
Automotive Lidar Technology for Marine Applications –
Determining and Increasing the Accuracy of
Simultaneous Localisation and Mapping

Berin Đikić

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Pedro Tiago Martins Batista

Thomas Gölles, PhD

Examination Committee

Chairperson: Prof. João Manuel de Freitas Xavier
Supervisor: Prof. Pedro Tiago Martins Batista

Member of the Committee: Prof. Bruno João Nogueira Guerreiro

July 2023

ii

I declare that this document is an original work of my own authorship and that it fulfils
all the requirements of the Code of Conduct and Good Practices of the

Universidade de Lisboa.

iii

iv

Acknowledgements

I would like to start by expressing my gratitude towards my family who were always there to support me,
not only throughout the two years of this Master’s programme, but also throughout my entire life. I would
also like to thank my friends who were always ready to share all the good and the bad moments with
me. A special mention goes to my late grandmother who was always encouraging me to push my limits
every day.

I would also like to thank my mentors Dr. Thomas Gölles and Professor Pedro Batista who always
offered guidance and showed me the way to solve the problems I encountered, even though sometimes
I couldn’t see it. Their expertise and commitment were essential in helping me to finish this thesis.

Finally, I would like to thank Stefan Muckenhuber for assisting with the fieldwork and providing guidance
throughout the practical work for this thesis. Big thanks toMichael Stolz who devoted time and knowledge
to guide me in the topic selection process and who made the initial connection between me and my
supervisor Dr. Thomas Gölles. Also, I would like to thank Professors Ricard Marxer and Nicolas Boizot
for their involvement and guidance in the initial stages of my search for the thesis topic and placement
in the industry. Last but not least, I would like to thank my colleagues Birgit Schlager and Christoph
Gaisberger for their help and friendliness.

The project was funded by the program “IKT der Zukunft” of the Austrian Federal Ministry for Climate
Action (BMK). The publication was written at Virtual Vehicle Research GmbH in Graz and funded within
the COMET K2 Competence Centers for Excellent Technologies from the Austrian Federal Ministry for
Climate Action (BMK), the Austrian Federal Ministry for Labour and Economy (BMAW), the Province of
Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The Austrian Research Promotion
Agency (FFG) has been authorised for the programme management.

v

vi

Abstract

This thesis aims to develop a way of determining the accuracy of 3D Simultaneous Localisation And
Mapping (SLAM) generated maps. The datasets for generating these maps are gathered by a novel
mobile lidar sensor package called MObile LIdar SENsor System (MOLISENS), which uses inexpensive
automotive lidar sensors. This makes it cheap, mobile and robust, thus it is suitable to be used in a
multitude of different environments, including marine ones. The gathered data is then fed to four different
SLAM algorithms that are tested, and their performance is evaluated based on a set of different criteria.
Out of the tested algorithms, only the LIO-SAM algorithm was able to successfully complete the mapping
task on all the datasets, and it also achieved the best map accuracy. However, even LIO-SAM had some
deficiencies, mainly an inefficient and pretty basic loop-closure functionality. This deficiency was fixed
by combining LIO-SAM with another algorithm called Scan Context, yielding an algorithm called SC-
LIO-SAM. Scan Context specializes in loop detection, which makes the loop-closure functionality of the
SC-LIO-SAM more accurate and robust. Besides making LIO-SAM more robust, by using SC-LIO-SAM,
the accuracy of the generated 3D maps was also improved by incorporating GNSS data into the SLAM
process, as well as by tuning the parameters of the algorithm itself. In conclusion, SC-LIO-SAM emerges
as the optimal algorithm for the specific use cases addressed in this thesis, while the MOLISENS sensor
package demonstrates its capability to accurately survey a wide range of environments, including marine
settings.

Keywords
Map accuracy, Marine mapping, SLAM, MOLISENS, lidar, LIO-SAM

vii

Resumo

Esta tese tem como objetivo desenvolver um método para determinar a precisão dos mapas gerados
pelo sistema de Localização e Mapeamento Simultâneo (SLAM) em 3D. Os conjuntos de dados para
gerar esses mapas são coletados por um novo pacote de sensores móveis lidar chamado MObile
LIdar SENsor System (MOLISENS), que utiliza sensores lidar automotivos de baixo custo. Isso torna o
sistema barato, móvel e robusto, adequado para ser usado em diversos ambientes, incluindo ambientes
marinhos. Os dados coletados são então processados por quatro algoritmos SLAM diferentes, cujo
desempenho é avaliado com base em critérios diversos. Apenas o algoritmo LIO-SAM conseguiu
concluir com êxito a tarefa de mapeamento em todos os conjuntos de dados, alcançando também a
melhor precisão nos mapas. Contudo, o LIO-SAM apresentou algumas deficiências, especialmente em
relação à funcionalidade de fechamento de loops, que era ineficiente e básica. Essa deficiência foi
corrigida ao combinar o LIO-SAM com outro algoritmo chamado Scan Context, resultando no algoritmo
SC-LIO-SAM. O Scan Context é especializado em detecção de loops, tornando a funcionalidade de
fechamento de loops do SC-LIO-SAM mais precisa e robusta. Além de aumentar a robustez do LIO-
SAM, o uso do SC-LIO-SAM também melhorou a precisão dos mapas 3D gerados, incorporando dados
GNSS ao processo SLAM e ajustando os parâmetros do algoritmo. Em conclusão, o SC-LIO-SAM
emerge como o algoritmo ideal para os casos específicos abordados nesta tese, enquanto o pacote
de sensores MOLISENS demonstra sua capacidade de mapear com precisão uma ampla gama de
ambientes, incluindo ambientes marinhos.

Palavras Chave
Precisão do mapa, Mapeamento marítimo, SLAM, MOLISENS, lidar, LIO-SAM

viii

Table of Contents

Acknowledgements . v

Abstract . vii

Resumo . viii

Table of Contents . x

List of Figures . xii

List of Tables . xiii

Abbreviations . xvi

1 Introduction . 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Background . 5
2.1 Lidar . 6

2.1.1 History of Lidar . 6
2.1.2 Operating Principle . 7
2.1.3 Types of Lidar . 9
2.1.4 Basic Lidar Concepts . 9

2.2 Robot Operating System (ROS) . 10
2.3 CloudCompare . 11

3 State-of-the-Art in SLAM . 12
3.1 Simultaneous Localisation And Mapping . 13

3.1.1 Types of SLAM . 14
3.1.2 Challenges Facing SLAM . 14

3.2 Overview of Lidar SLAM Algorithms . 15
3.2.1 Probabilistic-based SLAM Scheme . 16
3.2.2 SLAM Scheme Based on Nonlinear Least Squares 16

4 Problem Statement . 20

5 Data acquisition and analysis . 22
5.1 Experimental Setup . 23

5.1.1 MOLISENS Hardware . 24

ix

5.1.2 MOLISENS Software . 26
5.1.3 Riegl VZ-6000 . 27
5.1.4 Ouster Lidars and Riegl VZ-6000 Comparison . 28
5.1.5 Post-processing Setup . 29

5.2 Data Gathering Process . 29
5.2.1 Cretaing the ”Ground Truth” Dataset . 29
5.2.2 Creating the ”Working” Dataset . 30

5.3 Data Post-processing . 31
5.4 Datasets . 32

5.4.1 Sonnblick Observatory Dataset . 32
5.4.2 ViF Building Dataset . 33
5.4.3 Rijeka Harbour Dataset . 34
5.4.4 IMU and GNSS Data Analysis . 35

6 Methodology . 43
6.1 Measuring the Accuracy of a SLAM Map . 44
6.2 Vegetation Removal . 46
6.3 SLAM Algorithms Performance Metric . 47
6.4 Chosen SLAM Algorithms . 49

6.4.1 KISS-ICP . 50
6.4.2 LeGO-LOAM . 50
6.4.3 HDL-Graph-SLAM . 51
6.4.4 LIO-SAM . 51

6.5 Performance Optimisation . 52
6.5.1 Loop-closure Improvement - SC-LIO-SAM . 52
6.5.2 GNSS Data Inclusion . 53
6.5.3 Parameter Optimisation . 54

7 Results . 56
7.1 SLAM Algorithms Comparison Results . 57

7.1.1 Comparison Summary . 64
7.2 LIO-SAM Algorithm Optimisation Results . 64

7.2.1 Loop-closure Improvement - SC-LIO-SAM . 64
7.2.2 GNSS Data Inclusion . 65
7.2.3 Parameter Optimisation . 67

8 Discussion and Conclusions . 70

Bibliography . 73

x

List of Figures

2.1 EM spectrum and the size of common objects compared to the wavelength 6
2.2 Military usage of lidar: (a) KTD 1 LRF - T-55 tank (1974); (b) Thales Talios Targeting Pod

- Dassault Rafale (2021) . 7
2.3 Lidar operating principle . 7

3.1 General SLAM Workflow . 13
3.2 Framework of SLAM methods based on nonlinear least squares 16

5.1 MOLISENS hardware components and basic operating principle 23
5.2 Xsens MTi 630 9-axis . 24
5.3 ANN-MB series ublox . 24
5.4 Ouster OS2-64 . 25
5.5 Software stack of the data logger . 26
5.6 Riegl VZ-6000 TLS . 27
5.7 Riegl VZ-6000 TLS in the field - Sonnblick Observatory 30
5.8 Reflective target in the field - Sonnblick Observatory . 30
5.9 MOLISENS setup on a gondola - Sonnblick Observatory 31
5.10 Google Maps representation of the Sonnblick Observatory dataset 32
5.11 Google Maps representation of the ViF Building dataset 33
5.12 MOLISENS handheld setup . 33
5.13 Google Maps representation of the Rijeka Harbour dataset 34
5.14 MOLISENS setup on a boat . 34
5.15 Coordinate frame of the MOLISENS setup . 35
5.16 Angular velocity - Sonnblick Observatory . 36
5.17 Linear acceleration - Sonnblick Observatory . 36
5.18 GNSS data - Rijeka Harbour . 37
5.19 Euler angles - Rijeka Harbour . 38
5.20 Linear acceleration - Rijeka Harbour . 38
5.21 Euler angles - ViF Building . 39
5.22 Linear acceleration - ViF building . 40
5.23 Violin plots of the linear acceleration - dataset comparison 41
5.24 Linear acceleration along Z-axis - dataset comparison . 41

6.1 Nearest neighbour distance principle . 44
6.2 Nearest neighbour local model principle . 45
6.3 M3C2 principle . 46
6.4 M3C2 in use on complex topographies . 46
6.5 Examples of segmented 3D lidar point cloud maps using the CSF algorithm 47
6.6 Selected SLAM algorithms and required input data . 49
6.7 SC-LIO-SAM - selected configurable parameters . 54

xi

7.1 Rijeka Harbour dataset: (a) LeGo-LOAM generated map; (b) KISS-ICP generated map . 58
7.2 Rijeka Harbour dataset: (a) HDL-Graph-SLAM generated map; (b) LIO-SAM generated

map . 59
7.3 Successful LIO-SAM generated map - Rijeka Harbour dataset 59
7.4 ViF Building dataset: (a) LeGo-LOAM generated map; (b) KISS-ICP generated map . . . 60
7.5 ViF Building dataset: (a) HDL-Graph-SLAM generated map; (b) LIO-SAM generated map 60
7.6 Sonnblick Observatory dataset: (a) LeGo-LOAM generated map; (b) KISS-ICP generated

map . 61
7.7 Sonnblick Observatory dataset: (a) HDL-Graph-SLAM generated map; (b) LIO-SAM

generated map . 61
7.8 Map accuracy colorbar . 62
7.9 3D SLAM generated and ”ground-truth” map comparison - Sonnblick Observatory dataset

- KISS-ICP algorithm: (a) Original map; (b) Map without vegetation 62
7.10 3D SLAM generated and ”ground-truth” map comparison - Sonnblick Observatory dataset

- HDL-Graph-SLAM algorithm: (a) Original map; (b) Map without vegetation 63
7.11 3D SLAM generated and ”ground-truth” map comparison - Sonnblick Observatory dataset

- LIO-SAM algorithm: (a) Original map; (b) Map without vegetation 63
7.12 3D SLAM generated maps by SC-LIO-SAM algorithm: (a) Rijeka Harbour dataset; (b) ViF

building dataset . 64
7.13 3D SLAM generated and ”ground-truth” map comparison - SC-LIO-SAM algorithm -

Sonnblick Observatory dataset . 65
7.14 3D SLAM generated map overlayed with Google Maps screenshot - Rijeka Harbour dataset 66
7.15 3D SLAM generated map overlayed with Google Maps screenshot - Sonnblick

Observatory dataset . 67

xii

List of Tables

5.1 Comparison of automotive lidars Ouster OS1-64, OS2-64 and TLS Riegl VZ-6000, R =
reflectance, DP = detection probability, PRR = pulse repetition rate 28

5.2 Overview of the datasets used in the thesis . 32

6.1 Considered SLAM algorithms . 49

7.1 Chosen SLAM algorithm characteristics . 57
7.2 General SLAM algorithm comparison results . 58
7.3 Map accuracy - SLAM algorithm comparison results . 62
7.4 Map accuracy comparison - LIO-SAM and SC-LIO-SAM algorithms - Sonnblick

Observatory dataset . 65
7.5 Map accuracy comparison - LIO-SAM and SC-LIO-SAM GNSS algorithms - Sonnblick

Observatory dataset . 66
7.6 CPU parameters tuning - SLAM generated map accuracy results - Sonnblick Observatory

dataset . 67
7.7 LOAM feature threshold parameters tuning - SLAM generated map accuracy results -

Sonnblick Observatory dataset . 68
7.8 Surrounding map parameters tuning - SLAM generated map accuracy results - Sonnblick

Observatory dataset . 68
7.9 Visualisation parameters tuning - SLAM generated map accuracy results - Sonnblick

Observatory dataset . 68
7.10 Optimised parameters - SLAM generated map accuracy results - Sonnblick Observatory

dataset . 69

xiii

Abbreviations

AC/DC Alternating Current/Direct Current

ADNN Average Distance to the Nearest Neighbor

AHRS Attitude and Heading Reference System

APE Absolute Pose Error

ASV Autonomous Surface Vessel

CHM Canopy Height Model

CPU Central Processing Unit

CSF Cloth simulation-based construction of pit-free canopy height models

D2D-NDT Distributions to Distributions Normal Distributions Transform

DARPA Defence Advanced Research Projects Agency

DC/DC Direct Current/Direct Current

DoF Degree of Freedom

DTM Digital Terrain Model

EKF Extended Kalman Filter

EKF-SLAM Extended Kalman Filter SLAM

EM electromagnetic

FoV Field of View

GICP Generalised ICP

GLONASS GLObalnaya NAvigazionnaya Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

HAT Hardware Attached on Top

HFoV Horizontal Field of View

I/O Input/Output

xiv

ICP Iterative Closest Point

IMU Inertial Measurement Unit

INS Inertial Navigation System

IP Ingress Protection

IQR Interquartile Range

KISS-ICP Keep It Small and Simple ICP

L-M Levenberg-Marquardt

LAN Local Area Network

lidar Light Detection and Ranging

LO Local Oscillator

LOAM Lidar Odometry and Mapping

LRF Laser RangeFinder

LTE Long Term Evolution

LTS Long Term Support

M3C2 Multiscale Model to Model Cloud Comparison

MCU Micro Controller Unit

MIMO Multiple Input, Multiple Output

MOLISENS MObile LIdar SENsor System

NDT Normal Distributions Transform

NMEA National Marine Electronics Association

NTRIP Networked Transport of RTCM via Internet Protocol

OLED Organic Light-Emitting Diode

OS Operating System

pub/sub publisher/subscriber

RAM Random Access Memory

RANSAC RANdom SAmple Consensus

RJ45 Registered Jack 45

RMS Root Mean Square

ROS Robot Operating System

RPE Relative Pose Error

RTC Real Time Clock

xv

RTCM Radio Technical Commission for Maritime

RTE Relative Translation Error

RTK Real Time Kinematics

SAIL Stanford Artificial Intelligence Laboratory

SAL Synthetic-Aperture Lidar

SLAM Simultaneous Localisation And Mapping

SLAMMOT Simultaneous Localization, Mapping, and Moving Object Tracking

SMA Sub-Miniature A

SSD Solid State Drive

surfel surface element

SWIR Short Wave InfraRed

TLS Terrestrial Laser Scanner

ToF Time of Flight

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

ViF Virtuelles Fahrzeug

vSLAM Visual SLAM

xvi

xvii

1
Introduction

Contents

1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 3
1.4 Outline . 4

1

The increase in popularity of Light Detection and Ranging (lidar) in the last few decades has been
closely linked with the increased research and popularity of autonomous vehicles. During the Defence
Advanced Research Projects Agency (DARPA) challenges in the 2000s lidar showed its worth and
has been on the rise in the autonomous vehicle industry ever since [1]. The main reason for this
correlation is that some autonomous vehicles use lidar, usually in conjunction with other sensors, to
localise themselves, as well as to detect and avoid obstacles.

Although the main user and initiator of development in lidar technology is the autonomous (self-
driving) vehicle industry, the usage of lidar has also increased in other industries. Mainly, it has been
adopted in the maritime, consumer electronics, and aerospace industries, as well as in archaeology,
architecture and geography [2]. This thesis focuses on lidar applications in the marine industry or closely
related to the marine industry.

Due to the increase in demand, Autonomous Surface Vessels (ASVs) are being developed for both
civilian and military purposes. According to Wang et al. [3] they are used for hydrology surveying, marine
resource exploitation, and ocean monitoring. ASVs can also be used for passenger and goods transport
in coastal cities such as Amsterdam or Venice [3]. In these ASV applications lidar plays a vital part. Other
important marine applications of shipborne lidar include monitoring weather conditions around the ship,
detecting obstacles and enemies above and below water, environmental monitoring, and many others
[4]. 3D mapping is an application of lidar, that is not strictly a marine application, but is closely related to
it. These 3D maps can depict the coastline, partially submerged caves, sea ice fronts, etc. [5].

1.1 Motivation
There are many techniques to produce a 3D map; one is by using lidars. A commonly adopted form
of lidar for 3D mapping is known as Terrestrial Laser Scanner (TLS), which is widely used in the field.
Although they produce detailed 3D maps, they have some disadvantages. For example, a new Riegl
VZ-6000 TLS costs approximately 160 000 € [5]. In general, TLS systems are expensive (in the order of
100 000 €), heavy (5− 15 kg), not very robust (typically IP64) and, in some use cases, not easy to handle,
and they need to be stationary for a longer period of time in order to complete a measurement [5].

On the other hand, automotive lidar technology has been rapidly advancing in the last decade,
and the current automotive lidars have become cheaper, lighter, more accurate, and more robust than
before. This has prompted the company Virtual Vehicle Research GmbH, in cooperation with University
of Graz, Austria, to develop MObile LIdar SENsor System (MOLISENS) [5]. Their goal was to develop a
system that can complement and possibly replace TLSs in some specific use cases that require robust,
lightweight, mobile, and modular sensor systems.

As mentioned in [5], MOLISENS is a standalone modular system that builds on the latest advances
in high-resolution environment perception for the automotive industry. At the moment MOLISENS only
contains lidar, but, since it is modular, it can be upgraded to also include both cameras and radars.
Furthermore, MOLISENS is equipped with a Global Navigation Satellite System (GNSS) and an Inertial
Measurement Unit (IMU) for georeferenced orientation and positioning. The system also works in a
standalone version, ie., there is no need for it to be set up on a vehicle. This feature allows it to be used
for measurements even at remote locations, and still provide very high spatial and temporal resolution
at a relatively low cost per system [5].

2

According to [5], small industrial automotive lidars produce high-resolution point clouds with high
acquisition frequencies (10 − 20Hz). The acquisition frequency is this high because these lidars were
designed to operate in highly dynamic environments, such as highways. The price of these systems
is quite low, compared to the price of TLS, and stands at around 5000 − 10000€. The robustness is
also better than that of TLSs (typically IP68) [5]. All of these features made automotive lidar sensors
appealing to be included in MOLISENS. More details about MOLISENS are provided in Section 5.1.

1.2 Objectives
The main focus of this thesis is to determine and try to increase the accuracy of 3D maps produced by
the MOLISENS setup, which is currently using the LIO-SAM Simultaneous Localisation And Mapping
(SLAM) algorithm [6], and to compare it to the ground truth which is produced by the Riegl VZ-6000.
The reason for doing this is that, although MOLISENS has been used for multiple measurements so
far (coastal mapping in Rijeka, Croatia, Lurgrotte cave mapping near Graz, Austria [5] and glacier cave
mapping in Longyearbreen, Norway [5]), this kind of analysis for SLAM generated 3D maps has not yet
been performed. After determining the accuracy of the current setup, the goal is to analyse the accuracy
results and then try to improve them, either by tuning the parameters of the already mentioned LIO-SAM
SLAM algorithm or by using a completely different algorithm. Multiple SLAM algorithms are implemented
and tested, see Section 6.4, and their results are compared, see Section 7.1.

1.3 Contributions
Several lidar based SLAM algorithms are presented in this work. Some of them are based on completely
different operating concepts and require different auxiliary sensors to operate. One is based purely on
Iterative Closest Point (ICP), two of them are based on Lidar Odometry and Mapping (LOAM), while
the last one uses a graph-based SLAM approach to create a map. Another thing to consider is that
some of the chosen algorithms are developed for earlier versions of Robot Operating System (ROS)
and haven’t been maintained since, so some modifications might be needed to make them work with
the latest version of ROS, which is ROS Noetic.

To accomplish the objectives of the thesis multiple things need to be done:

1. Different mapping scenarios need to be created to test the algorithms in different conditions. This
is reflected in the usage of 3 different datasets, explained in Section 5.4,

2. Modify the source code and dependencies of some SLAM algorithms to make them compatible
with ROS Noetic,

3. Establish a way of measuring the accuracy of a 3D map by comparing it to the ”ground truth” map,

4. A metric to compare different SLAM algorithms needs to be established,

5. Methods for optimising the accuracy of the finished 3D map produced by the best-performing
algorithm need to be devised and tested.

3

1.4 Outline
This thesis is organised as follows:

• Chapter 1 - presents the main motivation and objectives of this thesis.

• Chapter 2 - includes a basic introduction into lidars, since they are the main tool used to generate
point clouds. It also introduces the software used in this thesis.

• Chapter 3 - introduces the concept of SLAM, as well as the main issues facing SLAM and then
divides it into two groups, Visual SLAM (vSLAM) and lidar SLAM. Later, an insight into lidar based
SLAM method is provided.

• Chapter 4 - provides a concise description of the problems that are being addressed in this thesis.

• Chapter 5 - presents all the equipment used to gather and process the data, as well as how to
process the raw data. It also introduces each dataset that is used in this thesis, as well as their
specifics.

• Chapter 6 - presents ways to measure the accuracy of a SLAMmap, as well as a method to remove
vegetation from an already completed map. Furthermore, it introduces a set of criteria on which all
the used SLAM algorithms are evaluated. Then, a description of each used algorithm is provided
alongside the ways of optimising the best-performing algorithm.

• Chapter 7 - presents the results of comparing the performance of different SLAM algorithms to
each other, as well as to the ”ground truth” map. Also presents the results of optimisation of the
best performing SLAM algorithm.

• Chapter 8 - presents the discussion of the results presented in the previous chapter, as well as
the conclusions found from the said discussion. Ultimately, the possibilities for future work, and the
overall impact of the findings in this thesis, are presented.

4

2
Background

Contents

2.1 Lidar . 6
2.2 Robot Operating System (ROS) . 10
2.3 CloudCompare . 11

5

This chapter aims to introduce concepts that are not necessarily the topic of this thesis, but are
essential for a better understanding of the topics that are. Thus, the concept of lidar is introduced,
alongside two software packages, ROS and Cloud Compare.

2.1 Lidar
The purpose of this section is to provide a brief introduction to lidar technology, history, basic operating
principles, and types. Lidar is a remote sensing technology that uses laser impulses to measure
distances. AsMcManamon [2] explains, lidar uses electromagnetic (EM) waves in the visible and infrared
spectrum for its operation (overview of the EM spectrum given in Figure 2.1). Since the used wavelength
is quite short (750nm to 1.5µm), the achieved resolution is good, but the drawback is the inability to
penetrate through clouds or fog. Lidar is an active sensor, which means that it sends a laser impulse
and receives the reflected signal back. The advantage of this approach is that it can be used at any time
of day as it has its own source of light. The development of lidar, as we know it today, started in the
early 1960s, not long after lasers gained wider adoption. First lidars were using a visible laser, later they
started using lasers in near-infrared (Nd:YAG laser) and thermal infrared (CO2 laser) spectra. In recent
years, developments have been made in the eye-safe Short Wave InfraRed (SWIR) spectrum (∼ 1.5µm
and beyond) [2].

Figure 2.1: EM spectrum and the size of common objects compared to the wavelength [2]

2.1.1 History of Lidar

Since the prerequisite for the existence of lidar was the invention of the laser, it is hard to differentiate
between the development of laser technologies and applications, and lidar development itself. Generally
speaking, laser technologies, thus lidar as well, were primarily developed for military usage. Later, these
technologies were adapted and adopted for civilian use.

Laser RangeFinders (LRFs), first developed in the years beforeWW2, were the first primitive versions
of lidar. A single detector was used to determine the distance (range) to the selected object (target),
based on the time it takes a laser pulse to go from the source to the target and back. This paved the
way to lidar and laser usage in military technologies such as range finding, weapon guidance, and laser
target designation. Further research and development led to the appearance of laser imaging systems
that are based on 2D gated viewing and, lately, 3D imaging, which is still in the development process [2].

6

Figure 2.2: Military usage of lidar: (a) KTD 1 LRF - T-55 tank (1974) [7]; (b) Thales Talios Targeting Pod
- Dassault Rafale (2021) [8]

After certain developments were made in military usage of lidars and the technology became
declassified, civilian and dual-usage (both military and civilian) applications and technologies were
developed. McManamon [2] lists some of these technologies. They include environmental lidar, used
for remote sensing of the atmosphere and the ocean, and 3D Mapping using lidars, which is currently
capable of producing 3D maps of large areas in many countries. There are many other applications of
lidar, such as obstacle avoidance, altitude measurement, or lidar imaging. Decreasing size and price
of lasers, coupled with the increase in efficiency, have opened new application fields, such as usage
in unmanned vehicles. McManamon [2] believes that the first widespread commercial application of
lidars will be in self-driving vehicles, followed by Unmanned Aerial Vehicles (UAVs). In addition to the
aforementioned use cases, lidar is also used in medicine, primarily in ophthalmology [2].

The last 50 years saw huge technological improvements in lidar technology and lasers in general,
which enabled us to make highly detailed maps of our environment as well as to measure distance with
great accuracy [2]. There is little doubt that new technologies, such as autonomous vehicles and vessels,
will further drive the development of lidar technology, as well as the development of SLAM technologies,
which will be introduced in Chapter 3.

2.1.2 Operating Principle

The basic operating principle and components of lidar, as stated by McManamon [2], are shown in Figure
2.3.

Figure 2.3: Lidar operating principle [9]

7

Firstly, a waveform generator generates a laser waveform that is needed to obtain range or velocity
measurements. A laser provides the necessary light that illuminates the target. Theoretically, lidar can
operate with any internal light source, but since it was invented, the laser is an essential part of the lidar
setup. As far as the type of laser is concerned, there are many possibilities, such as a single laser, a
seeded laser, or a master oscillator with one or more following laser amplifiers. It could also be an array
of lasers. After the laser light has been generated, it passes through an optical transmission aperture
and gets emitted. The same aperture can be used to receive the light afterwards, but this is not always
the case. If the same aperture is used for both receiving and transmitting light, it is a monostatic lidar,
otherwise, if the transmit and receive apertures are different, then it is a bistatic lidar [2]. In Figure 2.3 a
bistatic lidar is depicted.

Laser light must travel through a medium, usually the atmosphere, to reach the target. Other possible
mediums are vacuum, water or even human tissue. When operating in the water, lidar only works well
at short distances due to the high absorption of EM waves. Some types of light, like blue and green
light, perform better in water due to their wavelengths being optimal for transmission through water.
After reaching the target, lidar light bounces from it, and travels back, through the same medium, to the
receiving aperture of the lidar, where it is captured [2].

One issue that appears when detecting lidar light is that its carrier frequencies are very high (in the
range of 200 - 600 THz), so it is not possible to measure the phase directly. This is solved by using
a Local Oscillator (LO) that interferes with the return light signal on the detector (LO beating against
the return signal). With this approach, it is possible to measure the beat frequency, and thus also the
frequency and intensity of the returning light (coherent lidar). With coherent lidar we can capture the
phase of the returning light, only if LO is perfectly stable, because, in that case, the phase change in
the beat frequency is the same as the phase of the carrier frequency (returned light). To measure the
distance, a concept of Time of Flight (ToF) is used. It refers to the time that passes from the firing of the
laser beam to its return to the lidar after bouncing off the target. Once we know ToF and the speed of
light in different mediums, calculating the distance is straightforward. Finally, the signal generated by
the detector is digitised and processed to generate an image, or other information, such as velocity, or
frequency of vibrations, based on the Doppler shift of the return [2].

Doppler shift, or Doppler effect, as stated by Šalaka et al. [10], describes the change in wave’s
frequency in relation to the observer when it is moving relative to the source of the wave. This
phenomenon is also present whenever the target, the lidar sensor, or both move during the measurement
process. The following equation introduces the Doppler shift, describing the relation between observed
frequency f and emitted frequency f0,

f =

(

c± vr

c± vs

)

f0

where:

• c is the wave (light) propagation speed in a given medium,
• vr is the observer (receiver) speed relative to the medium, and
• vs is the source speed relative to the medium.

Angular information is detected by one or more separate detectors that are moving in angle, or by an
array of detectors that are sampling the Field of View (FoV) [2].

8

2.1.3 Types of Lidar

As briefly mentioned in Section 2.1.1, there are many different types of lidar that exist today. McManamon
[2] differentiates three main groups of lidars. The first one of them, a 1D lidar or Range-only lidar, is
capable of measuring only one dimension, in this case, the range. 2D lidar, like all other types of lidars,
provides its own illumination and it can be range gated to a certain range region of interest. This means
that it is able to reduce the effect of noise and distractions from other, non-interesting, ranges. This is
especially useful, for example, in foggy conditions, when backscatter from closer ranges could obscure
the returning signal from the range of interest. The most common type of lidar today is the 3D lidar,
which measures angle/angle/range. Almost all modern lidars are beam-steering sensors. Beam-steering
refers to lidar systems’ capability of steering the laser beam to different places in the environment. This
steering can be achieved mechanically and electronically. All of the areas towards which a lidar system
is able to emit its lase signal is called the Field of View (FoV). Furthermore, 2D and 3D lidars can be
divided into conventional scanning lidars and flash lidars. The former works by sending the laser pulse
to a single point in space at any given moment of time, whereas the latter illuminates the entire FoV with
laser light in a single moment of time [2].

McManamon [2] also notes that velocity can be measured using a coherent lidar, which is capable of
detecting the Doppler shift. This is possible because it measures both the phase and amplitude of the
return signal. If we want to measure angular information, we need to use an aperture that is synthesised
in a three-step process. Firstly, the pupil plane field is sampled in many locations, then, secondly, a larger
pupil plane field sample is constructed, and then, finally, the Fourier transform is applied to get an image.
One of the examples of lidar using this synthesised aperture is a Synthetic-Aperture Lidar (SAL). Other
types of this lidar may use multiple physical apertures for either only receiving or for both receiving and
transmitting signals. These lidars, that use multiple apertures, are referred to as Multiple Input, Multiple
Output (MIMO) lidars [2].

2.1.4 Basic Lidar Concepts

One of the first concepts to be introduced is the range resolution,∆R. It can be calculated in accordance
with the following equation

∆R =
c

2B
,

where B is the bandwidth of the system, which can be limited by the transmitter or receiver bandwidth
(limited by the receiver or the electronics) [2]. It represents the minimal angular or linear distance
between the two points that can be detected by the lidar system. This means that as the resolution
increases, the point clouds become denser [1].

Precision represents the repeatability of a measurement. Lower precision sensors produce point
clouds of noisy data, whereas precise sensors produce well-defined points [1].

Accuracy is best defined as the closeness of a measurement to the actual value. Therefore, an
accurate point cloud will be as close as possible to the position of its environment [1].

The Field of View (FoV) is the angle at which a lidar sensor emits its signals, and for a full 3D
representation of the system’s surroundings, lidar sensors must provide both a sufficient vertical FoV
and a full 360◦ Horizontal Field of View (HFoV) [1].

9

Roriz et al. [1] also consider the pulse rate, which can be defined as the rate at which the sensor
measures pulses, as a metric that characterises particularly beam-steering sensors. High pulse rates
usually produce denser point cloud data. Newer systems can also collect multiple returns from the same
laser pulse, allowing for instance the detection of elevated surfaces. The scan rate corresponds to the
time it takes to scan the entire FoV and is directly related to the imaging technique used by the sensor. In
flash lidar systems, this value is often expressed as a frame rate because their operation is very similar
to a standard digital camera: they capture an image with every surface they pass over [1].

2.2 Robot Operating System (ROS)
ROS is a name for a free and open-source software framework used to build robotic systems. Since its
development in 2007 at Stanford Artificial Intelligence Laboratory (SAIL), it has become a widely used
tool in the robotics sector. Thanks to its networked architecture and modular design, ROS makes it
simple to construct complex robotic systems from smaller, reusable components. Additionally, it offers
powerful tools for testing and debugging and supports a variety of hardware [11].

The idea of nodes lies at the core of ROS. Independent programs known as nodes carry out particular
activities and send messages to other nodes to exchange information. A publisher/subscriber (pub/sub)
communication mechanism is available in ROS, in which nodes post messages on particular topics and
subscribe to messages on different topics. As a result, scalable communication between nodes is made
possible, enabling the development of sophisticated robotic systems [11].

In a ROS system, the roscore serves as the primary hub for communication, controlling the many
nodes and offering a standard framework for communication. The roscore offers services including time
synchronisation, message passing between nodes, and node name and registration. Rostopic, a potent
command-line tool offered by ROS, allows users to inspect and modify topics and messages [11].

Two key notions in ROS are publishers and subscribers. Nodes that send messages on a certain
subject are called publishers, while nodes that receive messages on that subject are called subscribers.
Since publishers and subscribers do not need to be aware of each other’s internal state, the pub/sub
model enables decoupling between nodes [11].

Services are another key idea in ROS. Services give nodes a means of sending requests to other
nodes, just like function calls do in conventional programming. The node delivering the service receives
the request, completes the necessary work, and then gives the requesting node a response. Services
are helpful for activities like localisation and mapping because they enable more complicated interactions
between nodes [11].

In addition, ROS offers assistance with simulation and testing, both of which are necessary for
creating sophisticated robotic systems. Without the usage of actual robots, code may be tested and
iterated upon quickly thanks to simulation environments. Rosbag, a potent tool provided by ROS, can
be used to capture and replay data from a ROS system. Rosbags can also be considered as a native
ROS file format for saving data and they can be used to create datasets for machine learning, as well
as for debugging and testing [11].

10

However, for those who are just starting out in robotics development, the complexity of the ROS
system can be difficult. Before beginning to design sophisticated robotic systems, developers may need
to invest a lot of time studying ROS due to its steep learning curve. The performance overhead brought
on by ROS utilisation is another difficulty. Real-time applications may be concerned about the latency
and overhead introduced by the pub/sub communication mechanism utilised in ROS [11].

The sensor_msgs/PointCloud2 message type in ROS is a versatile data structure used for
representing 3D point clouds. It provides a standardised format for capturing and transmitting point
cloud data, making it easier to share and process such information across different ROS nodes and
systems. The PointCloud2 message encapsulates a collection of points, where each point is defined
by its 3D coordinates (x, y, z) and additional optional fields, such as RGB colour information or intensity
values. This message type also supports various data encodings, allowing flexibility in representing
different point cloud representations, such as organised or unorganised point clouds. With its rich
feature set and wide adoption in robotics and perception applications, the PointCloud2 message type
serves as a fundamental building block for many ROS-based point cloud processing tasks, including
mapping, localisation, object recognition, and sensor fusion [11].

To sum up, ROS is an effective and popular framework for creating robot software. Complex robotic
systems can be built on top of it thanks to its distributed and modular architecture, support for a variety
of hardware, and robust testing and debugging tools. The system’s complexity and the performance
overhead connected to its use, however, present difficulties for developers. In general, ROS has the
potential to speed up innovation in the field of robotics and to support the creation of fresh, cutting-edge
robotic systems [11].

2.3 CloudCompare
Cloud Compare is an open-source software, used for point cloud and mesh manipulation, visualisation,
and processing. Due to its stability and possibility to open and export almost any known type of point cloud
format, it is widely used by professionals [12]. Cloud Compare includes many advanced algorithms for
point cloud processing, such as registration, resampling, statistics computation, sensor management,
colour/normal/scalar fields handling and many others [13]. Also, the software architecture is Plug-in
based, which allows for easy integration of new features required by the user [12]. It is available on
Windows, Mac OS and Linux [13].

11

3
State-of-the-Art in SLAM

Contents

3.1 Simultaneous Localisation And Mapping . 13
3.2 Overview of Lidar SLAM Algorithms . 15

12

Since this thesis is heavily focused on SLAM, this chapter gives an introduction to SLAM, some of
the main SLAM types and challenges facing it, as well as its development history.

3.1 Simultaneous Localisation And Mapping
Simultaneous Localisation And Mapping (SLAM) represents a method, commonly used by autonomous
vehicles and robots, to build a map of their environment and to, also, localise themselves in it. The
concept of SLAM algorithms is fairly new, appearing only in the late 1980s [14] and gaining popularity
after being used in DARPA challenges in the 2000s [1]. One of the main issues of SLAM has always
been its need for a lot of computing power and fast results (in dynamic environments), as well as the
price of sensors needed to acquire data for it. Only after vast improvements in computer processing
speed and capacity, as well as a decrease in the price of sensors, such as cameras and lidars, SLAM
has become widely adopted, making its way even into our homes, as a fundamental part of autonomous
vacuum cleaners [14].

Actually, using a robot vacuum cleaner as an example is a great way to explain the difference
between mapping and localisation. Firstly, a robot without any SLAM algorithm would move randomly
throughout the room and use the battery excessively, without any guarantee of cleaning the entire
room. On the other hand, a robot with SLAM capabilities can use the inputs from different sensors to
localise itself and limit the movement needed. Furthermore, it can use the data from the same sensor to
make a map of its surroundings, and thus prevent cleaning the same place twice. This action is called
mapping. SLAM algorithms have many other use cases in addition to robot vacuum cleaners. They are
used for autonomous vehicle navigation, warehouse robots, package delivery drones, and many other
applications.

The general workflow of a SLAM algorithm is shown in Figure 3.1. It can be divided into a sensor-
dependent part and a sensor-independent part. In the sensor-dependent part, also referred to as front-
end processing, motion estimation and obstacle location estimation are performed, while in the sensor-
independent part, also referred to as back-end processing, pose graphs are registered and optimised.
Sensor data is fed to the front-end, where it is processed and fed to the back-end. The output of the
back-end is a Pose graph, as well as a 2D or a 3D point cloud map [15].

Figure 3.1: General SLAM Workflow [15]

13

3.1.1 Types of SLAM

There are two main front-end types of SLAM: vSLAM and lidar SLAM [14]. Given that this thesis is
focused on lidar SLAM, a more detailed overview of different technologies and algorithms used to
achieve it is given in Section 3.2.

VSLAM uses images acquired by cameras to build a map and perform localisation, as explained
by Debeunne and Vivet [14]. These cameras can be either simple cameras, compound eye cameras
(both mono and stereo), or more complex RGB-D cameras. The price of implementing vSLAM is fairly
low because inexpensive cameras can be used. Also, because cameras provide an image with a lot of
information, this method is quite widely adopted for landmark detection. In the event that only a mono
camera is used, determining depth becomes more difficult because there is not enough information in
the image itself; camera information needs to be fused with information from other sensors, for example,
an IMU, which in itself is a totally different challenge [14].

Debeunne and Vivet [14] also explain that the input for lidar SLAM is a 2D or a 3D lidar point cloud.
Compared to the camera, lidar point clouds contain more precise measurements [14], but may lack
sufficient features for detection, making it harder to align point clouds and achieve good SLAM results.
This happens in cases where the environment is not rich with different distinct features. Generally, maps
are made by estimating movement using sequential matching of point clouds. Furthermore, point cloud
matching is computationally challenging, so optimisation is required to make the process faster and
smoother. This is the reason why point clouds are sometimes fused with data from other sensors such
as wheel odometry, IMU, or GNSS data [14].

3.1.2 Challenges Facing SLAM

Although SLAM is a powerful tool used by autonomous robots, it faces three major issues that prevent its
adoption in more general-purpose cases, as summarised in [16]. These issues are: i) the accumulation
of localisation errors; ii) failed localisation causing the loss of position on a map; and iii) the high
computational cost of input data processing.

Accumulation of localisation errors occurs because SLAM algorithms estimate sequential movement
and, in these estimations, some margin of error is present. This error accumulates over time and causes
substantial deviation from actual values. This deviation then causes the map to distort and eventually fail,
making subsequent searches difficult. The way to mitigate this effect is to remember some characteristic
from a previous pose (image or point cloud) as a landmark and search for it in a subsequent pose,
aligning them as best as possible and thus minimising the localisation error [16].

Since image and point cloud mapping does not consider any characteristics of the robot’s movement,
it can lead to discontinuous position estimates (failed localisation) which leads to the loss of the robot’s
position in a map. This problem can be prevented either by using a recovery algorithm or by fusing
the motion model with some other auxiliary sensors. Most common recovery algorithms try to locate a
currently observable landmark in one of the previously visited places. When searching for this landmark
feature, the extraction process needs to be applied in a way that works as fast as possible. On the other
hand, if we want to fuse sensor data with a motion model, we need to use a Kalman filter or some other
type of Bayes filter. Commonly used sensors include IMU, Attitude and Heading Reference System
(AHRS), Inertial Navigation System (INS), and encoders attached to wheels for odometry [16].

14

The computational cost is always a problem when implementing SLAM algorithms in a vehicle or a
robot. The reason is that the hardware in these cases is usually not that powerful since it needs to be
compact and have low energy consumption. However, to achieve localisation, it is essential to achieve
point cloud matching and image processing at a high frequency. Furthermore, optimisation algorithms,
such as loop-closure, require a lot of computation power. The solution to these problems is to run some
of the processes, such as feature extraction, in parallel threads [16].

3.2 Overview of Lidar SLAM Algorithms
This section introduces SLAM technologies that are usually paired with a lidar as a sensor, as well as
some challenges they face. Visual SLAM techniques will not be considered, as they are outside of the
scope of this thesis.

Besides the general SLAM challenges introduced in Section 3.1.2, lidar SLAM faces additional
challenges, such as the large amount of computational power required to process large lidar point
clouds, sparse point clouds (sparsity increases with the range to target), and motion distortion [17].
Some of the problems mentioned earlier in this section are addressed with solutions in Section 3.1.2.
However, in this section, algorithms that propose different approaches to tackle these problems, are
introduced.

Yang et al. [17] explain that lidar SLAM is used for the construction of outdoor and indoor maps.
When it comes to outdoor environments, the application generally is in the field of autonomous vehicles,
drones, etc. Usually, they benefit from high precision localisation and mapping using GNSS, but in cases
when the GNSS signal becomes weak or is lost completely, they rely on lidar based SLAM to localise
themselves and build a map of the environment. In these cases, the lidar data can be fused with the
data from other sensors to achieve higher precision or faster SLAM. One of these sensors is the IMU,
which provides the sensor carrier positions, which are fused with the point clouds to greatly improve the
accuracy and speed of obtaining the 3D map. This improvement is present because, in the case where
no IMU is used, the initial value of the pose transformation is unknown in subsequent poses, resulting in
more required iterations and thus a longer time to obtain a map [17].

Some simple mobile robotics applications can be satisfied using 2D SLAM, but autonomous vehicles
require 3D SLAM, i.e., high safety requirements, complex road conditions and undulations on the road
topography, etc. dictate that autonomous vehicles need to be positioned in 3D maps. 3D lidar SLAM
technology is still in development and is still trying to solve the issues mentioned above. Currently, the
main efforts are focused on improving robustness, precision, and real-time capabilities [17].

Since its invention in the 1980s, the development of SLAM technology has been closely tied with the
development of sensors it uses to gather data, as well as the development of probabilistic and nonlinear
optimisation methods it relies on. Lidar SLAM algorithms can be divided into two groups: i) probabilistic
based SLAM scheme; and ii) SLAM scheme based on nonlinear least squares [17]. An overview of the
history and algorithms of both schemes is given in the following sections. Only standalone lidar-based
SLAM algorithms are listed, i.e., if an algorithm requires any other input sensor (mono camera, stereo
camera, depth camera, etc.) in addition to lidar, IMU, and GNSS, it is not listed. Most of the overview is
based on the work of Yang et al. [17], where the history of SLAM methods is nicely summarised.

15

3.2.1 Probabilistic-based SLAM Scheme

Bailey and Durrant-Whyte [18] summarised, in 2006, the development of SLAM technologies from its
infancy in the 1980s up to 2006. They found that probabilistic methods were used and identified two
predominant ones, Extended Kalman Filter SLAM (EKF-SLAM) and Fast SLAM. Both methods are using
Lie algebra to express SLAM in 3D space [17].

After 2007, according to [17], representative SLAM schemes based on probabilistic methods have
been used. Two methods using 1D lidar have been proposed. Grisetti et al. [19] used an improved Rao-
Blackwellized particle filter method that reduced the number of sampled points during robot localisation
and grid map construction. Similarly, Kohlbrecher et al. [20] used a motion estimation method for
point scanning and local raster map registration, combining it with 3D navigation equipment, in order to
complete localisation and raster map construction.

Yang et al. [17] conclude that, in general, probabilistic SLAM methods are computationally inefficient
because they maintain a state matrix that grows over time. Also, there is no possibility of eliminating
the cumulative error or performing closed-loop detection. However, these limitations do not mean that
the development of this type of SLAM algorithms has completely stopped. The Extended Kalman Filter
(EKF), still, has its use cases in new algorithms being developed, as recently as 2022, which is the
case with the Simultaneous Localization, Mapping, and Moving Object Tracking (SLAMMOT) algorithm,
developed by Simas et al. [21].

3.2.2 SLAM Scheme Based on Nonlinear Least Squares

SLAM based on the nonlinear least squares method gained momentum after 2012, as indicated in
[17]. That year researchers discovered that using this method to reduce SLAM process error is sparse,
the number of needed calculations is acceptable, and the SLAM problem in graph form becomes
very intuitive. After this discovery, many lidar SLAM methods based on nonlinear least squares were
proposed.

Figure 3.2 shows the classical framework of these methods, and the framework consists of 3 distinct
parts. The first part is called the front-end and deals with the estimation of the position and the orientation
of the sensor carrier in accordance with the real-time sensor data. It is reliant on the frame-to-frame
registration method, and it constructs a graph model of constraints between frames received as an output
of the frame-to-frame registration method. Currently, registration is performed between two frames and
is accepted if the error is below a certain threshold, which leads to an accumulation of the pose error
which grows exponentially and needs to be corrected from time to time. The second part is called the
back-end and it deals with optimisation, while the third part is called closed-loop detection [17].

Figure 3.2: Framework of SLAM methods based on nonlinear least squares [17]

16

Yang et al. mention [17] that Iterative Closest Point (ICP) is the most classic algorithm proposed at
this time. It associates data between two point clouds by searching for the nearest point, most often
in a k-dimensional tree [22]. ICP, firstly, organises point cloud data, that accelerates the search [23],
and then minimises the distance between two point clouds by using nonlinear optimisation techniques
to solve the pose estimation problem. Generalised ICP (GICP) [24] is the mainstream variant of ICP
methods. It combines the point-to-surface ICP method with the original ICP algorithm, thus making it a
planar-to-planar ICP method [17].

After ICPmethods, a newmethod called LOAM is introduced. It is a lidar-based 3D odometry scheme,
proposed by Zhang and Singh [25]. It estimates inter-frame motion and the pose transformation between
frames using point-to-surface and point-to-line ICP algorithms. LOAM makes the usage of descriptors
redundant, making LOAM simpler and more efficient. Descriptors are replaced by edges and plane
points that are registered in each frame of a point cloud. The k-dimensional tree is used to organise
the point cloud and to complete the nearest neighbour search. If we assume uniform motion for a short
period of time, then the interframe motion can be estimated by the ICP algorithm, and the point cloud
motion distortion correction is completed by the result [17].

Alongside LOAM a set of methods based on Normal Distributions Transform (NDT) is covered by
Yang et al. [17], most of them not using closed-loop detection. The method using a normal distribution
based on NDT, along with a 1D lidar to divide a frame of point clouds obtained by lidar into 2D grids,
assuming each grid, was proposed by Biber and Strasser [26]. Points inside the grid obey the rules
of the normal distribution, also the mean and covariance matrices of point coordinates in each grid
are counted. To represent the points in the first grid, a normal distribution is used, while the points in
the frame point cloud are obtained by transforming them using the initial pose transformation estimate.
Afterwards, the probability density values of each normal distribution are calculated, summed, and used
as criteria to determine the registration result. Pose transformation is solved using nonlinear optimisation
methods [27]. Using the NDT methods for 3D lidar point clouds was first proposed by Magnusson et al.
[28]. They used the same evaluation criteria as 2D NDT. Only in 2012, Stoyanov et al. [29] proposed
to represent the entire point cloud as a normal distribution model during the registration process. This
meant that a lot of storage space was saved by describing the entire frame with a normal distribution.
The registration process called Distributions to Distributions Normal Distributions Transform (D2D-NDT),
evaluates whether the two frames, represented with normal distribution, are similar and estimates the
pose transformation matrix between them. The drawback of both D2D-NDT and a mapping method
called NDT Fusion [30], even though they can be applied to large-scale dynamic environments, is the
fact that neither of them uses closed-loop detection. Droeschel et al. [31] tried improving the previous
methods by recording the normal distribution in a grid as a surface element (surfel) called a bin. They also
divided the grid maps into multiple resolutions, depending on the distance between the selected points
and the lidar itself. This made the algorithm useful to track the rapid movement of drones; however, it
still lacks a closed-loop detection feature and there is no way to eliminate the cumulative error [17].

Afterwards, Droeschel and Behnke [32], expanded on their previous registration method and
combined it with the continuous-time trajectory estimation method. This, new, SLAM algorithm uses
a 3D method to interpolate the pose. Furthermore, hierarchical optimisation of the pose map offers
improvement to the correction of point cloud motion distortion. It even has a closed-loop detection,
based on D2D-NDT performed on randomly selected frames [17].

17

The next milestone highlighted by Yang et al. [17] happened in 2018. This year saw a new SLAM
scheme using 3D lidar data, called SuMa, be proposed by Behley and Stachniss [33]. Similarly to
previous algorithms, it also uses surfel based map representation and solves the pose transformation
matrix using ICP algorithm. The difference is that it uses a library called OpenGL to render point clouds.
Furthermore, its closed-loop detection feature is very robust, so it even allows the virtualisation of maps
that have only small overlapping regions between the point cloud and the map itself [17].

Another closed-loop detection method is covered in [17]. It is based on the branch and bound
algorithm and was proposed by Hess et al. [34]. It searches for a point cloud and a sub-score in the
pose space by introducing a small discrete pose space in the vicinity of the current pose estimate.
If this pose value exists, it is used as the initial value. New pose transformations are still estimated
with front-end estimation methods and are used as closed-loop detection constraints. This method is
quite simple, which makes it useful in real-time applications; however, a drawback, is that when the
accumulated error is higher than the distance threshold, closed-loop detection fails [17].

The three previously mentioned algorithms all use closed-loop detection methods based on geometric
relationships. However, as stated in [17], in the field of vSLAM, contemporary closed-loop detection
methods all use the bag of words model [35]. This model originated in 2D image comparison and it
basically treats image features as words and uses those words to match features between different
images. The same approach is nowadays used in vSLAM. This prompted Steder et al. [36] to propose
an algorithm that detects closed loops in a 3D point cloud by combining the bag of words model with the
point cloud features. Later, a closed-loop detection method based on 3D point cloud object segmentation
SegMatch was proposed by Dube et al. [37]. It combines the advantages of global and local point cloud
features to allow reliable operation in large-scale, unstructured environments with a rate of change up
to 1Hz [17].

Ultimately Yang et al. [17] mention that, in 2018, a new map representation method called SegMap
was introduced by Dube et al. [38]. Alongside it, a positioning method that is based on incremental point
cloud segmentation in the point cloud itself was proposed [39]. SegMap method extracts point cloud
features using descriptors that are created with the help of machine learning algorithms. Afterwards,
these feature points are used to make a point cloud map, which is the main input for the segmentation-
based incremental positioning method. The operating frequency of this algorithm is 1Hz, which means
it has somewhat solved the slow operating speed issue, that the previous algorithms faced [17].

The year 2020 saw the introduction of a new SLAM algorithm called LIO-SAM, proposed by Shan
et al. [6]. LIO-SAM allows the usage of data from other sensors such as IMU and GNSS alongside
lidar point clouds to enhance the accuracy of the constructed map. It also supports loop-closure. The
algorithm also focuses heavily on real-time performance, which is enhanced by marginalising old lidar
scans for pose estimation, rather than matching lidar scans to a global map. This local-scale scan
matching gives this algorithm high performance and makes it suitable for real-time usage [6].

18

Near the end of 2022, Vizzo et al. [40] introduced a new SLAM algorithm that, again, focuses on
the basics, which is ICP. Keep It Small and Simple ICP (KISS-ICP), unlike other state-of-the-art SLAM
algorithms, removes complexity in the motion estimation process and reduces the types of required
input data to only lidar point clouds. This simplification yields an algorithm that is simple to use and
can operate under various environmental conditions and using multiple types of lidar sensors. Pose
estimation of KISS-ICP relies on point-to-point ICP that is combined with adaptive thresholding for
matching correspondences, a simple motion compensation approach, a robust kernel and a strategy
for point cloud sampling. All of this combined gives an algorithm with only a few parameters, that in most
cases do not even need to be tuned for different lidar sensors and applications [40].

19

4
Problem Statement

20

This thesis aims to provide an alternative to TLSs when it comes to producing comprehensive 3D lidar
point cloud maps of larger areas. An alternative is needed, because TLSs need to be fully stationary for
a longer period of time, up to a few dozen minutes, in order to complete the measurement process, which
is virtually impossible in marine environments. Although this thesis is focused on marine applications, it
is not restricted to them, thus other use cases, besides the marine one, will be considered. The aim is to
use Automotive lidar to capture 3D point clouds of the environment as it moves through it, and a SLAM
algorithm to produce a 3D map of the said environment.

Regarding the point cloud capturing aspect, it is outside of the scope of this thesis because the setup,
named MOLISENS, was already developed and tested, as explained in [5]. A detailed explanation of
the MOLISENS setup is provided in Section 5.1.

Therefore, the real focus of this thesis is on the creation of the 3D lidar point cloud map and its
evaluation. This is a multi-step process that involves solving several issues.

The first problem to solve involves gathering the datasets that are suitable to test different SLAM
algorithms in multiple circumstances. Such datasets include marine datasets and land-based datasets.
More about the datasets used is mentioned in Chapter 5.

After the datasets have been created, suitable SLAM algorithms need to be chosen. The choice
depends on multiple factors, but the main criterion is that it is capable of outputting a 3D point cloud
map. Also in the selection, algorithms using multiple different SLAM methods are tested with the aim of
finding the one that suits the mapping needs the best. Another criterion for the choice of the algorithms
is the fact that they need to be compatible with the post-processing setup, i.e. the laptop used for the
SLAM 3D map generation. This setup is introduced in Section 5.1.5. The SLAM algorithms, that were
chosen, are introduced in Section 6.4.

Once the maps are created, another problem to solve is to find a way to compare the results. This
problem is divided into two different ones. Since some of the datasets have a reference 3D map to
compare the SLAM results to, a SLAM map accuracy measurement needs to be chosen. Furthermore,
this can not be the only criterion, so some other criteria are also introduced. These other criteria are
mainly based on the SLAM algorithms’ computational requirements, as well as the goodness of the
created 3D map. These criteria are introduced in Sections 6.1 and 6.3.

In the end, an attempt to improve the accuracy and/or the computational performance of the ”winning”
SLAM algorithm needs to be performed. This includes analysing the core concept of the algorithm and
then, suggesting and trying methods of improving the performance. This is introduced in more detail in
Section 6.5.

21

5
Data acquisition and analysis

Contents

5.1 Experimental Setup . 23
5.2 Data Gathering Process . 29
5.3 Data Post-processing . 31
5.4 Datasets . 32

22

This chapter introduces the tools used in the process of gathering data, the process itself, as well as
the datasets that have been gathered and are used, in this thesis. In Section 5.1 the architecture of the
MOLISENS setup, both hardware and software aspects, is introduced. Also, some features of the TLS
Riegl VZ-6000 are mentioned. Section 5.2 describes the process of gathering the data, while Section
5.3 explains what tasks need to be performed in order to prepare the raw data for processing. Finally,
Section 5.4 briefly explains the specifics of each dataset used in this thesis.

5.1 Experimental Setup
Creators of MOLISENS, Goelles et.al [5], explain that it is a modular framework that allows the integration
of small industrial sensors, such as lidars, radars and cameras, that support ROS framework, into a
single sensor unit. The MOLISENS hardware setup follows Ingress Protection (IP) standards for small
industrial sensors, for example, Ouster OS2-64 lidar has IP class of 69K with the Input/Output (I/O)
cable attached [41]. This makes the MOLISENS setup suitable for fieldwork in rougher environments.
Figure 5.1 shows the hardware components and basic operation of MOLISENS. Sensors and the data
logger are connected by an in-house developed wire harness, which eliminates the need to have multiple
wired connections. MOLISENS can be powered by either an Alternating Current/Direct Current (AC/DC)
adaptor or by batteries, depending on the application conditions. The sensor unit scans the environment
and transmits the data to the data logger where it is saved. These data can later be downloaded using a
Local Area Network (LAN) interface for further post-processing on a computer. Post-processing, usually,
can be done in multiple ways. The first way includes running a SLAM algorithm to create a 3D map and
then processing the created 3D map with Cloud Compare software [5]. Alternatively, the raw sequence
of point clouds can be replayed in the order it was recorded using ROS, or the raw data can be analysed
using pointcloudset. It is a Python package that extracts and packages useful data from the raw lidar
data [42].

Figure 5.1: MOLISENS hardware components and basic operating principle [5]

Goelles et.al [5] later clarify that raw lidar data contains, besides the x, y, and z coordinates of each
point in a 3D point cloud, also, range, intensity, reflectivity, ambient near-infrared, and timestamp for each
point. This leads to data set sizes in the order of gigabytes, in the form of 3D point clouds recorded over
time. This makes pointcloudset package needed to organise the data. It organises the raw data into a
pointcloudset data set. This data set contains multiple PointCloud objects, timestamps and metadata.
Furthermore, pointcloudset has the ability to analyse the data and compute statistics, and even process
each individual point cloud [5].

23

5.1.1 MOLISENS Hardware

This section introduces all the individual hardware components of the MOLISENS setup. The sensor
unit, with all the currently available sensors, data logger, and power supply systems are explained.

Sensor unit

The sensor unit of the MOLISENS setup contains 3 different sensors. It incorporates a small industrial
lidar sensor Ouster OS1-64 or OS2-64, ANN-MB series ublox active multi-band GNSS antenna, and a
9-axis Xsens MTi 630 IMU. The sensor unit can be mounted on any standard camera handle or tripod,
because it is equipped with a standard 1

4
in camera thread [5].

According to its datasheet [43], Xsens MTi 630 is an AHRS, an advanced version of an IMU, that
provides referenced inertial data as well as roll, pitch, and yaw data. MTi 630 contains a 3-axis gyroscope,
a 3-axis magnetometer, and a 3-axis accelerometer, a barometer, a high accuracy crystal oscillator, and
a low power Micro Controller Unit (MCU). MTi 630 fuses the data of all the sensors at a high frequency
and produces a real-time stream of devices’ 3D orientation data at rates up to 400Hz. The device
supports three communication protocols, RS232, CAN, and UART. If Universal Serial Bus (USB) is
needed UART/RS323 to USB converters are available. Figure 5.2 shows the external look of the sensor
[43].

Figure 5.2: Xsens MTi 630 9-axis IMU [43]

A GNSS antenna is used to amplify the received signal that is transmitted by GNSS satellites.
This signal contains the required data to perform accurate localisation of the receiving sensor using
triangulation. Datasheet [44] of the ANN-MB series ublox antenna, chosen for MOLISENS, works
with multiple GNSS services, such as Global Positioning System (GPS), GLObalnaya NAvigazionnaya
Sputnikovaya Sistema (GLONASS), Galileo, and BeiDou. The antenna provides the amplification gain
of 28±3.0dB. This antenna has an IP class of 67, it is waterproof, and can operate in temperatures from
−40 to 85 ◦C. Furthermore, it is lightweight, weighing at only 173g, and offers versatile mounting and
connecting options. Figure 5.3 depicts this ublox antenna [44]. This antenna is coupled with the Long
Term Evolution (LTE) stick that is used to retrieve Real Time Kinematics (RTK) data [5]. The connection
between them is explained in Section 5.1.2

Figure 5.3: ANN-MB series ublox GNSS antenna [44]

24

MOLISENS uses both Ouster OS1-64 and OS2-64 lidars. However, since OS1-64 has been
explained in detail by Goelles et al. [5], this paragraph focuses on the Ouster OS2-64. It is a mechanical
rotating lidar, which was originally intended for usage in the automotive industry and costs around
21 000 €. According to the datasheet [41], even with the I/O cable, it is dust and waterproof, which is
guaranteed by its IP level of IP69K. OS2-64 is a long-range lidar with a maximum operating distance
of up to 210m and a minimum detection distance of 1m. The wavelength of the laser is 865nm and
its eye safety class is 1, according to IEC/EN 60825-1:2014, which makes it safe to operate without
any concerns regarding the eye safety of the operator or anyone else within the operating range. The
range resolution of this sensor is 0.3 cm, which means it can detect individual objects when the distance
between them, in the scanning direction, is equal to or greater than 0.3 cm. The range accuracy is±10 cm
for retroreflectors and ±3 cm for Lambertian targets. The precision of OS2-64 depends on the range and
varies between±2.5 cm and±8 cm. The horizontal resolution is configurable and can be either 512, 1024
or 2048 scanning points across the entire horizontal FoV of 360 ◦. The vertical resolution depends on the
variant of the sensor and can be either 32, 64 or 128 scanning points across the entire 22.5 ◦ (−11.25 ◦

to −11.25 ◦) of the vertical FoV. Both vertical and horizontal angular sampling accuracy is ±0.01 ◦, while
the rotation rate of the entire sensor can be configured to be either 10Hz or 20Hz. Ouster OS2-64 is
shown in Figure 5.4 [41].

Figure 5.4: Ouster OS2-64 lidar [41]

Data logger

As stated by Goelles et.al [5], the data logger consists of a Raspberry Pi 4 as a processing unit, three
Raspberry Pi Hardware Attached on Tops (HATs), an LTE stick for retrieving RTK data, an Ouster
interface board for transferring data and powering the Ouster OS2-64 lidar, and two Direct Current/Direct
Current (DC/DC) converters. One is a 24V/24V converter and the other one is a 24V/5V used for internal
power supply. The first HAT has a Real Time Clock (RTC), the second one has 1TB Solid State Drive
(SSD) for saving data, and the third one is a Raspberry Pi HAT for GNSS. The data logger unit provides
a multitude of different interfaces for connecting it with different apparatus. It has a connection for the
setup’s power supply, a 24-pin connector for the Ouster power supply and data link, a USB connector for
the IMU, a Sub-Miniature A (SMA) connector to connect GNSS, a Registered Jack 45 (RJ45) connector
for an Ethernet connection, and a generic multipurpose USB jack. Alongside all these connectors, the
data logger also has an on/off button, two red coloured buttons for selecting the measuring mode, and a
green button to start or stop the measurement. It is also equipped with an Organic Light-Emitting Diode
(OLED) display, that shows the file name of the current measurement, as well as the status of the LTE
connection and the selected measurement mode. The aluminium casing of the data logger provides
sufficient protection and cooling to the aforementioned hardware components [5].

25

Power supply

MOLISENS setup can be powered by either a 24V nominal voltage AC/DC adaptor, or by batteries, as
explained in [5]. Usually, batteries are used during the survey, because they provide more mobility and
freedom, and later, while transferring the data from MOLISENS to the computer for further processing,
the adaptor is used. In the current sensor unit and data logger composition, MOLISENS draws around
1A of current while the data, of all three sensors, are recorded. There are two different battery packs
that can be used at the moment. The first one is a single Li-ion battery with a capacity of 10.4Ah, which
gives an operating time of 10.4h. The other is a parallel connection of 2 LiFePO4 batteries with 3.6Ah
capacity each. It gives the battery pack capacity of 7.2Ah, or the operating time of 7.2h. The operating
temperature for discharging the battery pack is in the same range for both battery packs (−20 to 60 ◦C)
[5].

5.1.2 MOLISENS Software

Figure 5.5 shows the software stack of theMOLISENS data logger. The Operating System (OS), installed
on the Raspberry Pi 4, is an Ubuntu Server 20.04 ARM64. Raspbian, the native Raspberry Pi OS, was
replaced because ROS integration is easier with Ubuntu.

Figure 5.5: Software stack of the data logger (adapted from Goelles et al. [5])

As stated in Section 2.2, as well as in [11], ROS is an open-source middleware, mainly used for
robotic applications. The main advantage of ROS is a wide range of third-party, open-source packages,
and tools for a variety of different applications. In ROS, a master, named roscore, controls all nodes
running in the system. Each node, an entity that performs tasks, can exchange data with other nodes
by subscribing or publishing messages using topics. A topic is a communication channel defined by a
unique name and the specific type of message being transferred. Writing code in ROS is possible in
many different programming languages. At the moment ROS supports C++, C, and Python [11].

The MOLISENS specific packages installed on the Raspberry Pi 4 are: i) data recording package; ii)
lidar ROS driver package; iii) IMU ROS driver package; and iv) GNSS ROS driver package. The data
recording package and the GNSS ROS driver package are self-developed by the creators of MOLISENS
[5].

Lidar sensor package uses the ROS package provided by the manufacturer of the sensor. The
software package processes data from the sensor and converts it into a point cloud representation. It also
includes tools to visualize the output and verify that the sensor is accurately capturing the environment
and check the light intensity of the points. However, due to the limitations in the computational power of
the Raspberry Pi, only raw lidar data are recorded. These data are recorded as a custom ROS message
[5]. More details about the exact message type the data are saved in, as well as the way to convert it to
a more standard message type are provided in sections 5.2 and 5.3.

26

IMU sensor package, also uses the ROS package provided by the manufacturer of the sensor. Some
modifications aremade to the configuration and topic selection tomake it work with the MOLISENS setup.
All of the unneeded topics are omitted, in order to increase the system’s performance [5].

The data recording package is a ROS package, coded in Python, that provides an easy interface to
start and stop the data recording, as well as a flexible configuration for the specific requirements of the
use case. It allows the user to select the sampling rate of either 10Hz, or 20Hz for the Ouster OS1-64,
or the Ouster OS2-64 lidar, and the number of points in the horizontal direction of either 512, 1024, or
2048, using the previously mentioned red coloured buttons on the Data logger case. The IMU data are
recorded with the frequency of 200Hz, while GNSS data with the frequency of 1Hz. All messages from
specified topics are recorded and saved as a time-synchronous rosbag file. This rosbag file can later be
used as an input to a SLAM algorithm that generates 3D maps of the surveyed areas [5].

GNSS sensor package is another ROS package, coded in Python, that is used to retrieve National
Marine Electronics Association (NMEA) messages from the ublox GNSSmodule. Through the integrated
Networked Transport of RTCM via Internet Protocol (NTRIP) client, this driver can also receive correction
data from Radio Technical Commission for Maritime (RTCM) messages. Using this NTRIP client,
correction data from external services are included in the GNSS module to improve measurement
accuracy. The application of these correction data is known as GNSS RTK. When the signal from the
satellites is clear and the base station from the correction data service is not far away, i.e., less than 10 km
from the GNSS module, the precision error is less than 2.5 cm with fixed RTK. When the conditions are
not ideal, the module can still achieve a precision of 10− 45 cm, using RTK float [5].

5.1.3 Riegl VZ-6000

Based on Riegl’s exclusive V-Line technology, the 3D VZ-6000 TLS provides unmatched long-range
reflectorless measurement performance of more than 6000m. This scanner works well even in difficult
circumstances, like reduced vision brought on by haze, rain, snow, or dust, making it a good choice for
measuring snowy and icy terrains. The reason for such good performance in snowy and icy terrain is the
fact that the laser wavelength is 1064nm, which is hardly absorbed by snow. The scanner can be used
in several different ways, such as standalone mode with a touchscreen interface, remote control using
VNC Viewer on a tablet or mobile device, or customised mode with third-party tools based on Riegl’s
interfaces and scanner libraries [45]. Figure 5.6 shows the external look of the Riegl VZ-6000.

Figure 5.6: Riegl VZ-6000 TLS [45]

27

The scanner is equipped with a number of noteworthy features, such as a broad FoV of 60 ◦ (vertical)
by 360 ◦ (horizontal), high-speed data collecting of up to 222,000 measurements per second, high
accuracy and precision ranging based on echo digitization and online waveform processing, and the
capacity to track numerous targets. Additionally, it has improved camera choices, a built-in calibrated
digital camera, onboard inclination sensors, an integrated compass, an optional waveform data output,
an integrated L1 GNSS receiver with an antenna, and a small and durable build [45].

Topography and mining, glacier mapping, snow field monitoring, long-range monitoring, civil
engineering, and archaeology are some typical uses for the 3DVZ-6000 TLS. The Riegl VZ-6000 scanner
is an invaluable tool for a variety of applications that call for accurate and dependable 3D measurements
in a variety of settings due to its greater measuring range, ability to function in difficult circumstances,
and advanced capabilities. When it is combined with the Riegl software package, called RISCAN PRO,
it can output accurate 3D point cloud maps that can be used as ground truth data for other measurement
techniques [45].

5.1.4 Ouster Lidars and Riegl VZ-6000 Comparison

Table 5.1 shows a direct comparison between the VZ-6000 TLS and two lidars used in this thesis, OS1-64
and OS2-64. After analysing the values, it is quite clear that the Ouster lidars are much more robust and
mobile, but lack in terms of accuracy compared to the Riegl. This justifies the intention to use the Riegl
VZ-6000 for creating a reference dataset, as is explained in section 5.2.

Parameter Riegl VZ-6000 Ouster OS1 - 64 (Gen 6) Ouster OS2 - 64 (Gen 6)
Price 160,000 € 10,000 € 21,000 €

Range

5m - 6000m (R ≥ 90%, 50 kHz PRR)
5m - 4200m (R ≥ 90%, 150 kHz PRR)
5m - 3300m (R ≥ 90%, 300 kHz PRR)
5m - 3600m (R ≥ 20%, 50 kHz PRR)
5m - 2400m (R ≥ 20%, 150 kHz PRR)
5m - 1800m (R ≥ 20%, 300 kHz PRR)

0.3m - 100m (R = 80 %, > 0.9 DP)
0.3m - 120m (R = 80 %, > 0.5 DP)
0.3m - 45m (R = 10 %, > 0.9 DP)
0.3m - 55m (R = 10 %, > 0.5 DP)

1m - 210m (R = 80 %, > 0.9 DP)
1m - 240m (R = 80 %, > 0.5 DP)
1m - 80m (R = 10 %, > 0.9 DP)
1m - 100m (R = 10 %, > 0.5 DP)

Range Accuracy 15 mm 30 mm (for Lambertian targets)
100 mm (for retroreflectors)

30 mm (for Lambertian targets)
100 mm (for retroreflectors)

Range Precision 10 mm 0.7 cm - 5 cm dependent on distance 2.5 cm - 8 cm dependent on distance
Vertical FoV 60° 45° 22.5°
Horizontal FoV 360° 360° 360°
Minimum Range 5 m 0.3m 1 m
Maximum Range 6000 m 120 m 240 m

Max. measurement rate (pts/s)
37,000 (50 kHz PRR)
113,000 (150 kHz PRR)
222,000 (300 kHz PRR)

1.310.720 1.310.720

Laser Wavelenght 1064 nm 865 nm 865 nm
Beam divergence 0.006875° 0.18° 0.09°

Beam diameter (range)

15mm (0 m)
60mm (500m)
120mm (1000m)
240mm (2000m)

9.5mm (0 m) 19mm (0 m)

Angular step width vertical (θ) 0.002° ≤ ∆θ ≤ 0.280° 0.7 ° at 64 channels 0.35 ° at 64 channels

Angular step width horizontal (φ) 0.002° ≤ ∆φ ≤ 3°
0.176° (2048 pts)
0.35° (1024 pts)
0.7° (512 pts)

0.176° (2048 pts)
0.35° (1024 pts)
0.7° (512 pts)

Weight 14.5 kg 0.377 kg 1.1 kg
Dimensions 248 x 226 x 450 mm Diameter: 85 mm; h: 58.35 mm Diameter: 119.6 mm; h: 98.9 mm
Power supply 11 - 32V DC / 75W – 90W 22 – 26V DC; 24V nominal 22 – 26V DC; 24V nominal
Eye Safety Class Class 3B Class 1 Class 1
User Interface 7” VWGA Touch-Display external computer needed external computer needed
GNSS Receiver integrated not integrated not integrated
Compass integrated not integrated not integrated
Camera SMP campera integrated not integrated not integrated
Data storage and transfer Integrated SSD No storage built in No storage built in
Peak operating temperatures 0°C to + 40 °C -40°C (OS1 cold start) to + 60°C -40°C (OS2 cold start) to + 64°C
IP Level IP 64 IP 68 IP 68

Shock not specified IEC 60068-2-27:
100 g, 3 shocks x 6 directions

IEC 60068-2-27:
25 g, 400 shocks x 6 directions

Vibration not specified IEC 60068-2-64:
3 Grms, 3 axes x 8 h duration

IEC 60068-2-64:
2 Grms, 3 axes x 8 h duration

Table 5.1: Comparison of automotive lidars Ouster OS1-64, OS2-64 and TLS Riegl VZ-6000 (from OS1
datasheet [46], OS2 datasheet [41] and VZ-6000 datasheet [45]), R = reflectance, DP = detection

probability, PRR = pulse repetition rate (adapted from Hammer [47])

28

5.1.5 Post-processing Setup

All data post-processing, as well as the creation of 3D point cloud SLAMmaps, is performed on the same
Dell Inspiron 14 5000 laptop that was bought in May 2020. Hardware specifications of the laptop are the
following:

• Central Processing Unit (CPU): Intel Core i7-10510U CPU with the clock speed of 1.80GHz

• Random Access Memory (RAM): 20GB DDR4

• Graphics Processing Unit (GPU): NVIDIA GeForce MX230 with 2GB of dedicated GDDR5 RAM

• Internal storage: PC SN740 NVMe WD SSD with 512GB of storage capacity

On this laptop, Ubuntu 20.05 Long Term Support (LTS) (Focal Fossa) is installed. It is coupled with
ROS Noetic Desktop Full version. This combination is chosen because Focal Fossa is the last version
of Ubuntu that supports ROS Noetic, which, itself, is the final version of ROS. Furthermore, this setup
offers the ability to, later, upgrade from ROS to ROS2.

All of the operations performed on the data, both post-processing and SLAM algorithm runs, are
performed under the same conditions, i.e. the only programs running on the computer are the algorithms
for data processing. No other applications and programs are running in the background. This is done to
ensure fair and equal testing conditions for each of the individual SLAM algorithms tested.

5.2 Data Gathering Process
The data gathering process on the survey site can be divided into two different parts. The first part
consists of gathering the ”ground truth” dataset, using the Riegl VZ-6000 TLS, and the second part is
making the ”working” dataset, using the MOLISENS setup.

5.2.1 Cretaing the ”Ground Truth” Dataset

Firstly, the Riegl tripod needs to be positioned on the surveying location and the VZ-6000 needs to be
mounted onto it. The next step is to ensure that the TLS is level with the ground and to connect the power
source and power it on. Once it is powered on, the scanner itself needs to be positioned as desired, the
FoV and both angular resolutions need to be adjusted so that the features that need to be captured are
inside the scanner’s FoV. The scanning itself can last from a few minutes up to a few dozen minutes,
depending on the level of detail of the scene captured, as well as the chosen scanning settings. It is
important to note that nobody should look into the laser opening of the scanner during the operation, as
it can cause permanent eye damage.

After the scanning is done, the created files can be transferred from the Riegl VZ-6000 to a portable
USB memory stick and then post-processed. The post-processing is done on a Laptop that has RISCAN
PRO software already installed. The data created by VZ-6000 are uploaded to the software, which is
then used to create a full 3D point cloud map in the desired format. This map can be later processed
in some other point cloud processing software such as Open 3D or Cloud Compare. Figure 5.7 shows
how the Riegl VZ-6000 is used to capture a 3D point cloud map of the landscape.

29

Figure 5.7: Riegl VZ-6000 TLS in the field - Sonnblick Observatory

Additionally, in case accurate georeferencing of the 3D point cloud map or alignment between two
different point cloud maps is required, retroreflective targets can be placed inside the surveyed area.
The placement of targets should be such that they offer extra features in places that are not rich in
natural features (trees, buildings, vehicles, etc.). Also, it should be avoided to place the targets in a
straight line, as well as that the targets are obscured by some other features. It should be noted that the
Ouster OS2-64 has a reduced range accuracy when measuring retroreflective targets, as mentioned in
Section 5.1.1. The targets are made from a plastic drainage pipe that is wrapped with a retroreflective
foil. The outer diameter of the pipe is 110mm and the length of the target is 100mm. Figure 5.8 shows
the reflective target in the field during a survey.

Figure 5.8: Reflective target in the field - Sonnblick Observatory

5.2.2 Creating the ”Working” Dataset

The ”working” dataset is created using the MOLISENS setup. The first step is to position the reflective
targets at desired locations, if they are required. Afterwards, the MOLISENS itself needs to be set up. It
is important that it is safely secured to the vehicle it is being transported on. Figure 5.9 shows how the
MOLISENS sensors are set up on a gondola during our expedition to the Sonnblick Observatory. In this
case, the Data logger and the Power supply are positioned inside the gondola.

30

Figure 5.9: MOLISENS setup on a gondola - Sonnblick Observatory

After the MOLISENS system has been properly positioned, it is time to check that all the software
functionalities operate properly. This is done by testing each feature individually using the laptop that is
connected to the Raspberry Pi 4 of the Data logger. Upon ensuring the satisfactory functionality of all
components, the commencement of the surveying process may ensue.

Prior to commencement, it is imperative to activate the system and carefully determine the rotation
frequency and horizontal resolution of the Ouster OS2-64. Once that is selected, the survey can start. All
the data are saved in a rosbag file. Once the survey is completed, the data recording is stopped and the
finalised rosbag file, containing all the data, can be transferred to a computer for later post-processing.
It is important to note that due to the extremely big difference in the size of the bag files (2-5 times), lidar
data are saved in a custom Ouster message format (ouster_ros/PacketMsg) instead of the standard 3D
point cloud message format (sensor_msgs/PointCloud2). Later, in the Data post-processing step, which
is explained in Section 5.3, lidar data are converted into the standard format.

5.3 Data Post-processing
Since the lidar point clouds are not saved in their standard format (sensor_msgs/PointCloud2), they
have to be converted into it. This process is rather simple and, also, offers another benefit, by allowing
the visual inspection of the saved point clouds, at the same time as they are being converted into the
standard format. This is beneficial because it allows the visual control of the goodness of the saved data.

To complete the conversion, an internally developed, open-source ROS package is installed on
the laptop used for all post-processing steps [48]. Both hardware and software specifications of the
laptop are discussed in detail in Section 5.1.5. Before starting the conversion process, appropriate lidar
configuration files need to be used. They determine the settings of the package with regards to the type of
lidar used (Ouster OS1 or Ouster OS2) and the horizontal resolution (1024 or 2048). Subsequently, the
package is launched, the rosbag containing the raw data from MOLISENS with the clock time published
is played, and, finally, the desired topics are saved into another rosbag. The desired topics include clock
time, lidar point clouds, IMU and GNSS information, but further topics can also be saved. Finally, the
new rosbag contains the converted data that can then be easily fed as input data to different SLAM
algorithms.

31

5.4 Datasets
Throughout this thesis, three different datasets will be used to provide variability to the test conditions of
each algorithm. Each dataset depicts a different environment, as well as a different mounting vehicle for
the MOLISENS system. Each individual dataset poses different challenges that the SLAM algorithms
need to overcome. More details about each dataset are available in the following Sections 5.4.1, 5.4.2,
and 5.4.3. Finally, Section 5.4.4 explains how the analysis of IMU and GNSS data of each dataset
is performed. It also introduces the IMU and GNSS data specifics for each dataset, as well as the
comparison between the datasets. The analysis of the data is important because it can explain some of
the phenomena later encountered, during the testing of different SLAM algorithms.

Table 5.2 offers a brief overview of all the datasets used in this thesis. It can be seen that each
dataset has the same settings regarding the MOLISENS lidar sensor rotation frequency of 10Hz and the
horizontal resolution of 1024 points in the entire 360 ◦ FoV.

Dataset name Date Sensor carrier Ouster sensor Ground truth Horizontal resolution Rotation frequency
ViF building 12/12/2022 Handheld OS1-64 NO 1024 10 Hz

Rijeka Harbour 15/10/2021 Boat OS1-64 NO 1024 10 Hz
Sonnblick Observatory 21/03/2023 Gondola OS2-64 YES 1024 10 Hz

Table 5.2: Overview of the datasets used in the thesis

5.4.1 Sonnblick Observatory Dataset

This dataset was gathered on the 21st of March 2023 near the site of Sonnblick observatory in Rauris
Valley, Austria. Figure 5.10 shows the survey site viewed from the satellite on Google Maps. During
the time of the survey, the ground was covered by snow, which presents an extra challenge to both the
equipment as well as the SLAM algorithms, due to the fact that snow is highly reflective, which may affect
the quality of the generated lidar point clouds.

Figure 5.10: Google Maps representation of the Sonnblick Observatory dataset

This dataset consists of two distinct sets of data. The first one is the ”ground truth” dataset that will
be used as a reference for the 3D point cloud maps generated by different SLAM algorithms. The Riegl
VZ-6000 TLS is positioned at the base of the gondola in the valley station, while the exact surveying
process is highlighted in Section 5.2.1.

32

The second set of data is the ”working” dataset which is collected by the MOLISENS setup. The
exact way it was set up, in this particular expedition, is highlighted in the Section 5.2.2. For this survey,
an Ouster OS2-64 lidar was used. The dataset itself is quite big, since the hardware was mounted on a
gondola whose total length is 6108m and the running time is approximately 20 minutes, only a part of the
dataset is used in this work. The part chosen is the one closest to the valley station as it offers the most
distinct features that can be used to produce the map. Furthermore, the ”ground truth” level of details is
the highest in that part, since the TLS was positioned in the valley station, as well.

5.4.2 Virtuelles Fahrzeug (ViF) Building Dataset

This dataset was gathered on the 12th of December 2022 on the site of the Virtual Vehicle Research
GmbH office building in Graz, Austria. Figure 5.11 shows the survey site viewed from the satellite on
Google Maps.

Figure 5.11: Google Maps representation of the ViF Building dataset

This dataset only contains the ”working” dataset as well. However, it depicts another type of
environment, which is an urban environment with a lot of potentially dynamic features such as people,
cars, etc. Also, it is worth noting that in this survey, the MOLISENS setup is handheld, which, introduces
some constant rocking motion of the sensors. How the setup looks can be seen in figure 5.12. Ouster
OS1-64 lidar was used in this survey. This dataset contains a loop, i.e. the survey started and ended at
the same position, which is useful to test loop-closure capabilities of different SLAM algorithms.

Figure 5.12: MOLISENS handheld setup

33

5.4.3 Rijeka Harbour Dataset

This dataset was gathered on the 15th of October 2021 on the site of Sušak Harbour in Rijeka, Croatia.
Figure 5.13 shows the survey site viewed from the satellite on Google Maps. Since this Google Maps
screenshot was not taken on the same day as the survey itself, it is highly possible that there is a
difference in the number of ships and their position between the image and the actual dataset itself.

Figure 5.13: Google Maps representation of the Rijeka Harbour dataset

Even though this dataset only consists of the ”working” dataset, it is still highly valuable since it
tackles a completely different environment compared to the first two. This dataset deals with the maritime
environment where it is common to have the sensors move all the time, due to the movement of the sea
itself. For this survey, the MOLISENS setup was fixed on a boat, as can be seen in Figure 5.14. Ouster
OS1-64 lidar was used in this survey as well. Just like the previous one, this dataset also contains a
loop.

Figure 5.14: MOLISENS setup on a boat

34

5.4.4 IMU and GNSS Data Analysis

Analysing the data from the GNSS and, especially, the IMU can provide valuable information about
the conditions under which the survey was completed. This specifically applies to external conditions
affecting the motion and stability of the sensor, such as wind, rough seas, big waves, bumps in the
road, jumps, etc., depending on the type of environment a survey is being performed in. The effects of
these phenomena will be shown in the spikes on the linear acceleration, angular velocity and attitude
graphs. These spikes represent swift changes in the sensor’s movement and position. They can also
be interpreted as noise in the data, and given the fact that some of the SLAM algorithms tend to perform
integration of IMU data, then the noise amplifies the error, which is something that should be avoided, if
possible.

Analysis of this data is performed using a software package that was developed in the scope of
this thesis. It consists of two separate parts. The first part is a ROS package that converts the IMU
and GNSS data from the post-processed MOLISENS rosbag into a format, that separates the complex
sensor messages into simple ROS topics, that are then saved into a new rosbag. After the new bag file
has been recorded, it is fed to the second part of the software package. The second part is written in
MATLAB/Octave and converts the original IMU attitude data quaternions into Euler angles, as well as
changing the angle unit from radians to degrees. Also, it saves all the data into a MATLAB mat file so
it can be later visualised using MATLAB or Octave. Data visualisation is also performed by a MATLAB
script.

Figure 5.15 shows the Cartesian coordinate frame with the 3 main axes of the MOLISENS setup.
This information is important for the latter analysis of the IMU data.

Figure 5.15: Coordinate frame of the MOLISENS setup

Sonnblick Observatory

Figure 5.16 shows the values of Angular velocity around each of the three axes of the MOLISENS
coordinate system. Frequent changes in the direction of the angular motion can be observed. These
changes are caused by the movement of the gondola itself. However, for this dataset, the emphasis
should be placed on the graph representing the Y-axis. On this graph, the effect of the gondola starting
to move is evident, as indicated by a short spike around the 40th second. Subsequent to that juncture,
a multitude of frequent changes in both the value and direction of motion become apparent. This
occurrence can be attributed to the influence of cross-wind impacting the gondola, thereby inducing
a rocking motion. However, this rocking motion is not strong, as it peaks at an angular velocity of around
4 ◦/s.

35

Figure 5.16: Angular velocity - Sonnblick Observatory

Figure 5.17: Linear acceleration - Sonnblick Observatory

36

A similar movement of the gondola can be noticed in Figure 5.17 which shows linear acceleration
along all 3 axes of the MOLISENS system. In this depiction, a discernible spike around the 40th second
can be observed, aligning precisely with the commencement of the gondola’s motion. Subsequently,
frequent alterations in the direction of acceleration become apparent along both the X-axis and the Z-
axis. These variations depict a gradual, undulating rocking motion that coincides with the gondola’s
gradual vertical oscillation during its movement.

Rijeka Harbour

Figure 5.18 shows all the GNSS data from this survey. In the initial graph, the altitude displays a range
between 2.4m and 4m, which aligns with the notion that the boat is in synchrony with the undulations
of the sea waves. The subsequent two graphs illustrate the longitude and latitude values throughout
the survey. By examining the values themselves, it becomes evident that the survey commenced and
concluded at the same location.

Figure 5.18: GNSS data - Rijeka Harbour

Figure 5.19 shows how the attitude of the MOLISENS setup changed during the survey. Attitude
is represented by the Euler angles. It can be observed that the roll and pitch angles oscillate between
−5 ◦ and 5 ◦, which is consistent with the boat rocking on the wavy sea. The yaw angle shows the boat’s
orientation throughout the mission, as it made its looped path.

Similar behaviour of the boat can be observed based on the data in Figure 5.20, which shows linear
acceleration along the 3 main axes of the MOLISENS system, thus the boat as well. Oscillations in the
values and the direction of the linear acceleration can be observed on all axes. This happens because
of the natural movement of the boat in the sea.

37

Figure 5.19: Euler angles - Rijeka Harbour

Figure 5.20: Linear acceleration - Rijeka Harbour

38

However, in Figure 5.20, some spikes, where the values are much bigger than the average, can also
be noticed. This can be caused by multiple factors. Some of the possibilities are that a bigger wave
hit the boat, or the boat is accelerating/decelerating or trying to dock. Whatever the cause is, these
higher-than-average perturbations may cause some issues for the SLAM algorithm. Specifically, it may
reduce the quality, or cause a full failure of the loop-closure functionality. It is particularly bad news if the
goal of the survey is to produce a quality map of the area. One other issue may arise from this behaviour.
If the fact that most IMU and GNSS sensors have an auto-calibration feature after they are turned on
is considered, any unusually high intensity of oscillations may cause wrong calibration or wrong initial
measurements. The effects of this behaviour on SLAM is depicted in more detail in Section7.1.

ViF Building

As mentioned before, this dataset was acquired by walking with the MOLISENS setup held in the hand.
The oscillations in the roll and pitch of the sensor, seen in figure 5.21, are caused by the inability of the
person holding the MOLISENS setup to keep it perfectly still. Furthermore, the yaw graph shows how
the sensor orientation changed during the survey. From the same graph, the existence of the loop in the
dataset may be observed.

Figure 5.21: Euler angles - ViF Building

Figure 5.22 depicts the linear acceleration along the 3 main axes of the MOLISENS system, thus,
also, the person who is carrying it. It is interesting to note how rough and oscillatory human walking
actually is. Unlike in the previous dataset, no spikes of unusually high amplitude are noticed.

39

Figure 5.22: Linear acceleration - ViF building

Dataset comparison

According to [49], a box plot and a density plot are combined to create the violin plot, a graphic tool for
exploratory data analysis that shows the distribution of a variable graphically. It enables a comparison of
how one or more variables are distributed among several groups or categories. The violin plot displays
the density of the data, in contrast to a box plot, which merely displays summary statistics [49].

The kernel density plot, which is superimposed over the box plot in the violin plot, depicts the
distribution of the data. The density of the data at a specific position is indicated by the breadth of the
plot there. The box’s height represents the Interquartile Range (IQR), which covers the middle 50% of
the data, and the plot is symmetrical about the median. Any data points outside of this range are referred
to as outliers. The whiskers extend from the box to the most extreme data points that are within 1.5
times the IQR from the box’s edge [49].

In comparison to other graphical tools, violin plots provide a number of benefits. They offer a clear
picture of the data distribution, making it simpler to compare data between groups. Additionally, they
enable the detection of multimodal distributions, which could be overlooked when using a straightforward
box plot. Finally, violin plots can be used to uncover patterns or trends in the data by detecting changes
in the distribution over time [49].

Figure 5.23 shows the violin plots of linear acceleration along the 3 main axes for all three datasets
considered in this thesis. A large number of outliers in the Rijeka Harbour dataset can be noticed. This
goes in hand with the analyses presented previously, and the effects of this phenomenon will be shown
and explained in Chapter 7.

40

Figure 5.23: Violin plots of the linear acceleration - dataset comparison

Figure 5.24: Linear acceleration along Z-axis - dataset comparison

41

Figure 5.24 is interesting because it shows the difference in steadiness between three different types
of movement. It can be seen that the movement of the gondola is the smoothest in general, followed
by the movement of the boat, and, finally, it is observed that the human walk is the least steady form of
motion of the three forms considered.

42

6
Methodology

Contents

6.1 Measuring the Accuracy of a SLAM Map . 44
6.2 Vegetation Removal . 46
6.3 SLAM Algorithms Performance Metric . 47
6.4 Chosen SLAM Algorithms . 49
6.5 Performance Optimisation . 52

43

This chapter introduces different ways of measuring the accuracy of a 3D point cloud map, which is
explained in Section 6.1. Since some of the datasets presented in Chapter 5 contain vegetation, which
may introduce measurement uncertainty in the lidar point clouds, Section 6.2 introduces an algorithm
that removes the vegetation from a previously generated 3D SLAM map. Furthermore, a metric for
comparison of different SLAM algorithms is introduced in Section 6.3. Finally, different SLAM algorithms
used in this thesis are introduced in Section 6.4, as well as the methods of improving the performance
of the best one in Section 6.5.

6.1 Measuring the Accuracy of a SLAM Map
No SLAM algorithm in existence is capable of producing an absolutely perfect 3D map of the real world.
There is always, at least some degree of error, no matter how small it might be. There are multiple ways
of approximating and explaining this error, but as Kalenjuk and Leinhart [50] explain, the end user of the
3D map is usually not interested in the reasons behind the distortion of the map, but only in the order
of magnitude of the distortion. The way to give a measurement of this distortion, thus also the accuracy
of the 3D map, is to compute the distance between the corresponding points of the reference and the
generated SLAM point cloud. To generate a reference point cloud, a TLS is used. One advantage of
using a TLS to produce the reference point cloud is a denser and more accurate point cloud than the one
produced by the automotive lidar, which gives more possibilities when computing distances between
them [50]. Cloud Compare software, introduced in Section 2.3, is used to perform the comparison
between the point clouds.

As mentioned in its Wiki page [51], Cloud Compare offers three different ways of measuring distances
between two point clouds representing the same 3D space, a set of values chosen as a metric to
determine the accuracy of a SLAM 3D map. The first way, which is also the simplest, is to compute
the nearest neighbour distance. It means that for each point of the compared cloud, the software will
find the nearest point in the reference point cloud and calculate their Euclidean distance. The nearest
neighbour distance principle works well, only if the reference point cloud is dense enough, which it is in
our case. The principle of nearest neighbour distance is shown in Figure 6.1 [51].

Figure 6.1: Nearest neighbour distance principle [51]

44

Unfortunately, the nearest neighbour distance principle is not the optimal solution, given that there
are cases when the reference point cloud is not dense enough, making the nearest neighbour distance
estimation imprecise. For this reason, a second method, called local modelling, is introduced. As well
as global modelling, local modelling also tries to obtain a better model of the surface, in order to mitigate
the effects of the lack of density in the reference point cloud. Unlike global modelling, local modelling
is not trying to obtain a global model of the surface, but, instead, a partial surface model, which is less
accurate, but also much easier to compute. So, after the software determines the nearest neighbour in
the reference point cloud, instead of calculating the distance immediately, it replaces that point in the
reference point cloud with a surface that is obtained by fitting a mathematical model of the surface to
that reference point and its neighbours. Then the Euclidean distance is computed between the initially
matched point in the compared point cloud and this locally modelled surface in the reference point cloud.
This approach, statistically, gives more precise results on a global scale and is also less dependent on
point cloud sampling. Figure 6.2 shows the principle of local modelling [51].

Figure 6.2: Nearest neighbour local model principle [51]

Ultimately, the user manual of Cloud Compare suggests using the Multiscale Model to Model Cloud
Comparison (M3C2) algorithm [52], to compute more robust and also signed distances between two
point clouds [51]. M3C2, created and explained by Lague et al. [52], only computes the distances
between some specific points in the two point clouds, called core points. This approach speeds up the
computations, and since the TLS point clouds are very dense, it is not needed to measure the distance at
such high density. Generally, core points represent a sub-sampled version of the original reference point
cloud and are regarded as regions of interest in the analysis process. This algorithm uses a two-step
process to calculate the distance between points of two point clouds. This process is shown in Figure
6.3. The first step includes calculating a normal vector

−→
N for any given point i in the core point cloud.

This vector is defined for each point cloud by fitting a plane to all the neighbours of i that are within the
diameter D around i. As a measure of the roughness of the point cloud σi(D) at a scale D in the vicinity
of i, a standard deviation of the neighbours of i to the best-fit plane is used. In the second step, once

−→
N

is defined, it is used to make a projection of i onto each point cloud at a projection scale d. This is done
using a cylinder of diameter d, that is oriented along

−→
N and whose axis is passing through i. Projecting

the two subsets of points on the cylinder axis, obtained by intersecting the cylinder with the two point
clouds, yields two distributions of distances. The standard deviations of these two distributions give the
estimate of the point cloud roughness σ1(d) and σ2(d) along the normal direction, while the means of the
distributions i1 and i2 represent the average positions of the point clouds, also along the normal direction.
Finally, the distance between the two point clouds LM3C2(i) is calculated as the distance between i1 and
i2 [52]. Figure 6.4 demonstrates the application of the M3C2 algorithm on complex topographies.

45

Figure 6.3: M3C2 principle [52]

Figure 6.4: M3C2 in use on complex topographies [52]

6.2 Vegetation Removal
Zhang et al. [53] present a method for constructing accurate and complete Canopy Height Models
(CHMs) from airborne lidar data, called Cloth simulation-based construction of pit-free canopy height
models (CSF). CHMs are essential for various applications, such as forest management, environmental
monitoring, and urban planning. In this thesis, they are used to remove the vegetation from a previously
constructed 3D SLAM map. The goal is to have a 3D map of the ground without any other artefacts
on it, because, then, those maps can be used for more accurate comparison between different maps.
However, traditional CHM construction methods often result in data gaps or pits due to occlusion,
penetration, or attenuation issues, which can significantly affect the accuracy and completeness of the
resulting CHMs [53].

The cloth simulation algorithm used in the CSF method simulates the movement and deformation
of a virtual cloth that represents the canopy. The algorithm aims to estimate the height of the canopy
surface at any given location by simulating how the cloth would interact with the lidar data points. The
algorithm’s operation can be summarised in the following steps:

46

1. Data pre-processing: The lidar data is pre-processed to remove noise and outliers and to generate
a Digital Terrain Model (DTM),

2. Cloth simulation: The canopy is represented as a virtual cloth made up of a grid of nodes. The cloth
simulation algorithm simulates the movement and deformation of the cloth by applying forces to
each node based on its position relative to the lidar data points. The forces include gravity, tension,
and collision forces. The tension force keeps the cloth taut, while the collision force prevents the
cloth from penetrating the lidar data points,

3. Height estimation: Once the cloth simulation is complete, the height of the canopy surface at each
location can be estimated by interpolating the heights of the nodes in the virtual cloth,

4. Calibration: The cloth simulation algorithm’s parameters are calibrated using a set of ground-truth
data to ensure that the simulated canopy surface matches the actual canopy surface,

5. CHM generation: The final CHM is generated by subtracting the DTM from the estimated canopy
surface height at each location [53].

Figure 6.5: Examples of segmented 3D lidar point cloud maps using the CSF algorithm [53]

6.3 SLAM Algorithms Performance Metric
As wasmentioned in Chapters 4 and 5, a multitude of different SLAM algorithms will be extensively tested
on 3 different datasets, in order to determine which one is the most suitable for the desired application.
In order to compare the algorithms, some comparison criteria need to be introduced. The list of criteria
is presented in the following list in no particular order. More complex criteria are explained later.

• Visual inspection

• Map accuracy

• Map resolution - determined by the number of points in the 3D point cloud map

• Loop-closure availability - does a SLAM algorithm support loop-closure or not

• Playback factor

• Implementation difficulty

Visual inspection

Visual inspection is used to verify that the SLAM process has been completed successfully. It can detect
anomalies in the map, like artefacts, that are not supposed to be there, or are missing, failed loop-closure,
skewed or in other ways distorted map, etc.

47

Map accuracy

Map accuracy is calculated using the M3C2 method, explained in Section 6.1, in Cloud Compare.
However, before using the said method, the reference point cloud, obtained from the ”ground truth”
dataset, and the SLAM map need to be aligned. This is done by importing both of the point clouds
into Cloud Compare and roughly aligning them by hand. This rough alignment is not precise and may
still contain misalignment in terms of both rotation and translation. Afterwards, a cloud registration
feature of Cloud Compare is used to finely register the two point clouds, thus aligning them as close
as possible. This fine point cloud registration method is based on the ICP algorithm and offers the user
to set some constraints, for example, rotations around some axes or translations along some axes can
be blocked. Furthermore, the desired percentage of overlap between two aligned point clouds can be
set, as well as the desired number of ICP iterations, or the Root Mean Square (RMS) difference. The
number of iterations or the RMS difference can be used as a successful alignment criterion. After this
alignment is done, the M3C2 method is used to calculate the distance between the two point clouds.
M3C2 parameters, such as the diameter of the cylinder and the diameter around the core points, are
automatically calculated by Cloud Compare. Since the reference point cloud is denser than the one
obtained by the SLAM algorithm, it is subsampled at a certain scale to reduce the computational load of
the procedure itself. Points of the subsampled reference point cloud are considered as core points. The
output of this procedure is a coloured point cloud of distances between the SLAM map and the reference
map, and a histogram classifying the points of the SLAMmap according to their distance to the reference
point cloud. The coloured point cloud is used to visually examine where the discrepancies appear and
try to determine why. It is also used to visualise the results. On the other hand, the histogram is used
to provide a numerical value of the SLAM map accuracy, by determining the percentage of points that
satisfy a certain, predetermined, threshold, which can vary from application to application. One nice
feature of Cloud Compare is that it stores the exact distance of each point, so there is a possibility to
increase the resolution of the histogram by increasing the number of classification classes.

Playback factor

Some algorithms might not be able to run in real-time due to the computational demands of the SLAM
process and restrictions in the hardware specifications. By playing back the rosbag containing the lidar
data at a slower rate, for instance, 0.5 or 0.1, this issue is lessened. It is equivalent to using a higher-
performance post-processing setup, and playing the rosbag in real time.

Implementation difficulty

This is a criterion that aims to measure how easy it is to use a specific SLAM algorithm. It aims to give
judgement on both the ease of setting up the algorithm, as well as the later configuration of the algorithm
to fit the specific use case.

These criteria have been chosen amongmany since it suits the work done in this thesis, which focuses
on the map quality, the best. There exists many more, mainstream, criteria to judge the performance
of a SLAM algorithm, as is stated by Valentin in [54]. Some of the other criteria mentioned by Valentin
include Absolute Pose Error (APE), Relative Translation Error (RTE), and Relative Pose Error (RPE).
Valentin also mentioned Average Distance to the Nearest Neighbor (ADNN) as a criterion. Measuring
the map accuracy using the M3C2 method is just an improvement of the ADNNmethod used by Valentin.
Finally, it is worth noting that it is proven, by Valentin, that all of these aforementioned criteria are heavily
correlated, so there is no need to take all of them into consideration and choosing just one is sufficient.

48

6.4 Chosen SLAM Algorithms
As already mentioned in Chapter 3, there are a lot of different SLAM algorithms. To choose suitable
algorithms for testing, multiple sources were considered. The basis for choosing the algorithms was
a list of open-source SLAM algorithms, that are implemented in ROS, available on Autoware website
[55]. Similar to the Autoware website, both Garigipati et al. [56] and Valentin [54], also, only considered
algorithms available in ROS. Based on the information available in the aforementioned resources, a list
of eight candidate algorithms is created. These algorithms, alongside their main features, are displayed
in Table 6.1. Only the FD-SLAM algorithm is not tested, since it requires GNSS data, which might not
be always available, to run. Out of the other seven algorithms, FAST-LIO-LC, ISCLOAM, and A-LOAM
are unable to work with the post-processing setup used in this thesis, introduced in Section 5.1.5. Most
likely, the reason for this is that they are created for an older version of ROS.

Required
sensors

Optional
sensors

ROS
version

Newest ROS
release

Loop-closure Tested
version

Repository
stars

Latest
update

FAST-LIO-LC
Lidar &
IMU

GNSS ROS 1 ROS Melodic NO d059255 191 11/03/22

FD-SLAM
Lidar &
GNSS

IMU ROS 1 ROS Noetic YES - 13 13/04/22

HDL-Graph-SLAM Lidar IMU &
GNSS

ROS 1 ROS Noetic YES cb7af42 1600 28/02/23

ISCLOAM Lidar - ROS 1 ROS Melodic YES d6d7c61 458 13/03/21
LeGO-LOAM Lidar IMU ROS 1 ROS Melodic YES 896a7a9 2000 02/07/20

LIO-SAM Lidar &
IMU

GNSS ROS 1 &
ROS 2

ROS Noetic &
ROS Humble

YES 0be1fbe 2500 17/04/23

KISS-ICP Lidar - ROS 1 &
ROS 2

ROS Noetic &
ROS Humble

NO 959e507 883 06/06/23

A-LOAM Lidar - ROS 1 ROS Melodic NO e51f88c 1700 28/03/19

Table 6.1: Considered SLAM algorithms

In the end, four, frequently used, algorithms, are selected. They are KISS-ICP, LeGO-LOAM, HDL-
Graph-SLAM, and LIO-SAM. Figure 6.6 shows a quick overview of the selected SLAM algorithms, while
each one of them is explained later in this section. The overall goal is to strike a balance between the
quality of the 3D map and the speed and simplicity of its construction. To achieve this, algorithms based
on different technologies, are implemented. Two different types of SLAM are visible in the figure, full
SLAM, and odometry and mapping. The main difference between odometry and full SLAM approaches
is that odometry estimates position incrementally, frame-by-frame, while full SLAM approaches aim to
maintain global consistency by detecting revisited places and correcting pose estimate errors through
loop-closure detection.

Figure 6.6: Selected SLAM algorithms and required input data (adapted from Garigipati et al. [56])

49

6.4.1 KISS-ICP

As stated by the creators of this algorithm, Vizzo et al [40], the proposed approach involves four main
steps for registering point clouds in the context of mobile robots. Firstly, motion prediction and scan
deskewing are performed using a constant velocity model to estimate the robot’s motion and compensate
for it when processing 3D scans. Secondly, point cloud subsampling is carried out using a voxel grid
to reduce the number of points processed during registration. Thirdly, a local map is constructed using
the subsampled point cloud, and correspondence estimation is performed using ICP with a distance
threshold that depends on the expected initial pose error and sensor noise. Finally, alignment is
achieved through robust optimisation, minimising point-to-point residuals until convergence [40].

By rethinking point cloud registration in this way, the proposed approach provides a fast and effective
registration process that is well-suited for mobile robots operating in dynamic environments. The use of a
constant velocity model and voxel grids allows for accurate motion compensation and efficient processing
of point clouds, while the reliance on classic point-to-point ICP and robust optimisation enable accurate
alignment. These steps are particularly useful for mobile robots that need to register point clouds in
real time while navigating through complex and dynamic environments. This implementation uses a
compact set of seven parameters, consisting of two parameters for correspondence search, four for
map representation and scan subsampling, and one for ICP termination [40].

6.4.2 LeGO-LOAM

Shan and Englot [57] explain that the proposed framework is a 6 Degrees of Freedom (DoFs) pose
estimation system that takes input from a 3D lidar and is divided into five modules. The first module is
segmentation, where a point cloud is projected onto a range image, and ground points are extracted.
In the second module, feature extraction, edge and planar features are selected from each row of the
range image using roughness values. The third module is lidar odometry, which estimates sensor
motion between consecutive scans by performing point-to-edge and point-to-plane scan matching.
Correspondences between features in consecutive scans are found by looking for points with the same
label in both scans, and the Levenberg-Marquardt (L-M) method is used to find the minimum distance
transformation between two consecutive scans [57].

The fourth module is lidar mapping, which matches features in the point cloud map to the pose
transformation using the L-M method. The map can be obtained by choosing the feature sets that are
in the FoV of the sensor or by fusing the selected feature sets. The fifth module is transform integration,
which can integrate pose-graph SLAM by adding spatial constraints between a new node and the chosen
nodes using the transformations obtained after L-M optimisation [57].

Overall, this framework uses a range of techniques such as segmentation, feature extraction,
lidar odometry, lidar mapping, and transform integration to provide accurate and reliable 6 DoF pose
estimation. It provides a comprehensive solution for estimating the pose of objects in complex
environments using 3D lidar sensors [57].

50

6.4.3 HDL-Graph-SLAM

Creators of HDL-Graph-SLAM, Koeide et al. [58], state that it is a real-time SLAM algorithm used for 3D
laser scanners. It utilizes a 3D graph SLAM with an NDT-like scan matching process to determine the
trajectory of the sensor, making it suitable for six DoFs. However, some other algorithms, like ICP, can
be used for the scan matching process. Other sensor inputs, such as IMU or GNSS, as shown in Table
6.1, can be used as boundary conditions for trajectory determination. HDL-Graph-SLAM is made up of
four nodes, namely prefiltering, scan_matching_odometry, floor_detection, and hdl_graph_slam [58].

In the prefiltering node, laser scan data is pre-processed by removing measurement points that are
too close or too far away. Outliers can also be removed using either a radius method or a statistical
method. In the scan_matching_odometry node, scan matching is performed using filtered points to
estimate the sensor pose and determine the robot’s trajectory. The floor_detection node is used to
optimise the pose graph by taking into account the detected floor area, assuming that all floor surfaces
in the scan lie on the same plane. RANdom SAmple Consensus (RANSAC) is used to estimate the
ground plane, and a minimum number of points and plane angle threshold must be met for an estimated
plane to be accepted [58].

Finally, the estimated odometry and floor areas are forwarded to the hdl_graph_slam node, which
optimises the trajectory and outputs a registered 3D point map. Additional boundary conditions such as
IMU data and GNSS can also be considered in this node [58].

6.4.4 LIO-SAM

The proposed system utilises a 3D lidar, an IMU, and, optionally, a GNSS, to estimate the robot’s
state and trajectory, using a factor graph to model the problem and solve a nonlinear least squares
problem, as stated by its creators Shan et al. [6]. The factor graph comprises four types of factors:
IMU pre-integration factors, lidar odometry factors, GNSS factors, and loop-closure factors. The system
optimises the factor graph using incremental smoothing and mapping with the Bayes tree upon the
insertion of a new node, helping maintain a sparse factor graph [6].

The IMU pre-integration factor deals with IMU measurements that are affected by slowly varying
bias and white noise. The relative body motion, between two time steps, can be computed using
the IMU pre-integration method. The lidar odometry factor involves feature extraction on a lidar scan,
composing a lidar frame, by combining the extracted edge and planar features, and creating a voxel map
from a sliding window approach. The system adopts the concept of key frame selection, which adds
a new lidar frame to the factor graph when the change in robot pose exceeds a user-defined threshold [6].

The GNSS factor helps eliminate drift during long-duration navigation tasks by introducing sensors
that offer absolute measurements. Finally, the loop-closure factor proposes a Euclidean distance-based
loop-closure detection approach that is compatible with other methods. The system searches for prior
states that are close to the new state in Euclidean space, tries to match them using scan matching,
and adds loop-closure factors that can correct altitude errors approaching 100m when GNSS is the
only absolute sensor available. Overall, the proposed system combines different types of factors and
techniques to achieve accurate state estimation and mapping for a robot [6].

51

6.5 Performance Optimisation
From the comparison results of the chosen SLAM algorithms which are introduced in Section 7.1 (the
algorithms are introduced in Section 6.4), based on the criteria introduced in Section 6.3, it appears
that the optimal SLAM algorithm, for the use cases presented in this thesis, is LIO-SAM. This section
introduces three LIO-SAM improvement approaches used in this thesis.

Since the results, as well as the authors of the algorithm themselves, indicate that the loop-closure
method implemented in the base LIO-SAM is not the best, improving it is the first step in the quest to
enhance the algorithm’s performance. More details on how is this done are given in Section 6.5.1.

Another option for improving the SLAM mapping results is including the available GNSS data in the
map-making process itself. By default, LIO-SAM is relying only on IMU data for estimating the trajectory
of the sensor carrier, thus the initial pose estimation in each frame, as well. Once the GNSS data is
introduced, an accurate location of the sensor carrier is available, making the initial pose estimate more
accurate. More details on the GNSS integration are provided in Section 6.5.2.

Finally, the last approach to increasing the LIO-SAM performance is the tuning of the algorithm’s
parameters. LIO-SAM uses more than 30 user-defined parameters, some of them should not be
modified, while others can be modified, to achieve different performance. Section 6.5.3 provides
additional details on the parameters that can be modified and are actually modified.

6.5.1 Loop-closure Improvement - SC-LIO-SAM

SC-LIO-SAM is an upgrade of the original LIO-SAM algorithm, by integrating it with another algorithm
called Scan Context, which is developed by G. Kim and A. Kim [59]. Scan Context improves the loop
detection capabilities of the original LIO-SAM algorithm, thus, also, its loop-closure capabilities. The
specifics of the Scan Context algorithm are explained later, in the following paragraphs. Since the original
SC-LIO-SAM repository on GitHub is no longer updated (the last update was on 19th of July 2021), and
the current version (d43ca00) is not up to date with the original LIO-SAM algorithm, the original SC-LIO-
SAM repository has been forked and the updates to the LIO-SAM part of the algorithm made, in the
scope of this thesis. The updated SC-LIO-SAM is open-source and available on GitHub [60].

Scan Context

Place recognition is a critical component of various robotics applications, and recent advancements in
SLAM have provided dense 3D maps of environments. While existing methods rely on diverse feature
detectors and descriptors for visual scenes, incorporating structural information to describe a place
remains relatively underexplored. The Scan Context method introduces a novel spatial descriptor for
global place recognition using 3D lidar scans [59].

52

The Scan Context method directly captures the 3D structure of the environment from lidar scans
without relying on histograms or prior training. It partitions the 3D scan into azimuthal and radial regions,
leveraging the scan’s centre as a global key point. This approach provides a concise representation of
the vertical shape of surrounding structures, enabling efficient place recognition. To construct the Scan
Context, the point cloud is divided into mutually exclusive regions, based on a regular grid. Each region
is assigned a value representing the maximum height of points within it. This process summarizes the
3D structure of the environment, without using explicit bins or matrices [59].

To ensure robust recognition against translation, the proposed method augments the Scan Context
through root shifting. By storing Scan Contexts from neighbouring locations, it assumes that similar point
clouds can be obtained even after translation, improving recognition robustness [59].

A cosine distance, between the column vectors at the same index, is used to compute the similarity
score between two Scan Contexts. However, since lidar viewpoint changes for different places, column
shifting can occur, even within the same location. To address this, distances are computed by comparing
all possible column-shifted Scan Contexts, ensuring robustness to viewpoint changes [59].

Scan Context introduces a two-phase search algorithm for efficient loop closure detection. It
combines pairwise similarity scoring and hierarchical nearest neighbour search. A rotation-invariant
descriptor, called the ”ring key,” is extracted from the Scan Context to enable fast searching for potential
loop closure candidates. The closest candidate satisfying a threshold is selected as the revisited place
[59].

6.5.2 GNSS Data Inclusion

Including GNSS data in the SLAM process can yield several advantages. Firstly, GNSS provides global
position information, typically in latitude and longitude coordinates. Integrating this data into SLAM aids
in establishing an initial global frame of reference for the map. This enables the robot to determine its
starting position within the map and align subsequent measurements to the correct global coordinates.
Moreover, SLAM algorithms often require an initial estimate of the robot’s pose to initiate mapping and
localization. GNSS data can effectively serve as an initialization step by providing an approximate
position estimate. This allows the SLAM system to commence mapping from a known location, thereby
enhancing the efficiency and accuracy of the algorithms. Furthermore, SLAM algorithms can suffer from
drift over time due to sensor noise and accumulated errors, affecting the accuracy of pose estimation
in local coordinates. GNSS data can serve as a global reference to correct this drift and periodically
relocalize the robot. By periodically integrating GNSS data with SLAM estimates, the robot’s pose can
be refined and aligned with the actual global position, ensuring long-term localization accuracy [61].

Additionally, the inclusion of GNSS data can improve the accuracy of the generated maps. By
combining GNSS measurements with other sensor data, such as lidar scans, SLAM algorithms can
effectively reduce uncertainties and enhance the overall quality of the maps. GNSS data can act
as a constraint to align local maps with the global reference frame, resulting in more precise and
consistent maps. Moreover, GNSS measurements can assist in addressing data association challenges
encountered during SLAM. In scenarios with limited visual features or ambiguous sensor measurements,
GNSS data can provide valuable information for associating sensor readings with specific locations. This
aids in correctly aligning sensor measurements with the corresponding map elements, thus improving
the overall robustness of the SLAM system [61].

53

In summary, the integration of GNSS data into the SLAM process should offer various benefits,
including establishing a global frame of reference, improving initialization, ensuring long-term localization
accuracy, enhancing mapping precision, and assisting in data association. By leveraging GNSS data
alongside other sensor inputs, SLAM systems can achieve more accurate and reliable mapping and
localization results. Lastly, it needs to be noted that both LIO-SAM and SC-LIO-SAM come with
included GNSS data integration capabilities, as can be seen in Table 6.1. Enabling this functionality
is a straightforward process that involves activating two specific features and adjusting the values of two
parameters within the algorithm’s configuration settings.

6.5.3 Parameter Optimisation

Since LIO-SAM uses more than 30 user-defined parameters, a selection had to be made, to choose
the ones that are going to be optimised to increase the accuracy of the final algorithm’s output, which is
the generated 3D point cloud map. Unfortunately, the documentation and information on the purpose of
each parameter are extremely limited, with only some brief, one-sentence explanations, or even worse,
no explanation at all. This made it quite difficult to identify which parameters to modify. Finally, eight
different parameters were selected and divided into four groups: i) CPU parameters; ii) LOAM feature
threshold parameters; iii) Surrounding map parameters, and iv) Visualisation parameters. These four
groups contain parameters whose influence on the mapping results should be directly proportional, i.e.
the effect of increasing the value of one, goes together with the effect of increasing the values of other
parameters. Furthermore, these groups are also suggested by the Shan et al. [6], since they divided the
parameters into the same groups in the configuration file. The first group of parameters determines
the mapping frequency. The second group deals with the thresholds for the LOAM features since
LIO-SAM uses parts of the LOAM algorithm. The third group of parameters deals with the thresholds
for adding key frames, as well as the key frame density. Finally, the last group, called Visualisation
parameters, determines the finished 3D global point cloud map density. Figure 6.7 displays all four
groups of parameters, together with the parameters themselves, and the explanation of each parameter,
provided by the algorithm’s authors.

Figure 6.7: SC-LIO-SAM - selected configurable parameters

54

To determine whether the accuracy of the finished 3D map is increased, each group of parameters is
individually tested and evaluated. The default values of parameters in each group are both increased and
decreased and the finished map is saved for each different configuration. The accuracy of each saved
map is then determined and a judgment is made, whether tuning that set of parameters is affecting
the accuracy of the map. Finally, once it is determined which parameter groups have the potential to
increase the accuracy, the best-performing values of parameters in those groups are combined and
tuned to achieve the best possible accuracy.

55

7
Results

Contents

7.1 SLAM Algorithms Comparison Results . 57
7.2 LIO-SAM Algorithm Optimisation Results . 64

56

This chapter presents and discusses the results acquired by generating 3D point cloudmaps using the
SLAM algorithms presented in Chapter 6. Section 7.1 introduces the comparison results of all the chosen
SLAM algorithms. Section 7.2 presents the results of performance optimisation attempts performed on
the best performing SLAM algorithm, as determined in Section 7.1.

7.1 SLAM Algorithms Comparison Results
Initially, some general characteristics of the chosen SLAM algorithms, as well as the implementation and
usage difficulty, are analysed. They are displayed in Table 7.1.

Loop-closure Installation difficulty Usage difficulty
KISS-ICP NO Medium Medium

HDL-Graph-SLAM YES Easy Medium
LeGO-LOAM YES Hard Hard
LIO-SAM YES Medium Easy

Table 7.1: Chosen SLAM algorithm characteristics

It can be noted that only KISS-ICP does not have some form of loop-closure implemented. LeGO-
LOAM is, in general, the hardest algorithm to both, implement and use. The latest version of ROS it
supports is ROS Melodic, which reached its end of life in April of 2023, so implementation in ROS Noetic
required substantial modifications to the source code. In the end, the map saving functionality did not
function properly, so no 3D point cloud maps were saved. However, it did not affect the quality of the
comparison, which will be shown later. Usage of LeGO-LOAM also proved to be very complex, since all
the configurable parameters are contained inside a C++ header file, and any changes made to it require
the rebuilding of the entire ROS workspace, which is highly inconvenient. The most straightforward
installation procedure is with the HDL-Graph-SLAM, where only the instructions need to be followed.
However, usage of HDL-Graph-SLAM is difficult and not intuitive, since it has more than 150 changeable
parameters, whose function is hardly explained. Finally, both KISS-ICP and LIO-SAM require some
minor modifications to the source code in order to install them. On the other hand, the usage of
KISS-ICP is a bit more complex. Configuring the parameters is simple since there are only seven of
them, but saving the map is rather difficult, requiring the creation of a rosbag file with all the output point
clouds, and then taking the last point cloud and converting it into a file format suitable for a 3D point
cloud map. Unlike KISS-ICP, usage of LIO-SAM is rather straightforward, despite it having more than
30 configurable parameters, since the effects of changing most of them are somewhat documented.
Furthermore, the 3D point cloud map is saved using a single command.

Table 7.2 shows the results for each algorithm, tested on every dataset. Firstly, it is important to note
that all the runs were performed with the rosbag playback factor of 1, i.e. in real-time. This was done
to test the computational requirements of each algorithm, as well as to ensure the same, fair conditions
throughout the comparison. As can be seen in Table 7.2, LIO-SAM algorithm consistently provides 3D
SLAM generated point cloud maps with at least two times (2x) better resolution than any of the other
SLAM algorithms tested. Finally, Table 7.2 provides an insight into the results of applying the ”visual
inspection” criterion to 3D point cloud maps generated by each one of the tested SLAM algorithms for
each dataset. It can be noted that only LIO-SAM was able to generate maps of every dataset, that are
deemed successful, as per the criteria. More details about the performance of each SLAM algorithm, on
each dataset, are given later in this section.

57

Map resolution (points) Playback factor Visual inspection

Rijeka
Harbour

KISS-ICP 2,190,438 1 Fail
HDL-Graph-SLAM 1,662,611 1 Fail
LeGO-LOAM - 1 Fail
LIO-SAM 5,372,780 1 Fail/Success

ViF
Building

KISS-ICP 640,608 1 Success
HDL-Graph-SLAM 372,573 1 Success
LeGO-LOAM - 1 Fail
LIO-SAM 1,248,135 1 Success

Sonnblick
Observatory

KISS-ICP 1,316,906 1 Success
HDL-Graph-SLAM 1,711,318 1 Fail
LeGO-LOAM - 1 Fail
LIO-SAM 11,132,938 1 Success

Table 7.2: General SLAM algorithm comparison results

Rijeka Harbour dataset

As already mentioned in Section 5.4, the Rijeka Harbour dataset is a marine environment dataset
collected in Croatia. One of its interesting features is the existence of big spikes in the IMU data
during the initial part of the dataset. These spikes later contributed to the failure, of some tested SLAM
algorithms, to successfully generate 3D point cloud maps of the surveyed area.

Figure 7.1 shows maps generated by the LeGO-LOAM and the KISS-ICP algorithms. It can be seen
that the LeGO-LOAM mapping process failed rather quickly, without even managing to map the entire
survey area at all. On the other hand, the KISS-ICP mapping process was completed. However, the
inexistence of a loop-closure algorithm within the KISS-ICP algorithm is visible, since the map is distorted
and parts of it intersect with each other. Due to these facts, both algorithms are considered to have failed
the mapping process for this particular dataset, as per the ”visual inspection” criterion.

Figure 7.1: Rijeka Harbour dataset: (a) LeGo-LOAM generated map; (b) KISS-ICP generated map

58

Figure 7.2 shows 3D maps that are generated using the HDL-Graph-SLAM and the LIO-SAM
algorithms. It can be seen that the mapping process was completed when using both algorithms.
However, it is also visible that the loop-closure algorithm failed to properly close the loop in both cases
as well, thus some parts of the generated 3D maps are not merged properly. Because of this failure,
the mapping process is considered to have not achieved complete success when using any of the two
algorithms, as per the ”visual inspection” criterion.

Figure 7.2: Rijeka Harbour dataset: (a) HDL-Graph-SLAM generated map; (b) LIO-SAM generated map

Since the mapping process did not fully succeed when using any of the tested algorithms, and
considering the fact that the initial few seconds of recorded IMU data contain large and unnatural spikes,
which can be considered as noise, another experiment was run. The dataset was modified by removing
the noisy initial data, both lidar and IMU, all the way up to the point when the boat carrying the surveying
equipment startedmoving. This modification resulted in the LIO-SAM algorithmmanaging to successfully
generate a 3D map of the said dataset, as is shown in Figure 7.3. However, modifying the data in this
way might not be possible for all future applications, so some, proposed ways of mitigating the effect of
noisy initial data, are presented in Section 6.5 and the results of their implementation in Section 7.2.

Figure 7.3: Successful LIO-SAM generated map - Rijeka Harbour dataset

59

ViF Building dataset

As already mentioned in Section 5.4, the ViF building dataset is an urban environment dataset collected
in Graz, Austria. This dataset is supposed to be the simplest one, used in this thesis, for the SLAM
algorithms to successfully generate a 3D map. Figure 7.4 shows maps generated by the LeGO-LOAM
and the KISS-ICP algorithms. It can be seen that the LeGO-LOAM mapping process was completed.
However, the loop-closure feature failed completely, leaving the map distorted in a way that one of the
building’s outside walls is piercing the building itself. In spite of the KISS-ICP generatedmap looking good
at first sight, a closer look reveals that it is distorted and some features are doubled since there is no loop-
closure feature implemented. Despite the aforementioned issues, the KISS-ICP algorithm successfully
completed the mapping process, according to the ”visual inspection” criterion, unlike LeGO-LOAM.

Figure 7.4: ViF Building dataset: (a) LeGo-LOAM generated map; (b) KISS-ICP generated map

As can be seen in Figure 7.5, both HDL-Graph-SLAM and LIO-SAM algorithms were able to
successfully generate 3D point cloud maps of the ViF building and its surroundings. It can also be
noted that the loop-closure was performed reasonably well by both algorithms, so the mapping process
is considered to have been completed successfully by both algorithms.

Figure 7.5: ViF Building dataset: (a) HDL-Graph-SLAM generated map; (b) LIO-SAM generated map

60

Sonnblick Observatory dataset

Out of the three datasets used in this thesis, the Sonnblick Observatory dataset is the only one to contain
the ”ground-truth” data. It was gathered in the Rauris Valley, Austria, in a snowy environment, and as
a sensor carrier, a gondola was used, as previously explained in Section 5.4. The snowy environment
makes this dataset particularly challenging for the lidar sensor and the SLAM algorithms, due to the
absorbent nature of snow at the lidar sensor operating wavelengths, as well as the reduced number of
features in the environment, due to the snowfall.

Figure 7.6 shows maps generated by the LeGO-LOAM and the KISS-ICP algorithms. It can be seen
that the LeGO-LOAM mapping process failed completely, without even managing to produce a plausible
map of the surveyed area. On the other hand, KISS-ICP mapping process was completed and it yielded
a plausible 3D point cloud map of the surveyed area, which is later tested to determine its accuracy. Due
to these facts, LeGO-LOAM is considered to have failed the mapping process for this dataset, while the
KISS-ICP has succeeded, as per the ”visual inspection” criterion.

Figure 7.6: Sonnblick Observatory dataset: (a) LeGo-LOAM generated map; (b) KISS-ICP generated
map

Figure 7.7: Sonnblick Observatory dataset: (a) HDL-Graph-SLAM generated map; (b) LIO-SAM
generated map

61

As can be observed in Figure 7.7, the HDL-Graph-SLAM algorithm failed to produce a 3D of the
full surveyed area. It was only successful to map the lower part of the environment, near the start
of the survey. However, the LIO-SAM algorithm was able to successfully generate a 3D point cloud
map of the surveyed area. Even though the map generated by the HDL-Graph-SLAM algorithm is not
complete, it is tested, alongside the map generated by the LIO-SAM algorithm, to determine its accuracy.

Table 7.3 presents the results of the map accuracy measurement performed on the maps generated
by the KISS-ICP, HDL-Graph-SLAM, and LIO-SAM algorithms. Each number in the table represents a
percentage of points in the SLAM generated 3D map, whose distance from the corresponding point in
the reference map, falls within a certain range, i.e. ±5m, or ±3m, ±2m, or ±1m. For example, this
means that, for a 3D map generated by the KISS-ICP algorithm, 42.9% of all points are no more than 5m
distance away from their real position, according to the reference map. Two different types of maps were
considered. In the first case, the original map was used, while in the second one, the vegetation was
removed from the map. The vegetation was removed in order to reduce the measurement uncertainty
introduced by the existence of vegetation in the surveyed scene, as previously explained in Chapter 6.
From the data, it can be seen that the LIO-SAM algorithm provides the best results in both test cases.

Sonnblick Observatory Sonnblick Observatory - vegetation removed
KISS-ICP HDG-Graph-SLAM LIO-SAM KISS-ICP HDG-Graph-SLAM LIO-SAM

Map accuracy (+-5m) 42.90% 76.26% 88.07% 55.41% 31.29% 95.13%
Map accuracy (+-3m) 29.38% 56.83% 81.02% 19.54% 19.06% 92.93%
Map accuracy (+-2m) 20.68% 47.17% 73.37% 7.36% 12.93% 89.57%
Map accuracy (+-1m) 11.99% 28.32% 56.48% 3.23% 7.17% 73.54%

Table 7.3: Map accuracy - SLAM algorithm comparison results

Figure 7.8 explains the colour schematic used in all of the SLAM generated and reference map
comparisons. In all the tests, values are saturated at −5m for purple, and at +5m for brown, i.e. any
point with a distance value outside of the aforementioned range, will be coloured either purple or brown,
depending on the sign of its distance to the corresponding reference point.

Figure 7.8: Map accuracy colorbar

Figure 7.9: 3D SLAM generated and ”ground-truth” map comparison - Sonnblick Observatory dataset -
KISS-ICP algorithm: (a) Original map; (b) Map without vegetation

62

Figure 7.9 shows the comparison results between a 3D map generated using the KISS-ICP algorithm
and the reference map. On the left, the original maps with vegetation are compared, while on the right,
the maps without vegetation are compared. Based on the colour of the points it can be concluded that
the KISS-ICP map accuracy is rather poor since most of the points are more than 5m away from their
corresponding point in the reference map.

Accuracy measurement results of the map generated by HDL-Graph-SLAM algorithm are shown in
Figure 7.10. Even though the results in Table 7.3 indicate that HDL-Graph-SLAM is capable of generating
more accurate maps than the KISS-ICP algorithm, after examining this figure it becomes apparent that it
is not true. These comparison maps just confirm the conclusion made according to the ”visual inspection”
criterion: the map generation process failed when using the HDL-Graph-SLAM algorithm for this dataset.

Figure 7.10: 3D SLAM generated and ”ground-truth” map comparison - Sonnblick Observatory dataset
- HDL-Graph-SLAM algorithm: (a) Original map; (b) Map without vegetation

Finally, Figure 7.11 presents the comparison results between a 3Dmap generated using the LIO-SAM
algorithm and the reference map. In the original map, with the vegetation present, it can be noted that
most of the points, with a high distance to their corresponding reference points, are located in areas with
a lot of vegetation. This confirms a well-known limitation of lidar sensors when it comes to surveying
vegetation. Furthermore, when the comparison map, where the vegetation was removed, is analysed, it
is observed that the ground itself is mapped rather accurately.

Figure 7.11: 3D SLAM generated and ”ground-truth” map comparison - Sonnblick Observatory dataset
- LIO-SAM algorithm: (a) Original map; (b) Map without vegetation

63

7.1.1 Comparison Summary

After looking at the results, based on all the criteria, and also considering the core purpose of this thesis,
which is creating accurate SLAM generated 3D point cloud maps, it is safe to assume that out of all
the tested algorithms, LIO-SAM is the best one. However, it also displayed some shortcomings during
the testing on the three datasets used in this thesis, such as a not robust loop-closure algorithm, so
some improvements of the LIO-SAM algorithm are suggested in Section 6.5, while the results of those
improvements are displayed in Section 7.2.

7.2 LIO-SAM Algorithm Optimisation Results
This section presents the results of all the optimisation methods tested in the scope of this thesis.
These methods are explained in Section 6.5. Only the first method, an improvement of the loop-closure
capabilities, using another SLAM algorithm called SC-LIO-SAM, is tested on all three datasets. This
was done to ensure that it provides the same, if not better, results compared to the original LIO-SAM
algorithm. The second method, GNSS data inclusion, is tested on the Rijeka Harbour, and the Sonnblick
Observatory datasets. Finally, the last method, the optimisation of certain configurable parameters, is
tested on the Sonnblick Observatory dataset, because it is the only dataset with the ”ground-truth” data,
making it suitable for analysing even the smallest changes that may happen, as a result of changing
certain parameters.

7.2.1 Loop-closure Improvement - SC-LIO-SAM

As already shown in Section 7.1, the loop-closure segment of LIO-SAM can fail under some conditions,
thus its improvement is needed. An algorithm called SC-LIO-SAM, presented in Section 6.5.1, claims
to fix these issues, present in the original LIO-SAM algorithm. Figure 7.12 shows 3D point cloud maps
generated by the SC-LIO-SAM algorithm of the Rijeka Harbour, and the ViF building datasets. The first
thing to notice is that, unlike with the LIO-SAM algorithm, the map of Rijeka Harbour is successfully
constructed. Furthermore, the map of the ViF building is also successfully constructed, making the
SC-LIO-SAM algorithm successful in constructing a 3D map of the datasets that require loop-closure.

Figure 7.12: 3D SLAM generated maps by SC-LIO-SAM algorithm: (a) Rijeka Harbour dataset; (b) ViF
building dataset

64

LIO-SAM SC-LIO-SAM Relative Difference

Map accuracy (+-5m) 88.07% 87.86% 0.24%
Map accuracy (+-3m) 81.02% 81.20% 0.22%
Map accuracy (+-2m) 73.37% 73.60% 0.31%
Map accuracy (+-1m) 56.48% 55.01% 2.60%

Table 7.4: Map accuracy comparison - LIO-SAM and SC-LIO-SAM algorithms - Sonnblick Observatory
dataset

Table 7.4 presents the map accuracy of the 3D SLAM generated maps by both the LIO-SAM and the
SC-LIO-SAM algorithms, as well as the relative difference between the two accuracies. After analysing
the values in the table, it can be concluded that the difference in the accuracy between the two maps
is small. This conclusion is also confirmed by analysing the comparison results between a 3D map
generated using the SC-LIO-SAM algorithm and the reference map, shown in Figure 7.13, and the same
comparison results for the LIO-SAM algorithm, shown in Figure 7.11. No noticeable difference can be
observed between them.

Figure 7.13: 3D SLAM generated and ”ground-truth” map comparison - SC-LIO-SAM algorithm -
Sonnblick Observatory dataset

Based on the results presented in this section, it is decided that from this point onwards, the SC-LIO-
SAM algorithm is tested with the remaining performance improvement methods.

7.2.2 GNSS Data Inclusion

As already mentioned in Section 6.5.2, including the data from the GNSS sensor into the SLAM process
can have multiple benefits. Since LIO-SAM and SC-LIO-SAM have almost the same performance
regarding map accuracy, as shown in Section 7.2.1, SC-LIO-SAM is used in this section. Table
7.5 displays the comparison results between map accuracy of maps generated by LIO-SAM and by
SC-LIO-SAM with included GNSS data. From the data, it can be observed that the accuracy stays
almost the same with the vegetation present. However, the accuracy improves when the maps without
vegetation are compared. This is particularly true as the distance threshold reduces. Finally, based on
the data presented, it can be concluded that the inclusion of GNSS data in the SLAM process can lead
to increased map accuracy.

65

Sonnblick Observatory Sonnblick Observatory - vegetation removed
LIO-SAM SC-LIO-SAM-GPS Relative Difference LIO-SAM SC-LIO-SAM-GPS Relative Difference

Map accuracy (+-5m) 88.07% 87.93% 0.16% 95.13% 95.14% 0.01%
Map accuracy (+-3m) 81.02% 80.98% 0.05% 92.93% 93.03% 0.11%
Map accuracy (+-2m) 73.37% 73.60% 0.31% 89.57% 90.88% 1.46%
Map accuracy (+-1m) 56.48% 54.02% 4.36% 73.54% 77.26% 5.06%

Table 7.5: Map accuracy comparison - LIO-SAM and SC-LIO-SAM GNSS algorithms - Sonnblick
Observatory dataset

Another benefit of GNSS data inclusion, in the SLAM process, is that generated 3D maps have the
proper compass orientation, as soon as they are generated. If no GNSS data is used, it is quite common
that the maps are not oriented properly in the beginning, and they need to be oriented properly later, in
the post-processing step, which is inconvenient, and in some applications, might be impossible. When
the map is oriented properly from the start, it makes the process of overlaying a 3D map, over a 2D map
of the same area, quite simple. Figure 7.14 shows an overlayed 3Dmap over a Google Maps screenshot
of the Sušak Harbour in Rijeka, Croatia.

Figure 7.14: 3D SLAM generated map overlayed with Google Maps screenshot - Rijeka Harbour
dataset

Similar to the previous figure, Figure 7.15 shows an overlayed 3D map over a Google Maps
screenshot of the Sonnblick Observatory gondola base station in Rauris, Austria.

66

Figure 7.15: 3D SLAM generated map overlayed with Google Maps screenshot - Sonnblick
Observatory dataset

7.2.3 Parameter Optimisation

As already explained in Section 6.5.3, the effects of tuning parameters in the four groups are tested
individually. After that, all the best parameter values from each group, whose tuning showed an
improvement in the map accuracy, are combined and tested. The tuned parameters are tested on
the SC-LIO-SAM algorithm and the resulting map accuracies are compared to the accuracy values of
maps generated using the original LIO-SAM algorithm. The tuning process is considered successful only
if the accuracy increases for all four distance thresholds. All the individual group tests are performed on
the Sonnblick Observatory dataset, with all the vegetation present.

Table 7.6 shows themap accuracies while tuning theCPUparameters. From the data values, appears
that the default value is the optimal one, since in both cases, increasing and decreasing the parameter
values, the map accuracy dropped.

Relative difference Decreased values Default values Increased values Relative difference

Map accuracy (+-5m) 21.28% 69.33% 88.07% 86.69% 1.57%
Map accuracy (+-3m) 37.46% 50.67% 81.02% 79.00% 2.49%
Map accuracy (+-2m) 43.81% 41.23% 73.37% 67.26% 8.33%
Map accuracy (+-1m) 54.23% 25.85% 56.48% 43.92% 22.24%

Table 7.6: CPU parameters tuning - SLAM generated map accuracy results - Sonnblick Observatory
dataset

Table 7.7 shows the map accuracies while tuning the LOAM feature threshold parameters. Similar
to the previous one, the default values of parameters in this group seem to be close to optimal. Unlike
the CPU parameters group, tuning the parameters in this group did yield some better results in certain
accuracy ranges. However, for the same ”tuned” parameters, accuracy dropped substantially in another
accuracy range, which made the improvements in certain ranges irrelevant.

67

Relative difference Decreased values Default values Increased values Relative difference

Map accuracy (+-5m) 0.15% 87.94% 88.07% 87.94% 0.15%
Map accuracy (+-3m) 0.26% 81.23% 81.02% 80.97% 0.06%
Map accuracy (+-2m) 0.04% 73.34% 73.37% 73.44% 0.10%
Map accuracy (+-1m) 7.29% 52.36% 56.48% 51.56% 8.71%

Table 7.7: LOAM feature threshold parameters tuning - SLAM generated map accuracy results -
Sonnblick Observatory dataset

Table 7.8 shows the map accuracies, while tuning the surrounding map parameters. Unlike with
the previous two parameter groups, tuning the parameters in this group actually yielded improved map
accuracy across all the ranges. The improvement is not substantial, peaking at 0.20% compared to the
values achieved by the original LIO-SAM algorithm. This implies that the default values of parameters
in this group are close to the optimal values.

Relative difference Decreased values Default values Increased values Relative difference

Map accuracy (+-5m) 0.02% 88.09% 88.07% 85.95% 2.41%
Map accuracy (+-3m) 0.02% 81.04% 81.02% 78.93% 2.58%
Map accuracy (+-2m) 0.20% 73.52% 73.37% 72.01% 1.85%
Map accuracy (+-1m) 0.07% 56.52% 56.48% 52.41% 7.21%

Table 7.8: Surrounding map parameters tuning - SLAM generated map accuracy results - Sonnblick
Observatory dataset

Table 7.9 shows the map accuracies while tuning the visualisation parameters. The behaviour of
parameters in this group is similar to the ones in the previous group. Aminor improvement in the accuracy
across all distance ranges is achieved. However, the original parameter values are close to the optimum.

Relative difference Decreased values Default values Increased values Relative difference

Map accuracy (+-5m) 0.01% 88.08% 88.07% 87.99% 0.09%

Map accuracy (+-3m) 0.12% 81.12% 81.02% 80.90% 0.15%

Map accuracy (+-2m) 0.15% 73.48% 73.37% 72.95% 0.57%

Map accuracy (+-1m) 0.05% 56.51% 56.48% 50.77% 10.11%

Table 7.9: Visualisation parameters tuning - SLAM generated map accuracy results - Sonnblick
Observatory dataset

After performing the accuracy tests on each parameter group, it can be concluded that tuning the
parameter values, by decreasing them, in the Surrounding map and the Visualisation parameter groups,
can improve the accuracy of the SLAM generated 3D map. For the final test, values of the tuned
parameters from both groups are combined, and finetuned again, in order to get the best possible map
accuracy values. For this, final test, the Sonnblick Observatory dataset is used. However, testing is
performed both on maps with and without vegetation.

Table 7.10 presents the comparison of map accuracy values for maps generated using the optimised
parameters of the SC-LIO-SAM and the original parameters of the LIO-SAM algorithm. When the
parameters are optimised, the SC-LIO-SAM algorithm performs better than the original LIO-SAM
algorithm. The accuracy improvement is negligible for the dataset with the vegetation, peaking at 0.28%,
while, in the case when the vegetation is removed, the improvement is noticeable, peaking at 8.53%.

68

Sonnblick Observatory Sonnblick Observatory - vegetation removed

LIO-SAM SC-LIO-SAM Relative Difference LIO-SAM SC-LIO-SAM Relative Difference

Map accuracy (+-5m) 88.07% 88.11% 0.05% 95.13% 95.31% 0.19%

Map accuracy (+-3m) 81.02% 81.25% 0.28% 92.93% 93.11% 0.19%

Map accuracy (+-2m) 73.37% 73.51% 0.19% 89.57% 91.01% 1.61%

Map accuracy (+-1m) 56.48% 56.54% 0.11% 73.54% 79.81% 8.53%

Table 7.10: Optimised parameters - SLAM generated map accuracy results - Sonnblick Observatory
dataset

69

8
Discussion and Conclusions

70

The primary objective of this thesis is to analyze and enhance the accuracy of SLAM generated maps
of the environment. The initial section provides a concise overview of lidar sensors, emphasizing their
fundamental types and operational principles. In this thesis, lidar sensors serve as the primary data
collection tools for environmental information. The thesis then proceeds to present a comprehensive
overview of SLAM methods, with a specific emphasis on lidar SLAM. The historical background and
specific characteristics of lidar SLAM are covered in detail.

To evaluate the performance of different SLAM algorithms, four specific algorithms were selected
and tested on diverse datasets representing various environments, each presenting its own unique
challenges. These datasets were acquired using a novel sensing setup known as MOLISENS, which is
complemented by a TLS providing ”ground truth” data. A set of criteria was established to compare the
performance of the four selected algorithms. Subsequently, the algorithm that yielded the best results
among the tested algorithms was further optimized to enhance the accuracy of the generated maps.

During the analysis of the GNSS and IMU data, it was observed that these sensors exhibit significant
oscillations once activated and initialized on a boat in the water. These oscillations, characterized as
noise, are likely a result of the boat’s movement in the water and the initial self-calibration process
undergone by each sensor upon activation. Although the specific reasons behind the appearance of
this noise are not extensively discussed in this thesis, its presence can lead to SLAM process failure,
as demonstrated in Section 7.1. While one possible solution is to simply remove the noisy data, this
approach may not always be feasible, particularly in cases where real-time SLAM is required, such as
with autonomous vessels and vehicles. Thus, it is crucial to explore alternative methods for addressing
or compensating for this noise to ensure the effectiveness and reliability of the SLAM process in practical
applications.

Based on the analysis of the results presented in Section 7.1, it can be concluded that LeGO-LOAM
is not suitable for the applications discussed in this thesis. This is primarily due to its limitations in saving
the generated map and performing loop closure. These shortcomings significantly hinder its practical
applicability. One potential reason for its poor performance may be the lack of official support for the
software versions used in the post-processing setup of this thesis, as the algorithm was last updated
in July 2020. This suggests potential compatibility issues with the software versions employed in this
study, underscoring the importance of using algorithms that are regularly maintained and updated to
align with the latest software developments and requirements.

SLAM algorithms without loop closure cannot produce plausible maps in complex environments. This
is mainly concerning the KISS-ICP algorithm that, as shown in Section 7.1, failed to produce a plausible
map of the Rijeka Harbur dataset and also produced a slightly distorted map of the ViF building dataset.

Furthermore, during the analysis of the Sonblick Observatory dataset in Section 7.1, it was observed
that several tested SLAM algorithms encountered difficulties in generating undistorted maps when the
ground was not level. Only the LIO-SAM algorithm successfully accomplished this task. Specifically,
HDL-Graph-SLAM exhibited problems in producing a complete map of the environment, with the central
part of the surveyed area missing. Similarly, the KISS-ICP algorithm encountered issues, resulting in
a partially distorted and improperly oriented map. Due to these limitations, especially with HDL-Graph-
SLAM, the ”map resolution” criterion values presented in Table 7.2 should not be considered as reliable
indicators since parts of the HDL-Graph-SLAM and KISS-ICP maps are incomplete or distorted.

71

Another phenomenon to note is that trees, and vegetation in general, are a great source of
measurement uncertainty with lidar sensors, since there is no way to know which exact leaf will be
detected. This was shown as a reason for the ”low” accuracy of the maps representing the Sonnblick
Observatory dataset. However, once the vegetation is removed, the accuracy increases substantially,
up to above 95%.

Based on the comprehensive comparison tests conducted, it has been determined that the LIO-SAM
algorithm is the most suitable choice for the specific application addressed in this thesis. However,
recognizing the limitations of LIO-SAM, efforts were made to enhance its performance. As an
improvement over the original algorithm, SC-LIO-SAM, developed by G. Kim and A. Kim[59], was
introduced to address the limitations related to loop-closure capabilities. Based on the results presented
in Section 7.2.1, it is evident that the SC-LIO-SAM algorithm indeed represents an improvement over
LIO-SAM. It effectively resolves the issue of failed loop-closure observed with the Rijeka Harbour dataset,
thereby enhancing the robustness of the SLAM process. However, it should be noted that SC-LIO-SAM
comes with increased computational requirements, necessitating a reduction in the playback rate of the
rosbags from 1 to 0.8 as a trade-off.

In Section 7.2.2 it was shown that the inclusion of GNSS data in the SLAM process has its benefits.
These benefits include increased map accuracy, peaking at just over 5% for maps without vegetation.
However, the main benefit of including GNSS data in the SLAM process is that the generated 3D maps
have the proper compass orientation, as soon as they are generated. This makes comparing, for
example, 3D maps with 2D maps rather simple, since they are already aligned properly.

In a final attempt to improve the accuracy of the map generated by the LIO-SAM algorithm,
modifications were made to specific customizable parameters, as discussed in Section 6.5.3. However,
after a comprehensive analysis of the results, it can be concluded that although optimizing the default
parameter values can yield better map accuracy, the improvements achieved are often marginal. In
many cases, the incremental gains obtained through fine-tuning each parameter are so small that they
do not justify the time and effort invested. The maximum accuracy improvement observed is less than
0.3% for maps containing vegetation and less than 8.6% for maps without vegetation.

Future work may include gathering more diverse datasets, with the ”ground-truth”, so that more
rigorous evaluation criteria can be applied to the SLAM generated 3D maps. Furthermore, the analysis
of each individual configuration parameter in the LIO-SAM or SC-LIO-SAM algorithm, and their effect
on the mapping process, is needed, because, currently, the information about it is extremely sparse.
Ultimately, the analysis of the external forces affecting the sensor carrier in different environments could
provide valuable information for improving the robustness of SLAM algorithms in general.

In conclusion, this thesis establishes the viability of utilizing automotive lidars, specifically the
MOLISENS setup, for accurate environmental mapping. The findings of this research open up numerous
potential applications that rely on the availability of a precise environmental map. In themarine field, it has
the potential to enhance the accuracy of coastal and sea ice maps, thereby improving navigational safety.
Additionally, automotive lidar technology can be applied to autonomous ships, particularly in urban
transportation scenarios. These examples represent only a fraction of the possible applications that
require an accurate environmental map for effective and safe operations. By leveraging the capabilities
of automotive lidars, significant opportunities for innovation in various domains can be realized.

72

Bibliography

[1] R. Roriz, J. Cabral, and T. Gomes, “Automotive lidar technology: A survey,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 7, pp. 6282–6297, 2022.

[2] P. F. McManamon, Lidar Technologies and Systems. SPIE Press, 2019.

[3] “Roboat ii: A novel autonomous surface vessel for urban environments.” Institute of Electrical and
Electronics Engineers Inc., October 2020, pp. 1740–1747.

[4] A. Pantazis, “Lidars usage in maritime operations and eco-autonomous shipping, for protection,
safety and navigation for nato allies awareness,” 2019.

[5] “Molisens: Mobile lidar sensor system to exploit the potential of small industrial lidar devices for
geoscientific applications,” Geoscientific Instrumentation, Methods and Data Systems, vol. 11, pp.
247–261, August 2022.

[6] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam: Tightly-
coupled lidar inertial odometry via smoothing and mapping,” July 2020. [Online]. Available:
http://arxiv.org/abs/2007.00258

[7] “Музей геодезических приборов,” Avaialble: https://theodoliteclub.com/?page_id=1136
(Accessed: 20/10/2022).

[8] “The rafale carries a wide range of smart and discrete sensors,” Avaialble: https://www.
dassault-aviation.com/en/defense/rafale/a-wide-range-of-smart-and-discrete-sensors/ (Accessed:
20/10/2022).

[9] P. F. McManamon, Field Guide to lidar. SPIE Press, 2015.

[10] Z. Šalaka, S. Dervišbegović, and D. Milošević, Fizika sa zbirkom zadataka za 3. razred srednje
škole. Svjetlost, 1998.

[11] M. Quigley, “Ros: an open-source robot operating system,” in IEEE International Conference on
Robotics and Automation, 2009.

[12] J. Będkowski, M. Pełka, K. Majek, T. Fitri, and J. Naruniec, “Open source robotic 3d mapping
framework with ros— robot operating system, pcl — point cloud library and cloud compare,” in 2015
International Conference on Electrical Engineering and Informatics (ICEEI), 2015, pp. 644–649.

[13] D. Girardeau-Montaut, “Cloudcompare - presentation,” Avaialble: https://www.cloudcompare.org/
(Accessed: 23/10/2022).

[14] C. Debeunne and D. Vivet, “A review of visual-lidar fusion based simultaneous localization and
mapping,” Sensors, vol. 20, no. 7, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/
7/2068

73

[15] “What is slam (simultaneous localization and mapping),” Avaialble: https://www.mathworks.com/
discovery/slam.html (Accessed: 10/10/2022).

[16] R. B. Rusu, Andreas Nüchter (2009): 3D Robotic Mapping: The Simultaneous Localization and
Mapping Problem with Six Degrees of Freedom (Springer Tracts in Advanced Robotics 52), Sep
2010, vol. 24, no. 3. [Online]. Available: https://doi.org/10.1007/s13218-010-0036-0

[17] J. Yang, Y. Li, L. Cao, Y. Jiang, L. Sun, and Q. Xie, “Survey of slam research based on lidar sensors,”
p. 1003, 2019.

[18] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (slam): Part ii,” Robotics
Automation Magazine, IEEE, vol. 13, pp. 108 – 117, October 2006.

[19] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-
blackwellized particle filters,” Robotics, IEEE Transactions on, vol. 23, pp. 34 – 46, March 2007.

[20] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable slam system with
full 3d motion estimation,” 2011 IEEE International Symposium on Safety, Security, and Rescue
Robotics, pp. 155–160, 2011.

[21] M. Simas, B. J. Guerreiro, and P. Batista, “Earth-based Simultaneous Localization and Mapping for
Drones in Dynamic Environments,” vol. 104, Apr. 2022.

[22] P. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[23] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud registration algorithms for mobile
robotics,” Foundations and Trends® in Robotics, vol. 4, pp. 1–104, May 2015.

[24] A. Segal, D. Hähnel, and S. Thrun, “Generalized-icp,” June 2009.

[25] J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,” Autonomous Robots,
vol. 41, pp. 401–416, February 2017.

[26] P. Biber and W. Straßer, “The normal distributions transform: a new approach to laser scan
matching,” Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003) (Cat. No.03CH37453), vol. 3, pp. 2743–2748 vol.3, 2003.

[27] R. Cottle and M. N. Thapa, Linear and nonlinear optimization. Springer, 2017.

[28] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration for autonomous mining vehicles
using 3d-ndt,” Journal of Field Robotics, vol. 24, pp. 803–827, October 2007.

[29] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast and accurate scan
registration through minimization of the distance between compact 3d ndt representations.”
Int. J. Robotics Res., vol. 31, no. 12, pp. 1377–1393, 2012. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/ijrr/ijrr31.html#Stoyanov0AL12

[30] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3d normal distributions
transform occupancy maps: An efficient representation for mapping in dynamic environments,”
The International Journal of Robotics Research, vol. 32, no. 14, pp. 1627–1644, 2013. [Online].
Available: https://doi.org/10.1177/0278364913499415

74

[31] D. Droeschel, J. Stückler, and S. Behnke, “Local multi-resolution representation for 6d motion
estimation and mapping with a continuously rotating 3d laser scanner,” 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 5221–5226, 2014.

[32] D. Droeschel and S. Behnke, “Efficient continuous-time slam for 3d lidar-based online mapping,”
2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–9, 2018.

[33] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser range data in urban
environments,” June 2018.

[34] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), 2016, pp. 1271–1278.

[35] D. Gálvez-López and J. D. Tardós, “Bags of binary words for fast place recognition in image
sequences,” IEEE Transactions on Robotics, vol. 28, pp. 1188–1197, 2012.

[36] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard, “Place recognition in 3d scans using a
combination of bag of words and point feature based relative pose estimation,” in 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2011, pp. 1249–1255.

[37] R. Dubé, D. Dugas, E. Stumm, J. I. Nieto, R. Siegwart, and C. Cadena, “Segmatch: Segment
based loop-closure for 3d point clouds,” CoRR, vol. abs/1609.07720, 2016. [Online]. Available:
http://arxiv.org/abs/1609.07720

[38] R. Dube, A. Cramariuc, D. Dugas, J. Nieto, R. Siegwart, and C. Cadena, “Segmap: 3d segment
mapping using data-driven descriptors,” June 2018.

[39] R. Dubé, M. G. Gollub, H. Sommer, I. Gilitschenski, R. Y. Siegwart, C. Cadena, and J. I. Nieto,
“Incremental-segment-based localization in 3-d point clouds,” IEEE Robotics and Automation
Letters, vol. 3, pp. 1832–1839, 2018.

[40] I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “Kiss-icp: In defense
of point-to-point icp - simple, accurate, and robust registration if done the right way,” ArXiv, vol.
abs/2209.15397, 2022.

[41] “Os2 long-range high-resolution imaging lidar - ouster,” Avaialble: https://data.ouster.io/downloads/
datasheets/datasheet-revd-v2p0-os2.pdf (Accessed: 30/04/2023).

[42] T. Goelles, B. Schlager, S. Muckenhuber, S. Haas, and T. Hammer, “pointcloudset: Efficient analysis
of large datasets of point clouds recorded over time,” The Journal of Open Source Software, vol. 6,
p. 3471, September 2021.

[43] “124600-xsens20-d-leaflet mti-series v5 d20200129,” Avaialble: https://www.xsens.com/hubfs/
Downloads/Leaflets/MTi%20600-series%20Datasheet.pdf (Accessed: 10/12/2022).

[44] “Ann-mb series - u-blox,” Avaialble: https://content.u-blox.com/sites/default/files/ANN-MB_
DataSheet_%28UBX-18049862%29.pdf (Accessed: 10/12/2022).

[45] “Riegl vz-6000 - 3d ultra long range terrestrial laser scanner with online waveform processing,”
Avaialble: http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VZ-6000_Datasheet_
2020-09-14.pdf (Accessed: 30/04/2023).

[46] “Os1 mid-range high-resolution imaging lidar - ouster,” Avaialble: https://data.ouster.io/downloads/
datasheets/datasheet-revd-v2p0-os1.pdf (Accessed: 30/04/2023).

75

[47] T. Hammer, “New applications of automotive lidar sensors in geosciences,” Master’s thesis,
Technische Universität Graz, November 2021.

[48] Virtual Vehicle Research GmbH, “Mapping dataset styria,” Avaialble: https://github.com/
virtual-vehicle/mapping_dataset_styria (Accessed: 31/03/2023).

[49] J. L. Hintze and R. D. Nelson, “Violin plots: A box plot-density trace synergism,” The American
Statistician, vol. 52, no. 2, pp. 181–184, 1998. [Online]. Available: http://www.jstor.org/stable/
2685478

[50] S. Kalenjuk and W. Lienhart, “A method for efficient quality control and enhancement of
mobile laser scanning data,” Remote Sensing, vol. 14, no. 4, 2022. [Online]. Available:
https://www.mdpi.com/2072-4292/14/4/857

[51] “Distances computation - cloudcomparewiki,” Avaialble: https://www.cloudcompare.org/doc/wiki/
index.php/Distances_Computation (Accessed: 28/12/2022).

[52] D. Lague, N. Brodu, and J. Leroux, “Accurate 3d comparison of complex topography
with terrestrial laser scanner: Application to the rangitikei canyon (n-z),” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 82, pp. 10–26, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924271613001184

[53] W. Zhang, S. Cai, X. Liang, J. Shao, R. Hu, S. Yu, and G. Yan, “Cloth simulation-based construction
of pit-free canopy height models from airborne lidar data,” Forest Ecosystems, vol. 7, p. 1, December
2020.

[54] B. Valentin, “Evaluation and comparison of 3d lidar based slam algorithms,” Master’s thesis, Royal
Military Academy, January 2021. [Online]. Available: https://www.aia-polytech.be/wp-content/
uploads/2021/01/EvaluationAndComparisonOf3DLidarBasedSLAMAlgorithms.pdf

[55] Autoware Documentation, “Available open source slam,” Avaialble: https://autowarefoundation.
github.io/autoware-documentation/main/how-to-guides/integrating-autoware/creating-maps/
open-source-slam/ (Accessed: 09/06/2023).

[56] B. Garigipati, N. Strokina, and R. Ghabcheloo, “Evaluation and comparison of eight popular lidar
and visual slam algorithms,” 2022.

[57] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry and mapping
on variable terrain,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 4758–4765.

[58] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional lidar-based system for long-term
and wide-area people behavior measurement,” International Journal of Advanced Robotic Systems,
vol. 16, February 2019.

[59] G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for place recognition within 3d point
cloud map,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 4802–4809.

[60] B. Dikic, “Sc-lio-sam-updated,” Avaialble: https://github.com/Bera97/SC-LIO-SAM-updated
(Accessed: 01/06/2023).

[61] H. Chen, W. Wu, S. Zhang, C. Wu, and R. Zhong, “A gnss/lidar/imu pose estimation system based
on collaborative fusion of factor map and filtering,” Remote Sensing, vol. 15, no. 3, 2023. [Online].
Available: https://www.mdpi.com/2072-4292/15/3/790

76

	Acknowledgements
	Abstract
	Resumo
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Objectives
	Contributions
	Outline

	Background
	Lidar
	Robot Operating System (ROS)
	CloudCompare

	State-of-the-Art in SLAM
	Simultaneous Localisation And Mapping
	Overview of Lidar SLAM Algorithms

	Problem Statement
	Data acquisition and analysis
	Experimental Setup
	Data Gathering Process
	Data Post-processing
	Datasets

	Methodology
	Measuring the Accuracy of a SLAM Map
	Vegetation Removal
	SLAM Algorithms Performance Metric
	Chosen SLAM Algorithms
	Performance Optimisation

	Results
	SLAM Algorithms Comparison Results
	LIO-SAM Algorithm Optimisation Results

	Discussion and Conclusions
	Bibliography

