I University (UJI) which

is funded by the Spanish Ministry of Science and Innovation. Its primary goal is to design advanced

grasp planning algorithms for an underwater scenario using two I-AUVs with coordination. This project

will build on the previous works in the TWINBOT project which uses two Girona500 AUVs equipped with

7 Degree of Freedom (DOF) robotic arm for transportation of a long pipe cooperatively. In the TWINBOT

project, the grasping points are manually computed and the robot is controlled through a planned path

to the defined point. Hence, the main objective of this project is to develop and automated grasp position

and orientation proposal algorithm.

The objectives outlined to achieve the goal are:

1. Implementation of Visual Segmentation Algorithm in Intervention Area: this algorithm would aid in

better identification of the objects in the scene by using data from stereo cameras.

2. Development of Efficient Grasp Planning Algorithm based on Visual Information.

3. Testing of Algorithms with cameras mounted on the I-AUVs: upon completion and rigorous suc-

cessful testing in the simulation environment, the algorithms could be implemented on Girona500

AUVs at the Experimental Test Bed in Research Center in Robotics and Submarine Technolo-

gies (CIRTESU) to validate the simulation results.

1.4 Main Contribution

The project investigates the development of objective-specific geometric grasp proposals for a manipu-

lator for transportation of slender rigid rods in an underwater environment.

6



We:

• design an experiment to test the applicability of plane and color segmentation methods to obtain a

target from point cloud data,

• developed a geometric-based grasp proposition algorithm for a point cloud input or a CAD model

input of the object,

• validated the developed algorithm on real-time data collected from stereo cameras in the lab which

produced satisfactory grasp propositions.

1.5 Thesis Outline

This thesis is structured into five chapters. Chapter 1 provides an introduction to the background and

motivation of the project, outlines the project objectives, presents the current state of the art in the field

and lists the main contributions of this work. Chapter 2 delves into description of the existing system

architecture and a review of existing techniques related to visual segmentation and grasp planning, and

discusses some methods that were applied to underwater problems. Chapter 3 outlines the methodol-

ogy that was employed in the project with some details on the mathematics underlying the segmentation

methods and the grasp planning techniques developed. Chapter 4 presents the results of the designed

experiments for visual segmentation and the geometric grasp planning. Chapter 5 presents the conclu-

sions and system limitations of this work and the proposed future works.
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In this chapter, we will review the literature on the main areas that are necessary for the development

of a comprehensive grasping algorithm: image detection, segmentation and grasp planning. During the

detection and segmentation stage, an image captured from a camera feed is processed to identify and

segment the object to be grasped within the workspace. In the grasp planning stage, the segmented

image is analyzed to determine stable and reachable grasp points, which are then output as position

and orientation vectors. The motion planning phase involves steering the underwater vehicle towards

the desired object based on the vectors obtained from the grasp planner. Finally, the manipulation

stage involves actuating the mounted arm to grasp the object. The primary focus of this review is on

applications within underwater environments.

2.1 Image Detection and Segmentation

In any process with vision capabilities, image detection and segmentation are usually the backbone or

a critical component of the architecture. These processes are important for some underwater tasks,

such as studying marine animals and plants, underwater archaeology, inspection of underwater in-

frastructures, etc. In this subsection, we will discuss different methods used in image detection and

segmentation, challenges specific to underwater environments, and how these two techniques can be

integrated.

2.1.1 Image Detection

Image detection involves the identification and localization of objects of certain classes within an image.

There are traditional approaches (i.e., non-AI) and Deep Learning (DL)-based approaches to image

detection [33].

2.1.1.A Traditional Methods for Image Detection

The traditional methods of image detection involve using some computational methods to extract some

features from the image. The extracted features are then used to make detections from the image. These

techniques have been used in Viola Jones Detectors, Histogram of Gradients (HOG), Scale Invariant

Feature Transform (SIFT), Speed Up Robust Transform (SURF) methods and many others [33,34].

These traditional methods have been increasingly replaced by DL based approaches in many do-

mains. However, feature extraction-based approaches are still in use in the marine domain where the

processed images usually lack quality and low-level analysis is important for improved accuracy. Gupta

and Sharma [35] applied HOG and SIFT to image detection in underwater environment and also used

these techniques to improve degraded images. Manonmani et al [36] used HOG and Canny Edge De-
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tector for more accurate mine detection for naval defense applications. Wang et al [37] also used HOG

to detect sea cucumbers for fishing applications. Demir and Yaman [38] used HOG to detect garbage in

underwater environments.

Hence, traditional methods are still widely used in the marine context and could be very pertinent

when high accuracy and low-level analysis are pertinent [35].

2.1.1.B Artificial Intelligence (AI) Methods for Image Detection

The AI methods have been dominant in the computer vision literature since the introduction of AlexNet

in 2012 [39]. DL-based methods involve the learning of robust and high-level image representation with

little or no handcrafted feature extraction [40,41] unlike traditional methods.

Figure 2.1: Timeline of Image Detection Techniques (including the traditional, one-stage and two-stage detection
methods) [1].

Some of the popular AI-based techniques used in image detection include:

• Traditional Machine Learning (ML) methods: these methods usually use handcrafted methods

for image extraction then the ML technique is used only for classification. Some of the techniques

used are: Support Vector Machine (SVM) and decision trees.

• Two-Stage DL-based Detectors: in the DL methods, feature extraction is not handcrafted. Rather,

this technique uses a separate deep network for object proposal and another for feature extraction,

bounding-box regression for object localization in the image, and softmax classification. Some DL

models that use this architecture include Region-based Fully Convolutional Network (RFCN) and

Region-based Convolutional Neural Network (RCNN) as seen in Figure 2.2.

• One-Stage DL-based Detectors: these methods are developed to increase the speed of real-

time image detection. The bounding box and classes are predicted directly from the images in

one evaluation [3] without initially determining the predicting regions. Common models are the You

Only Look Once (YOLO) model [3], RetinaNet [42] and Single Shot Multibox Detector (SSD) [43].
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Figure 2.2: Schematics of the RCNN Detection Model, a Two-Stage Detection Approach [2].

Figure 2.3: Schematics of the YOLO Detection Model, a One-Stage Detection Approach [3].

Both the two-stage and the one-stage detectors have been applied to underwater image detection

problems. Some of these works have been highlighted by Sarkar et al [44]. Zhang et al [45] used

CNN-based architecture to detect sea animals and their model has a mean average precision of 63.9%

on the dataset it was tested on. Mahmood et al [46] used a VGG-based network to classify objects in

the underwater environment. Chen et al [47] proposed a single-shot detection type architecture that is

capable of detecting small objects. His model has a mean average precision of 46.3%. Although these

deep learning methods are quite advanced and robust, they are yet to be able to provide good precision

in detecting underwater objects.

2.1.1.C Challenges of Image Detection in Underwater Environment

Image Detection in underwater environment is characterized by many problems. Some of the challenges

encountered are summarized by Chen et al [1] and some of these challenges are:

• Low Quality: most of the underwater images have poor constrast, distortions, poor lighting and

problems with color.

• Small Object Size: many aquatic animals and objects to be detected in the marine environment

are small-sized and might be clustered in a small environment. This makes detection more chal-

lenging.

• Dynamic or Poor Illumination: only the first few hundred meters of the underwater environment
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is illuminated and this illumination becomes poorer with depth. Acoustic cameras are used more

commonly in the marine domain due to their applicability in low visibility [48].

Figure 2.4: Some challenges encountered with underwater images [4].

These challenges are the reasons why many underwater image detection applications are mainly

based on generic object detection models with addition of some image enhancements [4].

2.1.2 Image Segmentation

Image segmentation is an important problem in many computer vision applications. It involves par-

titioning of objects in an image into categories. Segmentation is important in robotic perception and

manipulation where it might be required that the target object be segmented from the environment [49].

This enables the robot to distinguish between the target object and the background elements. The image

segmentation techniques can be classified into the classical methods and the AI-based methods.

2.1.2.A Classical Image Segmentation Techniques

The classical techniques are broadly classified as techniques that do not involve the use of AI algorithms.

The classical method mainly relies on handcrafted metrics to segment images. Such as edges, contrast,

average intensity, etc. Some of the classical methods include the following:

• region-based segmentation: this method involves the segmentation of objects in an image by

grouping them based on similarity in properties such as color or intensity. The segmentation

begins at some initially seeded points and it progresses by including neighboring pixels with similar

properties until a specified threshold is reached. Zhang et al [50] used this region-based method

to segment fishes from complex underwater backgrounds, as seen in Figure 2.5. Li et al [51] and

14



Chen et al [52] have also applied this method to segmentation of sonar images in underwater

applications.

• edge-based segmentation: this method detects the boundary of objects by identifying significant

changes in the pixel intensity. These significant changes in pixel intensity usually occur at the edge

of the segmented objects. The boundary of the identified object is simply formed by connecting

the detected edges. Some operators, such as Canny and Sobel operators, are relied upon for

this form of segmentation. Some recent research on underwater image segmentation use this

approach. Priyadharsini and Sharmila [53] used the edge-based method to detect objects on the

seabed. Setiawan et al [54] used this method for detection of edges in underwater image with very

low contrast. Afreen et al [55] also recently used this method to track the effect of climate change

on coral reefs.

• layer-based segmentation: this method involves the segmentation of image by analyzing the

depth of the pixels. This is usually useful for scenarios where objects are layered at different

depths in an image. This technique is particularly important for object localization and manipulation

in robotics systems where the layer segmentation gives a better understanding of the scene [56].

(a) Original Image (b) Segmented Image

Figure 2.5: Region-based Segmentation of Objects in Underwater Environment

2.1.2.B AI-based Image Segmentation Techniques

Unlike the classical techniques, the AI-based segmentation techniques make use of the ML and DL

algorithms which enables more autonomous and highly adaptive image segmentation. The AI-based

segmentation methods can be classified into ML-based methods, Convolutional Neural Network (CNN)-

based methods and transformer-based methods.
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• ML-based Segementation: these methods are in use before the widespread of DL-based meth-

ods. Classical ML algorithms, such as SVMs and K-Means clustering, take specific image char-

acteristics, such as color, texture and intensity gradient, as input and thereafter group the pixels

based on their similarities.These methods are considered computationally efficient and effective

for scenarios where data is limited.

• CNN-based Segmentation: the CNN-based method revolutionarized the image segmention meth-

ods. Prior to the CNN-based methods, handcrafting of features are still required for image segmen-

tation. However, these methods automated the extraction of features from large datasets and the

segmentation of objects in the images. Some popular CNN-based segmentation models include

Mask R-CNN and U-Net. Drews-Jr et al [57] used a U-Net based architecture to segmention divers,

aquatic animals and static objects form underwater images, see Figure 2.6, with an accuracy of

91.9%.

• Transformer-based Segmentation: although the transformer architecture was developed for NLP

applications, it has also been extended to image segmentation to capture global contexts in the

images. One of the most recent and highly used transformer-based segmentation algorithm is the

Segment Anything (SA) model [58]. Lian et al [59] adapted the SA model to underwater images

by introducing an underwater adaptive vision transformer encoder. The schematics of this new

method is shown in Figure 2.7 and its application to an underwater scenario is shown in Figure

2.8.

(a) Original Image (b) Segmented Image

Figure 2.6: CNN-based Segmentation of Objects in Underwater Environment
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Figure 2.7: The Framework of the Underwater Salient Instance Segmentation - Segment Anything Model.

(a) Original Image (b) Segmented Image

Figure 2.8: Transformer-based Segmentation of Objects in Underwater Environment

2.2 Grasp Planning

Grasp planning is a fundamental concept in robotic manipulation. It constitutes the determination of the

pose of the manipulator gripper to achieve a specific manipulation task. This is critical in many domains

where robotics has been applied such as in industrial robots, surgical robots, etc. For autonomous grasp

planning, perception and semantic segmentation of the target object is important.

2.2.1 Methods of Grasp Planning

Numerous approaches have been proposed for grasp planning in literature. These methods can be

broadly classified as: manual computation methods, geometric methods and DL-based methods. Each
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method has its advantages and disadvantages depending on the application scenario, availability of

computational power, and the nature of the target object.

2.2.1.A Pre-Computed Grasp Point Methods

This method involves an offline pre-computation of the optimal grasp pose of known objects. This method

is generally applicable to scenarios where the environment is structured and static and the object to be

manipulated is known prior to the manipulation task [60]. In this method, a database of object model

is created and the grasp hypothesis are defined based on simulation or empirical estimations. For

example, an industrial robot deployed for pick-and-place applications or an assembly task could have

its grasp points precomputed depending on the task and the target object. The major shortcoming of

this method is that it is neither applicable to dynamic environments nor applicable to objects that are not

previously known [61]. One application of this method in manipulation is the research of Vahrenkamp et

al [5] where they developed an algorithm to propose grasp position of familiar objects. The schematic

diagram of their method is given in Figure 2.9 and an experimental example is given in Figure 2.10.

Figure 2.9: Part-based grasp planning for multiple known objects [5].

2.2.1.B Geometric Methods

The geometric grasp planning methods involve the identification of possible grasp pose of an object in

real time based on its shape and spatial features. These methods are very suitable for scenarios where

the geometry of the object is available either from a Computer Aided Design (CAD) model or a 3-D

segmented image (or point cloud object). This method is very efficient and robust for handling unknown
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Figure 2.10: Template grasp planning for a wrench object and application to a familiar object in workspace [5].

object shapes. However, it has drawbacks with flexible and irregular objects. Miller et al [62] applied

this technique to pick-and-place operation of service robots without explicitly defining the objects ahead.

More recently, Akbari at al [6] used this technique for defining the grasp pose of objects by fitting the

objects on an ellipsoid and grasping from one of the three focus points of the ellipsoid. The overview of

their architecture is given in Figure 2.11 and the demonstration is given in Figure 2.12.

Figure 2.11: Block Diagram of the Geometric-Based Grasp Planner [6].
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Figure 2.12: Successful grasps with geometric grasp planner from CoppeliaSim simulation [6].

2.2.1.C DL-based Methods

DL-based methods have revolutionized grasp planning in unstructured environments, enabling robots to

autonomously grasp a wider range of objects in both structured and dynamic settings. Deep learning

models are trained on large datasets of object images or point clouds, allowing them to generalize grasp-

ing strategies to unseen objects. These methods are computationally intensive but offer adaptability and

high success rates in variable environments due to their data-driven nature.

One popular framework in this category is the DexNet, introduced by Mahler et al. [63], which uses

a deep neural network trained on synthetic point clouds and grasp metrics to predict robust grasps

across various object types. DexNet has proven particularly valuable in industrial applications where the

variety of objects is extensive and handling unknown objects is necessary. Similarly, Levine et al. [64]

developed a model for real-time robotic grasping by collecting a large-scale dataset which allows the

model to adaptively plan grasps on objects of diverse shapes and textures.

Another significant contribution in DL-based methods is the 6-DOF GraspNet, which extends grasp

prediction to three-dimensional space and calculates stable grasps even in cluttered environments [7].

This capability is illustrated in Figure 2.13 which shows an overview of the architecture of the 6-DOF

GraspNet, and Figure 2.14 which demonstrates the successful application of this model in real-world

manipulation tasks.

While these methods are highly effective in complex settings, their main drawbacks include the need

for extensive training data, significant computational resources, and the inability to adapt without retrain-

ing when presented with novel object features outside of the trained dataset.
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Figure 2.13: Overview of 6-DOF GraspNet Architecture for Robust Grasp Prediction [7].

Figure 2.14: Example of successful grasps achieved by 6-DOF GraspNet on cluttered objects [7].

2.2.2 Merits of Geometric Grasp Planning

Geometric grasp planning offers multiple advantages in robotic manipulation:

• Efficiency: Geometric methods are computationally efficient since they rely on the direct analysis

of the spatial properties of an object, making them suitable for real-time applications [65].

• Simplicity and Generalizability: Due to their reliance on geometric features, such as edges and

shapes, these methods can be applied to a broad spectrum of objects without extensive data-

driven training [65,66].

• Robustness in Known Object Classes: Geometric approaches provide robust results in scenar-

ios with limited object variation and where objects adhere closely to known shapes or models.

• Adaptability to Limited Visibility: Underwater environments are often characterized by low vis-
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ibility, where it is easier to detect edges and shapes of objects than to detect finer details of the

object. Geometric methods relying on shape-based features can be more effective than complex

data-intensive models in such conditions, allowing for reliable performance despite environmental

limitations.

These advantages make geometric grasp planning particularly useful in many robotics applications,

where objects typically follow standard dimensions and shapes.

2.2.3 Further Review of Geometric Method: Image and Point Cloud Inputs

In underwater environments, grasp planning relies on effective segmentation and object recognition to

provide reliable object interaction, especially given visibility challenges and dynamic conditions. Two

primary input types for segmentation models used in underwater applications are RGB images [67] and

point cloud data [68, 69], each offering unique benefits and limitations. While RGB-based methods rely

on color and texture information for segmentation, point cloud-based methods leverage 3-D spatial data

to model object shapes and contours, which is crucial in environments where visibility is impaired. Each

approach can been applied to underwater manipulation in applications such as debris collection, pipe

transportation, and repair operations [68,70,71].

2.2.3.A RGB-Based Geometric Grasp Planning

RGB-based geometric grasp planning leverages color, intensity, and texture information to generate

grasp hypotheses based on the visible features of an object. This approach is particularly effective

for underwater environments where objects possess distinct color characteristics that contrast with the

surrounding environment.

• Contour and Edge-Based Grasp Planning: Geometric grasp planning based on RGB inputs

often relies on edge and contour detection, where edges are used to approximate the shape and

orientation of objects in the underwater scene. This approach is usually effective in identifying and

grasping objects in shallow waters where color information is not too deteriorated.

• Depth Augmented RGB Grasp Planning: Depth-augmented RGB methods, where depth cues

are overlaid onto RGB images, have shown improved performance for geometric grasp planning

in underwater environments with limited visibility. Paul et al [72] and Yang et al [8] combined RGB

image data with depth data for geometric grasping tasks, enabling precise manipulation of the

target object. This RGB-based method improved grasp success by combining surface texture with

inferred depth, accommodating environments with complex or poor lighting. Figure 2.15 gives the

architecture of the Yang et al method and Figure 2.16 gives an example application.
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Figure 2.15: Overview of architecture of the depth-augmented RGB-based grasp planner proposed by Yang et
al [8].

Figure 2.16: Example of successful grasps achieved by the depth-augmented RGB-based grasp planner [8].

Despite their advantages, RGB-based geometric methods are limited in highly turbid waters where

visual cues degrade. Such limitations make them less suitable for dynamic underwater tasks or when ob-

jects lack sufficient contrast from the background, as encountered in deep-sea exploration or sediment-

rich areas.

2.2.3.B Point Cloud-Based Geometric Grasp Planning

Point cloud-based geometric grasp planning uses 3-D spatial data derived from sonar or stereo camera

systems to create detailed models of objects, allowing for accurate grasp point estimation [68] even in

underwater environments with low visibility. This approach is particularly advantageous for underwater

environments, where point cloud data can represent the shape and depth of objects in more details,

which is crucial for grasping tasks [68,73].
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• 3-D Shape Fitting and Contour Analysis: Point cloud-based geometric methods often involve

fitting simple geometric shapes such as spheres or ellipsoids to approximate the contours of target

objects. Monica et al [68] developed a point cloud-based geometric grasp planner for underwater

robots, where ellipsoidal fittings allowed for the grasping of irregularly shaped marine objects, such

as rocks and debris, in murky conditions. This method provided reliable grasp poses, significantly

improving the stability of grasped objects in dynamic underwater currents. In this method, the best

pose could be proposed to be at the centroid of the fitted 3-D shape.

• Geometric Matching for Object Localization and Grasping: Another point cloud-based geo-

metric approach is to match predefined shapes to point clouds. Yu et al [69] proposed a grasp

planning system that matches point cloud data from sonar with stored CAD models of objects,

such as underwater tools or pipes. This method was effective for grasping tasks that required

precise alignment, such as pipeline maintenance, as it enabled robots to determine optimal grasp

points based on object geometry and orientation in 3-D space.

• End-to-End DL Grasp Propositions: An end-to-end grasp planning system using point clouds

involves sequential steps that begin with data acquisition and preprocessing, using sonar or stereo

cameras to capture and filter point cloud data for noise reduction and clarity. Segmentation and

shape fitting follow, isolating and approximating the target object with simple geometric shapes

(e.g., ellipsoids or cylinders) to facilitate accurate grasp pose estimation. After identifying the

optimal grasp location, the system simulates grasp execution in a controlled environment to verify

stability, followed by real-time grasping, often supported by feedback from force sensors to adapt

to underwater currents and object resistance. This workflow has been proven effective for grasping

tasks such as underwater debris retrieval and equipment handling, providing stability and accuracy

in low-visibility conditions [70, 73]. Wang et al [9] has applied this method in simple table-top

grasping demonstration. Their architecture (including a typical example) is described in Figure

2.17.

Point cloud-based geometric grasp planning has good applications in underwater scenarios requiring

high precision, such as retrieval of irregular objects or manipulation of equipment in deep-sea mainte-

nance tasks.

2.2.4 Metrics of Geometric Grasp Planning

Evaluating the effectiveness of geometric grasp planning requires robust metrics that quantify grasp sta-

bility, accuracy, and feasibility under various conditions. These metrics provide an essential framework

for comparing algorithms and assessing grasp success in both controlled and dynamic environments.

Some of the metrics generally considered are:
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Figure 2.17: Overview of architecture of an end-to-end point cloud based grasp planner [9].

• Grasp Stability: Grasp stability is often evaluated by quantifying the resistance of an object to

slippage or rotation under external forces. A common metric for stability is the Grasp Wrench

Space (GWS), which represents the set of external forces and torques that the object can withstand

while held by the robotic gripper. An optimal grasp maximizes the GWS, making it more resistant to

perturbations. This approach has been widely adopted in grasp planning research, as seen in the

work of Ferrari and Canny [74], where the GWS concept was applied to optimize grasping forces

for diverse object geometries. In underwater settings, ensuring stability against external forces,

such as currents, is critical, which requires integrating GWS analysis with real-time feedback from

force sensors [75].

• Contact Quality: Contact quality evaluates how well the points of contact on an object contribute

to a secure grasp. Metrics such as contact region stability and finger contact area help assess

this quality. A broader and well-distributed contact area increases grasp reliability, particularly

for irregularly shaped objects. For example, grasping a cubic-shaped object by its faces is more

stable than grasping it by its edges, and grasping it by its edges is more stable than grasping it by

its vertices. Song et al [65] highlighted that optimizing the contact points on a 3-D object improves

grasp reliability, an approach that has been especially useful in underwater grasps where irregular

marine objects often require maximized contact stability. This metric is crucial for applications

requiring the secure manipulation of objects with complex geometries, such as coral samples or

rock formations.

• Success Rate of Grasp Execution: The success rate quantifies the proportion of successful

grasps in real-world or simulated trials, typically based on a large dataset or a series of test sce-

narios. For underwater applications, successful grasps can be defined as those where the object is

securely held and transported without dislodgment due to environmental factors like turbulence. As
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Yu et al. [69] demonstrated, a high success rate in grasp planning can be achieved by integrating

grasp pose estimation with feedback mechanisms for real-time adjustments.

• Computational Efficiency: For real-time grasp planning applications, computational efficiency

is essential, especially in underwater robotics where on-board processing power may be limited.

Metrics such as grasp planning time and algorithmic complexity provide insights into the feasibility

of implementing grasp algorithms on real-world systems. Monica et al. [68] discussed how ge-

ometric algorithms can reduce computational load, making them viable for low-power, on-board

processing systems in underwater robotics.

Incorporating these metrics enables a comprehensive evaluation of geometric grasp planning ap-

proaches, helping to refine methods for specialized tasks like underwater manipulation. Each metric

addresses a critical aspect of grasp reliability, from structural stability to efficiency, facilitating the devel-

opment of robust algorithms that enhance robotic functionality in challenging environments.
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This chapter describes the methodology used in the development of the grasp planning algorithm for

underwater applications. These methods incorporate some techniques for image pre-processing and

segmentation, and point-cloud-based geometric grasp planning to enhance the efficiency and reliability

of underwater object manipulation. The following sections provide a detailed account of each technique,

elucidating their rationale, implementation, and some precedents in similar research works.

3.1 Overview of Existing Architecture

The general architecture of this project is structured into two core components: the intervention scenario

and the algorithm implementation, as shown in Figure 3.1.

Figure 3.1: Schematic Diagram of the Project Overview

The intervention scenario provides an operational environment for I-AUVs to execute some specified

intervention tasks. Initially, the scenario will exist as a simulation environment (described in Section

3.1.2). After rigorous testings, the scenario will transition to the experimental bed at CIRTESU for

real-world validation. There exists a communication bridge between the scenario and the algorithm

components for sensing and actuation.

The algorithm implementation component is responsible for processing the sensor data from the

I-AUVs, generating the actuation commands and general coordination of the mission. It encompasses

the mission planning, control and coordination of the I-AUVs. It also includes the Graphical User Inter-

face (GUI). Details on the frameworks to be used in the implementation are provided in Section 3.1.3.

3.1.1 I-AUV for Experimental Testing

For the execution of the intervention tasks, two Girona500 AUVs which are each equipped with a 7DOF

Reach Bravo manipulator could be used.

The Girona500 AUV is a compact-sized I-AUV, with size 1.5m× 1m× 1m and weight of about 140kg,

which can operate between 3 to 8 thrusters, giving the vehicle redundant DOFs [32,76,77]. It has three

hulls that are arranged to provide the I-AUV with passive stability, as shown in Figure 3.2. The two upper
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hulls house the electronics and also contain floatation foams while the bottom hull contains heavier

elements like batteries and manipulators (or other payloads) [32]. The Girona500 AUV is reconfigurable

for different tasks. Hence, for the purpose of this project, the basic configuration which comprises

navigation sensors (such as Doppler Velocity Log (DVL), Ultra-Short Baseline (USBL) and pressure

gauge) will be used. In addition, the Reach Bravo manipulator will be coupled for intervention tasks.

Figure 3.2: Girona500 AUV without attached payload.

The Reach Bravo manipulator is a dextrous 7-DOF manipulator, weighing about 4.5kg, specifically

designed for aquatic inspection and intervention applications. It has six revolute joins (as shown in

Figure 3.3(a)) and also offers a diverse array of mission-specific end-effectors which have accuracies

less than 1cm and grasping forces up to 1000N . A camera will be mounted on the end-effector which

will enable the visual servoing technique to be used for the gripping process. This manipulator will be

mounted on each of the Girona500 AUV to perform intervention tasks.

(a) Joints Description (b) Default Configuration (with customization options)

Figure 3.3: Reach Bravo Manipulator [10]

In the experimental setting, two I-AUVs will be tasked with autonomous and cooperative identification

and transportation of a long pipe to a designated location. Since the primary focus of this project is on

developing and refining the planning and control algorithms, the communication interface is not a main

concern. Hence, to facilitate real-time monitoring and management of the mission, a simple tethered

cable will be employed to connect the I-AUVs to a command station. This approach ensures reliable data
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transfer while allowing the team to closely observe the mission and provide necessary interventions if

required.

3.1.2 Simulation Environment

This project utilizes Unity Engine as its simulator engine. The Girona500 AUV and Reach Bravo have

been modeled as rigid bodies and will be integrated into the simulation environment. Unity’s recent

advancements, particularly with the Unity Robotic Hub, have significantly enhanced manipulator and

robotic simulations within the engine. Furthermore, Unity’s capabilities extend to creating an HTTP

server, enabling data transmission via TCP-IP and UDP protocols. To control the I-AUVs within the

simulation, the ROS-TCP-Endpoint package serves as the bridge between the simulation environment

and the ROS ecosystem.

3.1.3 Existing Algorithm Frameworks

There exist some frameworks that have implemented or under implementation for some aspects of this

project. The MoveIt framework has package that could be adapted for path planning of the 7-DOF

manipulator [78]. Some research team from other universities are actively working on an algorithm that

could be employed for the Visual Segmentation of the desired object from the workspace and it can be

integrated as a Robot Operating System (ROS) node [79]. Other aspects of the project would either

be developed on existing packages from ROS or will be implemented as improvements on the existing

source code for the TWINBOT project or Girona500 AUV architecture, such as Component Oriented

Layer-based Architecture for Autonomy (COLA2) [32] which has existing motion planning, navigation

and velocity control packages for some I-AUVs.

3.2 System Overview

This project forms a crucial segment of a larger initiative aimed at the planning and control of cooperative

I-AUVs for underwater object transportation. As depicted in Figure 3.4, the overall system architecture

integrates multiple techniques to ensure efficient and reliable operation in the complex underwater envi-

ronments.

The workflow commences with the implementation of sophisticated image processing techniques

tailored to detect desired objects within the workspace. These techniques are essential for accurately

identifying target objects amidst the often cluttered and visually challenging underwater environment. By

enhancing the reliability of object detection, the system ensures that subsequent processes are based

on precise and accurate data.
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Figure 3.4: General System Overview.

Upon successful detection, the identified objects undergo a segmentation process designed to isolate

them from the surrounding environment. This segmentation is crucial for extracting the object’s precise

geometry and spatial characteristics, which are vital for accurate manipulation. The segmented data is

then converted into a standard CAD format or a point cloud format, facilitating seamless integration with

various processing and planning algorithms.

The formatted data serves as the input for the grasp planning algorithm, which calculates the grasp

points and orientations. This step is fundamental to ensure that the I-AUVs can securely and efficiently

grasp the object, taking into consideration factors such as object geometry and material properties. The

grasp planning algorithm leverages geometric models to determine the most stable and effective grasp

configurations.

Following the determination of grasp points, a motion planning algorithm is employed to design a

feasible trajectory for the I-AUVs. This algorithm will compute the optimal path from the current posi-

tion to the target grasp points while avoiding obstacles and ensuring smooth and efficient movement.

The trajectory planning takes into account the dynamic constraints of the I-AUVs and the underwater

environment, ensuring that the planned path is both feasible and efficient.

Finally, a control algorithm is implemented to execute the planned grasp and manipulation tasks.

This algorithm translates the planned trajectory into actionable control signals for the I-AUVs, ensuring

precise and coordinated movements. The control algorithm continuously monitors the I-AUVs’s state

and the environment, making real-time adjustments to maintain stability and accuracy during the grasp

and transportation processes.

In summary, this integrated system combines image processing, segmentation, grasp planning, mo-

tion planning, and control algorithms to enable the I-AUVs to effectively grasp and transport objects in

underwater environments. Each component of the system plays a critical role in ensuring the overall

robustness and efficiency of the operation, paving the way for sophisticated underwater manipulation

tasks.
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3.3 Pre-processing Techniques

In the context of this project, pre-processing techniques are essential to prepare the input data for further

processing steps. These techniques are applied to the input CAD files and point cloud data to ensure

they are in a suitable format and quality for the grasp planning algorithm.

For point clouds, two primary pre-processing techniques are employed: downsampling and voxeliza-

tion. Downsampling reduces the number of points in the point cloud, which reduces computational load

without significantly affecting the accuracy of the grasp planning. This is particularly useful in under-

water environments where point cloud data can be dense and contain a lot of redundant information.

The voxelization process, on the other hand, converts the point cloud into a set of volumetric pixels

(called voxels), which provides a more manageable and structured representation of the 3-D data. This

technique aids in reducing noise and reducing the computation overload of the subsequent steps.

For CAD models, the pre-processing involves converting the CAD files into point clouds. This step is

crucial because it standardizes the input format, allowing the system to handle both CAD models and raw

point cloud data uniformly. The conversion process typically involves sampling the surface of the CAD

model to generate a dense point cloud representation, ensuring that the geometric details necessary

for accurate grasp planning are preserved. After converting to point cloud data, the downsampling or

voxelization approach maybe applied.

3.3.1 Downsampling and Voxelization

Downsampling a point cloud involves selecting a subset of points from the original point cloud to reduce

its size while maintaining its overall structure. A common method for downsampling is to use a voxel grid

filter. This technique divides the point cloud into a 3-D grid of voxels and replaces all the points within

each voxel with a single point, usually the centroid of the points within the voxel.

Mathematically, if the point cloud P consists of N points {p1, p2, . . . , pN} with coordinates (xi, yi, zi),

the voxel grid filter can be described as follows:

1. Define the voxel grid size l × w × h where l, w and h represent the length, width and height of the

voxel respectively.

2. For each point pi, compute the voxel indexes in the x, y and z coordinates (vx, vy, vz) as:

vx =
⌊xi

l

⌋
, vy =

⌊yi
w

⌋
, vz =

⌊zi
h

⌋
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3. Aggregate points within the same voxel and compute the centroid p̄v for each voxel V :

p̄v =
1

|V |
∑
pi∈V

pi

where V is the set of points within the voxel.

3.3.2 CAD to Point Cloud Conversion

Converting a CAD model to a point cloud typically involves sampling points on the surface of the model.

If the CAD model is represented as a mesh with vertices {v1, v2, . . . , vM} and faces {f1, f2, . . . , fK}, the

conversion can be described as follows:

1. For each face fk with vertices (vk1, vk2, vk3), generate sample points pk1, pk2, . . . , pkn.

2. The sampling can be uniform or based on the area of the faces to ensure an even distribution of

points.

3.4 Segmentation Techniques

Segmentation is a critical step in isolating the target object from the background and other elements in

the environment. Two segmentation techniques are utilized in this project: plane segmentation and color

segmentation.

3.4.1 Plane Segmentation

Plane segmentation is used to extract planar surfaces from the point cloud, assuming that the object is

placed against a relatively simple background. This technique involves fitting a plane to the point cloud

data and identifying points that lie on this plane. By segmenting out the planar background, the object of

interest can be effectively isolated. This method is particularly useful in structured environments where

the background can be approximated by a plane. Mathematically, plane segmentation can be achieved

using the Random Sample Consensus (RANSAC) algorithm, which iteratively fits a plane model to

subsets of the point cloud data and refines the fit by maximizing the number of inliers.

The equation of a plane in 3-D space is given by:

ax+ by + cz + d = 0

where (a, b, c) is the normal vector of the plane and d is the distance from the origin.

RANSAC algorithm steps:
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1. Specify the maximum number of iterations.

2. Define the set of inliers as an empty set.

3. Randomly select a subset of points from the point cloud.

4. Fit a plane to these points by solving the linear system:

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1



a
b
c
d

 = 0

5. Count the number of inliers within a threshold distance ϵ from the plane:

|axi + byi + czi + d| < ϵ

6. Add these inliers into the set of inliers.

7. Repeat the last four steps till the defined amount of iteration is reached.

8. Select the set with the largest amount of inliers and compute its plane model.

In this project, the background is simply the walls of the pool and flowing water. With the plane

segmentation approach, the wall and water considered as background can simply be segmented from

the item to be grasped.

3.4.2 Color Segmentation

Color segmentation leverages the distinct color of the object to differentiate it from the rest of the en-

vironment. In this project, the pipe to be grasped is painted with a specific color, which simplifies the

segmentation process. By applying color thresholding techniques, the system can identify and isolate

points in the point cloud that match the specified color range. This approach is effective in scenarios

where the object has a unique and easily distinguishable color.

Color segmentation relies on thresholding techniques in a chosen color space (e.g., RGB, HSV). For

an object with a specific color, define the color range [Cmin, Cmax]. For each point pi with color Ci:

Cmin ≤ Ci ≤ Cmax

Points falling within this range are segmented out. In the RGB color space, the segmentation process

can be described as by applying the color threshold as follows:

Rmin ≤ Ri ≤ Rmax, Gmin ≤ Gi ≤ Gmax, Bmin ≤ Bi ≤ Bmax
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In the context of this project, the pipe is painted yellow and the Cmin and Cmax are defined as

Cmin = [192, 192, 0] and Cmax = [255, 255, 64] where the lower limit is 25% deduction from the pure

yellow color and the upper limit is the pure yellow color with 25% variation tolerance of B channel from

zero. Hence, the pipe can be segmented from the white-bluish background.

3.5 Point Cloud Based Geometric Grasp Planning

The grasp planning process involves several stages, each aimed at determining the optimal grasp points

and orientations for the object. As illustrated in Figure 3.5, the workflow starts with the identification of the

bounding box that encloses the target object. This bounding box provides a preliminary understanding

of the object’s dimensions and orientation.

Figure 3.5: Overview of the Grasp Planning Approach.

Next, Principal Component Analysis (PCA) is applied to the point cloud data to identify the primary

axes of the object. PCA reduces the dimensionality of the data while preserving the most significant

features, allowing the system to determine the main geometric axes of the pipe. The longest axis of the

pipe is identified as the primary axis, which guides the subsequent steps in the grasp planning process.

In determine the three principal axes of the pipe, we utilized the following steps:

1. Compute the centroid of the point cloud.

2. Computing the covariance matrix Σ:

Σ =
1

N

N∑
i=1

(pi − p̄)(pi − p̄)T

3. Eigen decomposition of Σ:

Σv = λv

The eigenvectors v corresponding to the three largest eigenvalues λ represent the principal axes

of the point cloud.
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For a cylindrical object like a pipe, the grasp points are chosen perpendicular to the longest axis. Let

v1, v2, v3 be the principal axes from PCA, with v1 being the longest axis. The grasp points are defined as

positions pg along v1. Hence, the grasp propositions along the pipe is defined as:

pg = p̄+ αv⃗1 + βv⃗2 + γv⃗3 (3.1)

Where α, β and γ are simply scale values to define the location of the grasp. We uniformly spread

the grasp along v⃗1. Then, we use the 30 nearest neighbors to p̄+ αv⃗1 to determine the values of β and

γ that ensures the grasp point is defined on the surface of the object. By ensuring that the grasps are

perpendicular to principal axis, the system maximizes the stability and efficiency of the grasp.

The final grasp point is selected using a task-specific and end-effector dependent objective function.

After the steps described above to give numerous amount of possible grasp positions, the object function

would provide the best k grasps needed for the specified operation. For an operation requiring only one

end-effector for grasping, the centrod would be returned as the best grasp. While another operation that

uses multiple end-effector would require a different objective function to ensure that the grasp point are

sufficiently away from each other to ensure appropriate grasp with minimal risk of collision.
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4.1 Grasp Pre-Processing

In the grasp pre-processing section, we discuss the results obtained from the conversion of the CAD

model input to point clouds that are used for the grasp processing. This is one form of input that

can be accepted into the grasp-planning algorithm. Afterwards, we discuss the scenario where the

grasp-planning algorithm is implemented directly on point cloud inputs, which requires separating the

desired object from its background. Here, we discuss the two simplified segmentation approaches we

attempted: plane segmentation and color segmentation, along with their merits and shortcomings. In

the next session, we will provide the results obtained from the grasp propositions for solid objects and

point clouds.

Converting CAD files to Point Clouds

In this section, we present the results of converting CAD files to point clouds, a necessary step

since our grasp planning algorithm accepts only point clouds as input. The conversion process involves

sampling the CAD geometry to create point clouds that adequately represent the CAD model.

(a) Slender Pipe (b) Pipe Connectors

Figure 4.1: OnShape CAD files for the Pipe and Pipe Connector.

The original CAD models, as shown in Figure 4.1 were developed with OnShape software. The two

objects initially considered for the research were a slender pipe (in Figure 4.1(a)) and a pipe connector

(in Figure 4.1(b)). The conversion of the CAD files to point clouds were implemented using Open3D

package and incorporated into the ROS package of the grasp planner.

A poisson distribution was used to sample the CAD model and the point cloud result obtained is

presented in Figure 4.2. It is evident that most of the major salient features of the CAD model are lost.

The reason is still unclear. However, upon introducing noise to the input, a better result as shown in

Figure 4.3 was obtained. There is an hypothesis that perhaps this is becuase there are now many

41



(a) Slender Pipe (b) Pipe Connectors

Figure 4.2: Point Cloud of Pipe and Pipe Connector from CAD model (each point cloud has 10000 points).

(a) Slender Pipe (b) Pipe Connectors

Figure 4.3: Point Cloud of Pipe and Pipe Connector from CAD model with random noise.
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different means and standard deviations in the noisy data but the cause is still unclear.

4.2 Segmentation

4.2.1 Plane Segmentation

Our grasp planning algorithm accepts both CAD models and direct point cloud images as inputs. How-

ever, point clouds obtained directly from sensors are not pre-segmented, necessitating the implementa-

tion of segmentation techniques to isolate the desired object from the background.

Figure 4.4: Image of the workspace (as point clouds) obtained from the Jetson Nano camera.

In our experimental setting, we placed a long slender pipe on a suspended bar and used a Jetson

Nano (stereo) camera lowered on a submerssible into a pool to obtain a live video feed of the workspace.

An image from the live video feed is provided in Figure 4.4. The cluttered background with water parti-

cles, blue wall and some rays of light from the top of the pool can be seen in the Figure. These made

the image complicated to segment.

At first, we developed a plane segmentation algorithm to approximate the pipe as a place and there-

after we approximate the backgound as a plane both of these techniques were adequate for the sep-

aration of the pipe and the background in the air (i.e. in absence of water molecules). We assumed

these should be an approximate for the underwater environment as the air molecules are negligible and
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Figure 4.5: The result of segmenting a plane from the image. No plane was segmented because there are many
candidate planes that could be segmented and the algorithm is designed to segment one.

almost not clearly visible in the images. However, when the algorithm was tested in the underwater

environment, the result obtained is a shown in Figure 4.5. None of the two approaches worked in the

underwater environment due to the presence of dynamic water molecules in the background and multi-

ple plane surfaces detectable: the wall of the scene, the surface of the water and perhaps the forward

facing region of the pipe.

Hence, another simplified approach is required for the segmentation.

4.2.2 Color Segmentation

Sequel to the failure of the plane segmentation technique, we resorted to painting the pipe with a specific

and easily detectable color: yellow. Thereafter, we used the RGB channel of the image from the camera

to segment the desired object from its background. To achieve this, we specific the upper and lower limits

of the accepted colors in the workspace iteratively until a satisfactory result was obtained, as shown in

Figure 4.6. While this method is not quite advanced, it was sufficient for the segmentation task. And the

use of AI in this context is impossible because of the lack of data and it is not desired for deployment in

autonomous underwater operations due to computational reasons.
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In general, this technique should be highly effective in scenarios with significant color contrast, mak-

ing it a valuable tool for underwater applications where objects can be isolated based on color properties.

However, its effectiveness diminishes in low-light conditions or environments with low color contrast.

Figure 4.6: Result of color segmentation applied to the underwater scene, showing clear differentiation of the yellow
pipe.

4.3 Grasp Proposals

In this section on grasp proposal, we provide the results obtained for the experimental demonstration of

the grasp planning algorithm on both processed CAD files and real-time image data. It will be observed

that only a long pipe is experimented on. This is because the broad groal of the project is to demonstrate

the cooperative transportation of a slender pipe. An attempt was made to demonstrate the algorithm on

the pipe connector as well. However, the connector was too small and complicated to be demonstrated

on in the underwater environment, considering the available resources.

4.3.1 Grasp Proposals for Pipe CAD Model

In the case of the CAD models, obtaining the principal axes and determining the grasp propositions was

straightforward. We assume that the object is uniform, solid, rigid and static. Then, we implemented

the algorithm on the point cloud equivalence of the CAD model. The grasp propositions provided by our

algorithm for this is provided in Figure 4.7.

The algorithm provided several grasp propositions perpendicular to the surface of the target object,

highlighting the best grasp location around the centroid of the shape. This approach will ensure stable

and effective manipulation of the pipe.
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Figure 4.7: Grasp Proposition on CAD inputs.

4.3.2 Grasp Proposals for Direct Point Clouds from Underwater Images

After successfully applying the grasp planning algorithm on the CAD models, we implemented the algo-

rithm as well on underwater images obtained from stereo cameras. The point cloud obtained from these

cameras are more complicated to deal with as they are irregular and have several missing points, as

earlier depicted in Figure 4.6.

Figure 4.8: Grasp propositions on the segmented point clouds.

However, the developed grasp planning algorithm was able to propose adequate grasp positions and

orientations that are feasible for the grasping and manipulation of the slender pipe, as shown in Figure

4.8. Figure 4.9 shows the propositions in the full scene of the underwater workspace from the robot arm

frame.
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Figure 4.9: Grasp propositions in the full underwater scene.

4.4 Discussion

The results from converting CAD files to point clouds, plane and color segmentation techniques, and

grasp propositions are reported and discussed in this chapter and they are the key aspects of our

approach to grasp planning for underwater applications.

The conversion process from CAD models to point clouds preserved critical geometric details, es-

sential for accurate grasp planning. Although, obtaining a desired point cloud data for grasping was

problematic, the introduction of noise to the point clouds helps to obtain the desired point cloud, and

ensuring that the system is ready for practical deployment. This step proved crucial as it enabled the

algorithm to handle variability in the data, which is typical in underwater environments.

While plane segmentation was initially considered a viable method, it became clear that underwater

conditions posed significant challenges. The presence of moving water molecules and multiple plane

surfaces led to the failure of this technique. This outcome underscores the complexities of underwater

imaging and the need for adequate segmentation methods capable of dealing with such environments.

Color segmentation, on the other hand, provided a more reliable solution. By painting the pipe a

distinct color and using RGB-based segmentation, we achieved clearer differentiation between the object

and the background. This method, although simplified, proved effective and computationally feasible for

real-time applications. Its success highlights the importance of leveraging color contrast in underwater
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environments where traditional segmentation methods may fail.

The grasp proposals generated for both CAD-derived and direct underwater point clouds demon-

strated the robustness and adaptability of our geometric algorithm. Handling noise and variability in

the data is crucial for ensuring reliable grasping in dynamic underwater environments. The algorithm’s

ability to propose stable and effective grasp points, even in the presence of data irregularities, confirms

its potential for practical applications.

In general, the methods and algorithms developed in this study provide a solid foundation for effective

and efficient grasp planning in underwater applications. They address key challenges and demonstrate

significant potential for real-world deployment, emphasizing the importance of applicability and adapt-

ability in complex and variable environments.
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5.1 Conclusions

This research project has made significant contributions to the development of a semi-autonomous grasp

planning algorithm tailored for underwater applications, thereby enhancing the intervention capabilities

of I-AUVs. The algorithm employs downsampling and voxelization techniques to preprocess point cloud

data, effectively reducing the computational overhead associated with grasp planning.

Initially, we explored a plane segmentation technique aimed at removing the underwater background

to isolate the intended object. However, this method proved impossible due to the dynamics of water

molecules and the presence of multiple planar surfaces in the captured point cloud data. As a result,

we implemented a simple color segmentation algorithm that separates the object from the background

using some thresholding techniques. This approach proved effective, provided that no objects in the

background possessed similar colors to the target.

Subsequently, we developed a grasp planning algorithm that utilizes Principal Component Analysis

(PCA) to identify the three principal axes of the object. Grasp positions were estimated by computing the

normals on the object surface and normal to the major principal axis. The proposed grasps were shown

to be adequate for effective manipulation and also yielding promising results that can be incorporated in

future cooperative grasp planning missions.

5.2 System Limitations and Future Work

The limitations of the current system are as follows:

• The system is not suitable for flexible objects.

• The system may not perform optimally for objects with uneven mass distribution. However, it can

be effectively utilized if the mass distribution is relatively even or if the center of gravity is close to

the centroid (i.e., center of volume).

• The algorithm relies on other works for adequate image processing and segmentation, and for its

eventual deployment for manipulation.

Future research directions would focus on the following areas:

• Developing more sophisticated grasp planning algorithms that can account for dynamic object

properties and environmental factors, such as variations in mass distribution and the effects of

water currents on manipulation.

• Investigating optimal poses for task-specific grasp planning such as wrenching, transporting, etc.
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• Integrating the algorithm into a cooperative transportation scheme to demonstrate its applicability

in intervention activities.

By addressing these future research directions, the capabilities of I-AUVs can be significantly en-

hanced, paving the way for more autonomous and efficient underwater operations across various indus-

tries.

52



Bibliography

[1] L. Chen, Y. Huang, J. Dong, Q. Xu, S. Kwong, H. Lu, H. Lu, and C. Li, “Underwater Object

Detection in the Era of Artificial Intelligence: Current, Challenge, and Future,” Oct. 2024,

arXiv:2410.05577 [cs]. [Online]. Available: http://arxiv.org/abs/2410.05577

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” 2013, version Number: 5. [Online]. Available:

https://arxiv.org/abs/1311.2524

[3] J. Redmon, “You only look once: Unified, real-time object detection.” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

2016. [Online]. Available: https://www.cv-foundation.org/openaccess/content cvpr 2016/papers/

Redmon You Only Look CVPR 2016 paper.pdf

[4] S. Xu, M. Zhang, W. Song, H. Mei, Q. He, and A. Liotta, “A systematic review and analysis of deep

learning-based underwater object detection,” Neurocomputing, vol. 527, pp. 204–232, Mar. 2023.

[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231223000656

[5] N. Vahrenkamp, L. Westkamp, N. Yamanobe, E. E. Aksoy, and T. Asfour, “Part-based grasp

planning for familiar objects,” in 2016 IEEE-RAS 16th International Conference on Humanoid

Robots (Humanoids). Cancun, Mexico: IEEE, Nov. 2016, pp. 919–925. [Online]. Available:

http://ieeexplore.ieee.org/document/7803382/

[6] A. Akbari, A. Akbari, and M. T. Masouleh, “A 2D Geometry Based Grasping Pose Generation

Algorithm for a Two-Finger Robot Hand,” in 2023 31st International Conference on Electrical

Engineering (ICEE). Tehran, Iran, Islamic Republic of: IEEE, May 2023, pp. 85–91. [Online].

Available: https://ieeexplore.ieee.org/document/10334804/

[7] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-GraspNet: Efficient 6-DoF

Grasp Generation in Cluttered Scenes,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA). Xi’an, China: IEEE, May 2021, pp. 13 438–13 444. [Online]. Available:

https://ieeexplore.ieee.org/document/9561877/

53

http://arxiv.org/abs/2410.05577
https://arxiv.org/abs/1311.2524
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0925231223000656
http://ieeexplore.ieee.org/document/7803382/
https://ieeexplore.ieee.org/document/10334804/
https://ieeexplore.ieee.org/document/9561877/


[8] D. Yang, T. Tosun, B. Eisner, V. Isler, and D. Lee, “Robotic Grasping through Combined

Image-Based Grasp Proposal and 3D Reconstruction,” in 2021 IEEE International Conference

on Robotics and Automation (ICRA). Xi’an, China: IEEE, May 2021, pp. 6350–6356. [Online].

Available: https://ieeexplore.ieee.org/document/9562046/

[9] L. Wang, Y. Xiang, W. Yang, A. Mousavian, and D. Fox, “Goal-Auxiliary Actor-Critic for 6D Robotic

Grasping with Point Clouds,” 2020, publisher: arXiv Version Number: 4. [Online]. Available:

https://arxiv.org/abs/2010.00824

[10] “BRAVO 7: A Tough 7-Function Manipulator for Inspection Class Vehicles.” [Online]. Available:

https://reachrobotics.com/media/docs/40983/Bravo-7-Datasheet.pdf

[11] A. A. Dalhatu, A. M. Sa’ad, R. Cabral De Azevedo, and G. De Tomi, “Remotely Operated

Vehicle Taxonomy and Emerging Methods of Inspection, Maintenance, and Repair Operations: An

Overview and Outlook,” Journal of Offshore Mechanics and Arctic Engineering, vol. 145, no. 2, p.

020801, Apr. 2023. [Online]. Available: https://asmedigitalcollection.asme.org/offshoremechanics/

article/145/2/020801/1145947/Remotely-Operated-Vehicle-Taxonomy-and-Emerging

[12] Y. R. Petillot, G. Antonelli, G. Casalino, and F. Ferreira, “Underwater Robots: From

Remotely Operated Vehicles to Intervention-Autonomous Underwater Vehicles,” IEEE Robotics

& Automation Magazine, vol. 26, no. 2, pp. 94–101, Jun. 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8706541/

[13] A. Sahoo, S. K. Dwivedy, and P. Robi, “Advancements in the field of autonomous

underwater vehicle,” Ocean Engineering, vol. 181, pp. 145–160, Jun. 2019. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0029801819301623

[14] M. Fun Sang Cepeda, M. D. S. Freitas Machado, F. H. Sousa Barbosa, D. Santana

Souza Moreira, M. J. Legaz Almansa, M. I. Lourenço De Souza, and J.-D. Caprace, “Exploring

Autonomous and Remotely Operated Vehicles in Offshore Structure Inspections,” Journal of

Marine Science and Engineering, vol. 11, no. 11, p. 2172, Nov. 2023. [Online]. Available:

https://www.mdpi.com/2077-1312/11/11/2172

[15] G. Liu, “Remotely Operated Vehicle (ROV) in Subsea Engineering,” in Encyclopedia of Ocean

Engineering, W. Cui, S. Fu, and Z. Hu, Eds. Singapore: Springer Nature Singapore, 2022, pp.

1466–1478. [Online]. Available: https://link.springer.com/10.1007/978-981-10-6946-8 225

[16] J. A. Ramı́rez-Macı́as, R. E. Vásquez, A. J. Sørensen, and S. Sævik, “A Methodology for

DP Capability Studies on Remotely Operated Vehicles,” in Volume 7A: Ocean Engineering.

Trondheim, Norway: American Society of Mechanical Engineers, Jun. 2017, p. V07AT06A041.

54

https://ieeexplore.ieee.org/document/9562046/
https://arxiv.org/abs/2010.00824
https://reachrobotics.com/media/docs/40983/Bravo-7-Datasheet.pdf
https://asmedigitalcollection.asme.org/offshoremechanics/article/145/2/020801/1145947/Remotely-Operated-Vehicle-Taxonomy-and-Emerging
https://asmedigitalcollection.asme.org/offshoremechanics/article/145/2/020801/1145947/Remotely-Operated-Vehicle-Taxonomy-and-Emerging
https://ieeexplore.ieee.org/document/8706541/
https://linkinghub.elsevier.com/retrieve/pii/S0029801819301623
https://www.mdpi.com/2077-1312/11/11/2172
https://link.springer.com/10.1007/978-981-10-6946-8_225


[Online]. Available: https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2017/57731/

Trondheim,%20Norway/281740

[17] J. Yuh, “Design and Control of Autonomous Underwater Robots: A Survey,” Autonomous Robots,

vol. 8, no. 1, pp. 7–24, 2000. [Online]. Available: http://link.springer.com/10.1023/A:1008984701078

[18] M. Grasmueck, G. P. Eberli, D. A. Viggiano, T. Correa, G. Rathwell, and J. Luo,

“Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology,

and oceanography in deep water of the Straits of Florida,” Geophysical Research Letters, vol. 33,

no. 23, p. 2006GL027734, Dec. 2006. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/

doi/10.1029/2006GL027734

[19] V. A. I. Huvenne, P. A. Tyler, D. G. Masson, E. H. Fisher, C. Hauton, V. Hühnerbach, T. P. Le Bas,

and G. A. Wolff, “A Picture on the Wall: Innovative Mapping Reveals Cold-Water Coral Refuge

in Submarine Canyon,” PLoS ONE, vol. 6, no. 12, p. e28755, Dec. 2011. [Online]. Available:

https://dx.plos.org/10.1371/journal.pone.0028755

[20] Z. Li, Y. Wang, W. Yang, and Y. Ji, “Development Status and Key Navigation Technology

Analysis of Autonomous Underwater Vehicles,” in 2020 3rd International Conference on Unmanned

Systems (ICUS). Harbin, China: IEEE, Nov. 2020, pp. 1130–1133. [Online]. Available:

https://ieeexplore.ieee.org/document/9274926/

[21] P. Xu, J. Zheng, X. Wang, S. Wang, J. Liu, X. Liu, G. Xie, J. Tao, and M. Xu, “Design and

Implementation of Lightweight AUV With Multisensor Aided for Underwater Intervention Tasks,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 5009–5013,

Dec. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9837304/

[22] B. Liu, “Recent Advancements in Autonomous Robots and Their Technical Analysis,”

Mathematical Problems in Engineering, vol. 2021, pp. 1–12, Feb. 2021. [Online]. Available:

https://www.hindawi.com/journals/mpe/2021/6634773/

[23] D. Kim, H.-S. Choi, J.-Y. Kim, J.-H. Park, and N.-H. Tran, “Trajectory generation and sliding-mode

controller design of an underwater vehicle-manipulator system with redundancy,” International

Journal of Precision Engineering and Manufacturing, vol. 16, no. 7, pp. 1561–1570, Jun. 2015.

[Online]. Available: http://link.springer.com/10.1007/s12541-015-0206-y

[24] R. Pi, P. Cieslak, P. Ridao, and P. J. Sanz, “TWINBOT: Autonomous Underwater

Cooperative Transportation,” IEEE Access, vol. 9, pp. 37 668–37 684, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9367135/

55

https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2017/57731/Trondheim,%20Norway/281740
https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2017/57731/Trondheim,%20Norway/281740
http://link.springer.com/10.1023/A:1008984701078
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006GL027734
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006GL027734
https://dx.plos.org/10.1371/journal.pone.0028755
https://ieeexplore.ieee.org/document/9274926/
https://ieeexplore.ieee.org/document/9837304/
https://www.hindawi.com/journals/mpe/2021/6634773/
http://link.springer.com/10.1007/s12541-015-0206-y
https://ieeexplore.ieee.org/document/9367135/


[25] Y. Wang, S. Wang, Q. Wei, M. Tan, C. Zhou, and J. Yu, “Development of an Underwater Manipulator

and Its Free-Floating Autonomous Operation,” IEEE/ASME Transactions on Mechatronics, vol. 21,

no. 2, pp. 815–824, Apr. 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7303960/

[26] E. Simetti, F. Wanderlingh, S. Torelli, M. Bibuli, A. Odetti, G. Bruzzone, D. L. Rizzini, J. Aleotti,

G. Palli, L. Moriello, and U. Scarcia, “Autonomous Underwater Intervention: Experimental Results

of the MARIS Project,” IEEE Journal of Oceanic Engineering, vol. 43, no. 3, pp. 620–639, Jul.

2018. [Online]. Available: https://ieeexplore.ieee.org/document/8027199/

[27] E. Simetti and G. Casalino, “Manipulation and Transportation With Cooperative Underwater Vehicle

Manipulator Systems,” IEEE Journal of Oceanic Engineering, vol. 42, no. 4, pp. 782–799, Oct.

2017. [Online]. Available: http://ieeexplore.ieee.org/document/7790865/

[28] S. Heshmati-Alamdari, C. P. Bechlioulis, G. C. Karras, and K. J. Kyriakopoulos, “Cooperative

Impedance Control for Multiple Underwater Vehicle Manipulator Systems Under Lean

Communication,” IEEE Journal of Oceanic Engineering, vol. 46, no. 2, pp. 447–465, Apr. 2021.

[Online]. Available: https://ieeexplore.ieee.org/document/9118878/

[29] G. Marani, S. K. Choi, and J. Yuh, “Underwater autonomous manipulation for intervention

missions AUVs,” Ocean Engineering, vol. 36, no. 1, pp. 15–23, Jan. 2009. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S002980180800173X

[30] C. A. Simpkins, “Introduction to Autonomous Manipulation: Case Study with an Underwater Robot,

SAUVIM [On the Shelf],” IEEE Robotics & Automation Magazine, vol. 21, no. 4, pp. 109–110, Dec.

2014. [Online]. Available: http://ieeexplore.ieee.org/document/6991031/

[31] G. Casalino, M. Caccia, S. Caselli, C. Melchiorri, G. Antonelli, A. Caiti, G. Indiveri, G. Cannata,
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