
Towards Bigdata in Robotics: Machine
Learning Pipeline for Robot NEEMs

(Narrative-Enabled Episodic Memories)
in an SQL Database

Abdelrhman Bassiouny

Master Thesis
Erasmus Mundus Master in

Marine and Maritime Intelligent Robotics
Universitat Jaume I

July 17, 2023

Supervised by:

Zoe Falomir, Dr.-Ing. (Universitat Jaume I)
Tom Schierenbeck (IAI, University of Bremen)
Prof. Michael Beetz, PhD. (IAI, University of Bremen)

http://creativecommons.org/licenses/by-nc-sa/3.0/

To My Beloved Family

Acknowledgments

First of all, I would like to thank Dr. Zoe Falomir for her continuous support, advice,
and help all this time, not just for the technical support but also for the career and
personal advice. Dr. Zoe, your advice is gold, I hope you continue giving this advice
and guidance going forward and I wish you luck wherever you are in the future.

Big thanks to Tom Schierenbeck for always being their guiding and helping me
throughout my time at the Institute For Artificial Intelligence (IAI) in Bremen, without
you the result would almost surely be a bleeding edge software. Tom, your hard work is
an inspiration and I wish you all the best with your Ph.D.

I would like to thank Prof. Michael Beetz for giving me the opportunity to work
under his supervision at the Institute for Artificial Intelligence (IAI) and experience a
great and fruitful collaborative working environment that always pushes and motivates
me to reach greater heights that I could not have reached alone.

I have learned a lot during the 6 months I spend at IAI, thank you to all my col-
leagues there for the technical support but also for the good times and the nice talks
during the Uni-Mensa lunches.

I would like to thank all my professors at Universitat Jaume I (UJI), and a special
thanks to Prof. Pedro Sanz for his great advice during my year at UJI and for always
being there when I needed him.

I would also like to thank all my friends from the MIR Masters for all the fun and
learning experiences we had together, it is definitely an unforgettable experience. I hope
we can preserve this friendship throughout our lives while we all grow together and
achieve great feats.

I cannot forget all my professors from Universite de Toulon (UTLN) as well during
the first year of my master’s degree. Thank you all for shaping me and all my colleagues
and preparing us for what’s coming ahead. A special thank you to Prof. Vincent and
Claire Dune for the internship opportunity at COSMER, and thank you for all the effort
from Prof. Ricard Marxer for coordinating this great Master’s degree. I hope it contin-
ues to raise even more students in the coming years.

i

ii

Finally, I would like to thank my family for their unconditional love and unending
support without which I could not have reached this point.

Abstract

Being perfect at a single task in a specific situation is not what is ultimately sought from
robots. One of the main factors of appeal towards robots is the promise to autonomously
perform their tasks while adapting to the context around them. Big data and machine
learning have proven their ability to produce more general solutions that are less con-
fined to specific clear contexts (i.e. computer vision contexts where very big datasets
are available to the public). Robotics has yet to enter that stage because every robot
is different. Even if the robots are the same, the tasks they are doing may be different.
Even if the tasks are the same, the contexts around them when performing these tasks
could also be different. Narrative-Enabled Episodic Memories (NEEMs) were designed
to include context in the form of ontologies within the data collected from robot sen-
sors. The storage and joining of symbolic (context) and non-symbolic (numerical data
from sensors) data in a relational database (SQL) that is available in the cloud is an
important step for robotics. This is the main goal of this master’s thesis. The work
done here shows how the NEEMs can deal with these two types of data (Symbolic &
non-Symbolic) stored and linked in an SQL database. This work also shows complete
machine learning pipelines on different robotic tasks starting from querying the database
to fitting the model and testing it in simulation. Two experiments have been done in
this work on two different machine learning problems, the first is to Predict Next Task,
which tries to make use of the context and the history of operation of the robot to try
and predict the next task(s) in a plan and see how the context will help in that. The
second experiment focuses on Failure Recovery in which the robot has failed to perform
its task and has to recover from this failure, so the goal has been to make use of the
context and the previous experiences in the memory to find the best way to recover from
this failure. For each experiment, the results are reported, the benefit of the context is
discussed, as well as, which information in the context has been more relevant for each
task. Moreover, a simulation of the results of one of the experiments has been performed
on a simulated PR2 robot in an apartment environment to see how the system performs
with the complete robot software. A Jupyter Notebook that shows and tests the whole
machine learning pipeline from querying the database to testing the model in simulation
has been provided.

iii

Contents

Contents v

1 Introduction 1
1.1 Work Motivation . 1
1.2 Literature Review . 4
1.3 Objectives . 5
1.4 Environment and Initial State . 5

2 Planning and resources evaluation 7
2.1 Planning . 7
2.2 Resource Evaluation . 7

3 System Analysis and Design 11
3.1 Requirement Analysis . 11
3.2 System Design . 14
3.3 Interface Design . 14

4 Work Development and Results 19
4.1 Conversion of NEEMs from NoSQL to SQL 19
4.2 Querying the Database . 28
4.3 Machine Learning on NEEMs . 33
4.4 Test Cases . 34
4.5 Analysis & Discussion of Results . 42

5 Conclusions and Future Work 55
5.1 Conclusions . 55
5.2 Future work . 56

Bibliography 59

A Source code 61

v

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 1
1.2 Literature Review . 4
1.3 Objectives . 5
1.4 Environment and Initial State . 5

1.1 Work Motivation
In the last one and half decades the scientific community has concentrated on deep learn-
ing. This is mainly due to the advent of big data and the development of hardware like
GPUs that enable machine learning to achieve its potential. But, robotics has not yet
reached the point of managing truly big data. To be more specific, the part of robotics
that deals with the robot’s cognitive abilities is far behind in the usage of deep learning
and big data. Other areas like perception through computer vision have benefited from
big data due to the availability of images all over the internet and also due to the focus
of the community on solving the vision problems since it was not just important for
robotics but to other domains like security, surveillance, medical applications, and many
others.

To be able to leverage the success of machine learning in the area of cognitive robotics,
one has to start with getting big data for cognitive robotics. The reason why big data
has not yet arrived in cognitive robotics is due to many reasons. Some of these reasons
are the small number of robots available for research, the differences that exist in the
robot hardware, the differences in the deployment environment, and the huge amount of

1

2 Introduction

different tasks that a robot should do. A big issue is that the robotics community also
has different software and robot cognitive architectures that make the data formats differ
making integration and collaboration very hard. In addition, when the robot has to be
deployed in areas outside the industry, the amount of variability in the environment and
the situations that the robot has to deal with is huge, and the required data increase
exponentially with the increase in the variability of the situations.

The robotics community needs to have a way to share the data collected from their
robots in a way that is independent of robot hardware and setup as much as possible
or at least include in the data: the type of robot, hardware, environment, and task
that was used. In addition, the data collection, formatting, pre-processing, and curation
processes could be automated. Database management systems are an excellent solution
for data storage, retrieval, and maintenance, but they do not solve data collection and
formatting problems.

For this purpose, the Narrative-Enabled Episodic Memories or NEEMs [13] and the
NEEM HUB1 (Figure 1.1) were developed as part of CRAM (Cognitive Robot Abstract
Machine)[3, 2] under the EASE project2 which tries to solve most of these problems for
the domain of robotic manipulation in everyday activities at home. Figure 1.2 shows
the CRAM illustration diagram. The NEEMs are episodic memories of the robot while
performing an activity. What is special about NEEMs is that they do not just consist of
the low-level information of the robot motors, and sensors but also they add the narra-
tive of the activity which includes the context around the activity. This context includes
the plans, the goals, the states of objects and their description, the facts that the robot
knew at that time, and the reasoning that the robot performed. All this information is
time annotated so that it can be linked to the low-level information too by matching the
time at which they occurred.

The information in the NEEMs can be categorized into symbolic data (the narrative),
and non-symbolic data (the low level motor and sensor information). The symbolic data
comes mainly from using ontologies like the SOMA ontology (The SOcio-physical Model
of Activities) [4], which is an ontology that models everyday activities. This model is
agent agnostic, so it works for both a robot and a human, the usage of the ontologies
and the reasoners used by the robot is developed as part of Knowrob [2].

The NEEMs are stored in a MongoDB3 database, which is a NoSQL database that
is less strict than SQL databases and provides flexibility for the data structure, basically
allowing for schemaless data storage. This decreases the need of a structure for storing
the data and lowers the engineering work on the data before storing it, also it allows
for easy update of the data with time without having to conform to a specific struc-

1https://neemgit.informatik.uni-bremen.de/neems
2https://ease-crc.org/
3https://www.mongodb.com/

1.1. Work Motivation 3

Figure 1.1: NEEM HUB overview.

ture. As machine learning algorithms and pipelines favor structured data, it provides
a consistent structure which provides a consistent input to the machine learning algo-
rithm which is crucial, also forcing the users to conform to the datatypes and structure
which is important for the maintenance of the data and for the ability of old data to work
with newer data on the same machine learning algorithms without having to adapt them.

The key research in master this thesis is to find the best way to store the NEEMs in
an SQL database while preserving all the information and having them easily accessible,
understandable, and expandable. Since the main goal is to allow for big data for cog-
nitive robotics. As hypothesized in [11]: “A memory system in a cognitive robot control
architecture mediates between (i) high-level abilities, usually represented in a symbolic
manner, such as language understanding, scene understanding, planning, plan execution
monitoring and reasoning, and (ii) low-level abilities, such as sensor data processing,
sensorimotor control”. That is exactly what the NEEMs are trying to achieve, but they
currently lack being big scale and do not support queries on multiple episodic memories
at the same time, so one of the goals of this work is to mitigate this issue.

Another key research question in this master thesis is to find out which context or
which parts of the narrative included in the NEEMs are relevant for which tasks. This
would help improve the NEEMs by adding missing information in the context in newer
NEEMs or by removing any redundant or useless information from them. This would
help the robotics research community in finding the relevant information that the robot
needs in order to perform everyday tasks and in inspiring algorithms that focus on these

4 Introduction

Figure 1.2: The CRAM cognitive architecture including the NEEMs.

aspects and also on techniques to acquire such information while the robot is performing
its task.

1.2 Literature Review

Allowing robots to have memory is not a new concept in the literature since there are
previous research works that created artificial cognitive architectures (in which memory
is a crucial part) that try to mimic humans’ cognitive processes [1, 12]. Kotseruba et
al. [8] estimated that the number of artificial cognitive architectures are around 300.
Most of the previous work on artificial memory focus on conceptual aspects, such as the
memory including cognitive concepts like working memory (WM) [7, 9] and long-term
memory (LTM) [6]. However, there are no works regarding more practical aspects like
efficiency, making these memories shared among robots and allowing for big-scale data
collection and storage to make use of the current technological advancement in machine
learning. Although Peller-Konrad [11] et al. have shown in some of their diagrams the
possibility of using SQL databases, there are no real details or implementation behind it.

Thus, this is the reason why this work focus is not to develop new cognitive ar-

1.3. Objectives 5

chitecture or memory concepts, but to allow for big-scale data collection, storage, and
retrieval in an efficient and easy manner of an already existing memory concept, that
is the NEEMs. The goal is to preserve all the benefits and the concepts behind the
NEEMs, while making them work on a bigger scale and also on the cloud. And finally,
to show how machine learning pipelines would benefit from this improvement.

1.3 Objectives

The first objective was to migrate the NEEMs from the NoSQL database to MariaDB4

which is an open-source SQL database based on MySQL5 and make it available for all
users to insert and retrieve data using SQL queries.

The second objective was to use JPTs (Joint Probability Trees) [10] which is a statis-
tically transparent machine learning algorithm based on PCs (Probabilistic Circuits)[5]
to learn from the NEEMs database and show what helps improve the robot performance
while doing activities similar to the ones performed in the NEEMs:

• One aspect to learn from the NEEMs is the ability to infer the next best task for
the robot to do (given the environment and robot state) and see if the model can
provide useful predictions which would replace the need to write rigid hand-crafted
plans for the robot to perform similar activities that differ slightly (i.e. performed
at a different kitchen).

• Another aspect to learn is failure recovery, since the NEEMs also include the
ultimate state of the tasks performed, whether they failed or succeeded, and what
was done after they failed to recover from such failure.

1.4 Environment and Initial State

As mentioned in section 1.1, the starting point of this master thesis work is that the
NEEMs are stored in a NoSQL database called MongoDB. So the migration task to a
SQL database was imposed on me as my first task during my thesis internship by the
research group, but the design decisions on how the migration will be performed and
what changes needed to be made in the data, and what final structure the data will take
in the SQL database was left for me to decide. Some of my decisions were influenced
by the end users in the research group such that it worked well for their needs. Other
decisions were solely influenced by me for reasons related to implementation complexity
and maintainability of the SQL database.

The usage of the JPT machine learning algorithm was convenient since it was devel-
oped in the research group and helped improve the collaboration with other researchers

4https://mariadb.org/
5https://www.mysql.com/

6 Introduction

in the group and provide feedback to and from the research group. The main goal is
to show a complete machine learning pipeline from writing an SQL query to retrieve
the data from the newly formed NEEM SQL database to use the data to fit a machine
learning model and test it on simulation to prove the usability and the benefit of the
work done on the new SQL database.

The research question of finding which parts of the narrative/context are relevant
for the tasks to perform by the robot was decided by me after consultation with my
supervisors and colleagues in the research group.

Finally, I have had access to all the software developed by the research group and
their databases. Most notable are the cram organization6, and the Institute for Artificial
Intelligence - University of Bremen organization[?] on GitHub, and the NEEM-Hub on
Gitlab7.

6https://github.com/cram2
7https://neemgit.informatik.uni-bremen.de/neems

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 7
2.2 Resource Evaluation . 7

2.1 Planning
Table 2.1 details the time planning of the work, including all its tasks and subtasks, and
the dependencies between them are shown.

An illustrated Gantt chart can be seen in Figure 2.1. The plan has been modified
throughout the work.

2.2 Resource Evaluation
This work required minimal resources of a PC and a local server for maintaining the
database. Most of the work is available as software components without the need for
any hardware. The PCs and the server were provided by the Institute For Artificial
Intelligence (IAI) in Bremen.

7

8 Planning and resources evaluation

Figure 2.1: The Gantt chart for all the tasks in this work, the work break down structure
is also shown in Table 2.1

2.2. Resource Evaluation 9

WBS # Name / Title Type Start Date End Date
1.1 Migrate NEEMs from NoSQL to SQL group 2023-02-01 2023-04-20

1.1.1 Retrieve NEEMs from MongoDB task 2023-02-01 2023-02-08
1.1.2 Understand the data and how it is structured task 2023-02-09 2023-02-14
1.1.3 Correct and preserve the data types task 2023-02-15 2023-02-21
1.1.4 Experiment with Different Schemas task 2023-02-22 2023-03-16
1.1.5 Link Predicates and TF data task 2023-03-17 2023-03-22
1.1.6 Design Interface task 2023-03-23 2023-03-28
1.1.7 Design Common Table Views task 2023-03-29 2023-04-04
1.1.8 Analyse Query Time and Compare task 2023-04-05 2023-04-07
1.1.9 Upload database to the cloud task 2023-04-10 2023-04-13
1.1.10 Test the cloud database with different users task 2023-04-14 2023-04-20
1.2 Machine Learning on NEEMs group 2023-04-21 2023-06-05

1.2.1 Find Learnable Tasks from NEEMs task 2023-04-21 2023-05-01
1.2.2 Figure Out Required Information from DB task 2023-05-02 2023-05-10
1.2.3 Write Query To retrieve Task Trees task 2023-05-11 2023-05-17
1.2.4 Postprocess retrieved data task 2023-05-18 2023-05-23
1.2.5 Fit Joint Probability Trees on data task 2023-05-24 2023-05-29
1.2.6 Experiment with different contexts task 2023-05-30 2023-06-05
1.3 Test in Simulation group 2023-06-06 2023-06-16

1.3.1 Map task names to PyCRAM task 2023-06-06 2023-06-08
1.3.2 Initialize simulation with initial state/context task 2023-06-09 2023-06-13
1.3.3 Run Model from Initial State Iteratively task 2023-06-14 2023-06-16
1.4 Thesis Writing group 2023-06-06 2023-07-17

1.4.1 Introduction task 2023-06-06 2023-06-14
1.4.2 System Design task 2023-06-07 2023-06-15
1.4.3 System Analysis task 2023-06-09 2023-06-19
1.4.4 Experimentation & Results task 2023-06-19 2023-07-06
1.4.5 Conclusion & Furure Work task 2023-06-28 2023-07-06
1.4.6 Revising and Finalizing task 2023-07-07 2023-07-17

Table 2.1: Project Schedule

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 11
3.2 System Design . 14
3.3 Interface Design . 14

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, where appropriate, its interface design.

3.1 Requirement Analysis

As mentioned in the previous chapter, machine learning pipelines work best when given
with structured data. The problem is that the current NEEMs database is based on
MongoDB1 which is a NoSQL database so for easily querying is required to convert
this to an SQL database which has a more maintainable structure for machine learning
purposes.

Since the question “How to convert between a NoSQL database to an SQL database?”
has no definitive or general answer that works for all cases, this leaves us with some design
choices that will affect how the final SQL database will look like. To be able to answer
this question, in this section, I will start by listing the requirements and dividing them
into both functional and non-functional requirements.

1https://www.mongodb.com/

11

12 System Analysis and Design

3.1.1 Functional Requirements

The proposed system can be divided into two main functionalities which have their own
functional requirements. The first is to prove a service for the user that coverts NEEMs
from a MongoDB server to a MariaDB server. The second main functionality is to
provide the ability to query this database and this query must have certain functional
requirements as well.

The data migration to SQL database should:

• Convert all current usable NEEMs from the MongoDB to the MariaDB.

• Provide the functionality to update the MariaDB with new NEEMs that were
added to the MongoDB.

• Provide a user interface for the conversion functionality where the user can provide
the inputs like the MongoDB and MariaDB server URIs.

• Provide correct datatypes for all the retrieved data.

The SQL query should:

• be queried by a user for retrieving user-needed information in a table that will be
used for machine learning as the primary purpose.

• have the ability to query information from multiple NEEMs at the same time.

• be able to queried from anywhere, and be accessible as a server to all allowed users
both locally and remotely.

The plan to implement the functional requirements will be detailed in the system
design section (see Section 3.2). And the two main functional requirements of the system
are shown in the Tables 3.1 and 3.2.

Table 3.1: Functional requirement «Migrate NEEMs from NoSQL to SQL».

Input: A MongoDB server URI with NEEMs, A MariaDB server URI
Output: Migrated NEEMs to the provided MariaDB server
Given a MongoDB server that contains NEEMs, and a MariaDB server, the
code will migrate all found NEEMS to the given MariaDB server

3.1.2 Non-functional Requirements

The non-functional requirements for the proposed NEEMs conversion from NoSQL to
SQL can be summarized as follows:

3.1. Requirement Analysis 13

Table 3.2: Functional requirement «SQL Query».

Input: SQL Query from a user
Output: Retrieved data from multiple NEEMs as a table
The user queries the database using an SQL query to retrieve data as a table
from multiple NEEMs to be used for machine learning purposes from anywhere

• Joining of robot TF data (i.e. the time stamped Transformation Frames or poses
of all robot frames during its operation) and the triples (i.e. semantic data that
constitutes the robot knowledge and reasoning).

• Structuring the data such that it is fairly understandable by a new user and can
easily find and write down the query that will retrieve the required information.

• Structuring and indexing the tables in the database such that the most common
queries do not take much time to provide the results.

• Making the triple data more readable for the user by removing any unnecessary
information from the names of objects like big ontology links.

• Preserving the relationship between the tables/data structures from the MongoDB
when converting to the MariaDB.

• Structuring the database such that it is stable and maintainable and easily updated
with new data.

• Enabling the database updating directly using SQL commands instead of having
to migrate from MongoDB.

• Providing another interface that enables users to utilize the developed APIs for
another custom usage other than the command line interface which only provides
conversion from MongoDB to MariaDB.

• Providing a way to filter the NEEMs to be converted, such that only specific
NEEMs are converted from MongoDB to MariaDB.

• Providing loading bars that show the conversion progress as feedback to users.

• Allowing users to specify if certain bugs in the data are skipped or should the
conversion stop when these bugs are encountered.

The non-functional requirements for the querying of the created MariaDB are the
following:

• Provide most common queries as table views which make things much faster for
the most common use cases.

14 System Analysis and Design

The plan to implement the non-functional requirements will be detailed in the system
architecture section (see Section ??).

3.2 System Design

Figure 3.1 shows an illustration of the system design. The system is the complete
machine learning pipeline starting from collecting the data from the robots. The data can
be one of two types symbolic data which is stored in ontologies, and non-symbolic data
including the robot sensory and sensorimotor control data. Then this data is transferred
to the NEEM-Hub and stored in a no-SQL database, namely MongoDB. Then the data
is given structure and linked together in an SQL database, namely MariaDB. After
that, the database can be queried for required data needed by the machine learning
algorithms the learn specific tasks from the NEEMs SQL database. Finally, after fitting
the machine learning models, the models can be used online during robot operation to
extract evidence which includes the context and answer the robot queries instantly.

3.3 Interface Design

The designed interface is a command line interface for the software that migrates the
NEEMs from no-SQL to SQL. This interface allows users to provide the credentials to
connect to the NoSQL database and the SQL database and provide some additional ar-
guments that are needed to complete the migration process, the arguments are described
as shown in Table 3.3.

Moreover, the program provides loading bars for each step in the migration process
as shown in Figure 3.2, these steps are:

1. Verifying the data: ensuring the data is coherent and there is no corruption or
inconsistency.

2. Collecting and restructuring the data: to provide the unstructured data with
a tabular structure.

3. Generating SQL commands: producing the commands that will create the
database schema and upload the data to the SQL database.

4. Linking predicate tables: indexing the predicate tables and linking them by
using foreign keys, so that each predicate has a NEEM that it belongs to, and
should be linked to it using the NEEM_id.

5. Linking TF and triples: linking the transformation frames to the predicates
or triples using the time they occurred, this will make it easy to query both the
symbolic and the non-symbolic data together.

3.3. Interface Design 15

Figure 3.1: Overview of the system design.

16 System Analysis and Design

6. Executing Schema Creation Commands: this executes first the commands
that will create the tables with their respective columns, primary keys, and foreign
keys.

7. Executing Insertion Commands: this executes the commands that will insert
the data to the created tables in the correct order obeying the foreign keys and
the order of the tables.

Figure 3.2: The NoSQL to SQL Migration Process.

Figure 3.2 shows the loading bars for each step of the migration process to inform
the user of the current progress and provide feedback on which step the system takes
time and where it encountered a problem. The first stage is the verification of the data,
the second is the creation of structure by creating the tables, and the third is linking the
tables and executing the SQL commands to upload the data to the database. Finally,
the execution time of each part is printed.

3.3. Interface Design 17

Table 3.3: Command Line Arguments for the Migration of the NEEMs for NoSQL
database to SQL database.

Argument Description
-drop, -d Drop the tables that will be inserted first
-skip_bad_triples, -sbt Skip triples that are missing one of subject, predicate or

object
-allow_increasing_sz,
-ais

Allow increasing the size of the original data type of a
column

-allow_text_indexing,
-ati

Allow indexing text type columns

-max_null_percentage,
-mnp

Maximum percentage of null values allowed in a column
otherwise it will be put in a separate table

-batch_size, -bs Batch size (number of neems per batch) for uploading
data to the database, this is important for memory issues,
if you encounter a memory problem try to reduce that
number

-num_batches, -nb Number of batches to upload the data to the database
-start_batch, -sb Start uploading from this batch
-dump_data_stats, -dds Dump the data statistics like the sizes and time taken for

each operation to a file
-sql_username, -su SQL username
-sql_password, -sp SQL password
-sql_database, -sd SQL database name
-sql_host, -sh SQL host name
-sql_uri, -suri SQL URI this replaces the other SQL arguments
-mongo_username, -mu MongoDB username
-mongo_password, -mp MongoDB password
-mongo_database, -md MongoDB database name
-mongo_host, -mh MongoDB host name
-mongo_port, -mpt MongoDB port number
-mongo_uri, -muri MongoDB URI this replaces the other MongoDB argu-

ments
-log_level, -logl Log level (DEBUG, INFO, WARNING, ERROR, CRIT-

ICAL)
-neem_filters_yaml, -nfy YAML file containing the neem filters

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Conversion of NEEMs from NoSQL to SQL 19
4.2 Querying the Database . 28
4.3 Machine Learning on NEEMs . 33
4.4 Test Cases . 34
4.5 Analysis & Discussion of Results . 42

The developed work and the obtained results are shown in this chapter. Also the
deviations from the initial planning are and justified.

4.1 Conversion of NEEMs from NoSQL to SQL

4.1.1 The Good, The Bad, and The Ugly in Existing NEEMs

As mentioned in Section 3.2, the NEEMs consist of symbolic and non-symbolic data.
the symbolic data being the triples, and the non-symbolic data being the robot Frames
Transformations (FT).

The Triples represent the ontologies that contain the robot’s knowledge and on which
the robot performs its logical reasoning while it was performing its task. The triples are
stored in the MongoDB as collections of three variables: the subject (S), the predicate
(P), and the object (O).

The triples’ objects have different datatypes depending on the property/predicate
but, in the MongoDB, they are all stored as strings. The datatypes can be recovered

19

20 Work Development and Results

though from the predicate “rdf:Range” which takes as a subject the property/predicate
name and gives as object the datatype.

The datatypes found in the NEEMs are mostly “XSD” 1 datatypes, but also some
“SOMA” 2 defined datatypes. For the XSD datatypes, an automatic conversion exists
using the “RDFLib” 3 python library. While the “SOMA” datatypes conversion like the
“soma_array” datatype had to be implemented in the code.

The Transformation Frame data (TF data) are the coordinates of the robot
frames represented as transformations which are ROS messages logged over time from
the TF package4 as seen from the example in Figure 4.15.

Figure 4.1: ROS TF frames and corresponding transformations example

The TransformStamped ROS message has a hierarchy that is represented as seen in
Figure 4.2. This same structure is found in the database.

4.1.2 Finding a Rigid Structure from a Flexible One

The relation between data in the NEEMS included: (i) ONE to ONE relations (1-1);
(ii) ONE to MANY relations (1-N) and (iii) MANY to MANY relations (N-N).

One to one (1-1) relationships are modeled as columns in the same table or as separate
tables linked together by their primary key. The simplest example is in the TF data
where each TF must have one header and each header must have one time stamp, etc.

To fins out the type of relationship between the data a preliminary pass through all
the data is done. For example, for this pass one can deduce that a NEEM can have
only one creator, thus the created_by variable can be stored as a column in the neems

1https://www.w3schools.com/xml/schemadtypesnumeric.asp
2https://ease-crc.github.io/soma/
3https://rdflib.readthedocs.io/en/stable/
4http://wiki.ros.org/tf
5https://articulatedrobotics.xyz/ready-for-ros-6-tf/

4.1. Conversion of NEEMs from NoSQL to SQL 21

Figure 4.2: The data included in the ROS TransformStamped message. This includes
the header which includes the time stamp and the frame id which is the name of the
parent or reference frame. The child frame id is the name of the current frame. The
transformation description including the translation and rotation

table. On the other hand, a NEEM can include more than one activity, thus it is a ONE
(for the NEEMs) to MANY (for the activity), and similarly for the MANY to MANY
relationships.

The ONE to MANY and the MANY to MANY are handled by storing the data in
separate tables and having a third table linking them together by referencing both. This
is illustrated in Figure 4.3 where the neems table is linked to the neems_activity table
by another third table called neems_activity_index table that references data from both
tables.

Figure 4.3: Overview of neems table, the neems_activity table, and the
neems_activity_index table which acts as the mediator that links the neems table with
the neems_activity table. This is an example of how ONE to MANY and MANY to
MANY relationships are handled in the database.

22 Work Development and Results

4.1.3 How to handle Triples?

Predicates as Tables. The fact that each predicate had a different datatype for its
object suggests that each predicate should represent a table in the SQL database. This
table would have two columns, a column for the subject and a column for the object each
with its own datatype since columns in SQL tables can have only one datatype. Although
there is the BLOB datatype which can convert every datatype to a bytes datatype, it
is not recommended to do so, because it will lose the identity of each datatype and will
result in loss of information, also it would increase the size of the database and will
increase the time a query gets resolved. In addition, it is more user-friendly and more
informative to have a specific datatype for each column because it helps in inferring the
type of data in that column.

Ontology Classes as Tables. The classes defined in the ontology like Action, TimeIn-
terval, Task, etc. will be tables, these tables will have the predicates as column titles and
the columns will contain the objects of these predicates, while the Class Name column
will be the instances of this class. This structure will make the database content easier
to understand by users since these classes are what user are interested in. For example,
a user could easily find his way through the database and could easily determine what
tables (s)he needs to join together to generate the table (s)he needs for their project
or task. But, this is much harder to maintain because the classes of the ontology are
susceptible to change or increase with new classes all the time, this makes the database
unstable and will result in thousands of tables in a single database. Also, some predi-
cates would have many objects for the same class instance, this requires the creation of
a new table that is referenced by this column, this also increases the number of tables
and the number of required joins and even nested joins to generate a table that contains
these data. This would increase the complexity of the SQL query and could increase the
time to resolve the query.

Triples to RDF Graph. Using the RDFLib python package, the loaded triples from
the MongoDB can be loaded as an RDF Graph, this makes it easy to resolve ontology
URIs to their shorter versions, and help in resolving datatypes like the XSD datatypes
to python datatypes, also the RDF Graph can be queried easily for filtering or searching
for specific triples.

RDF Graph to Dictionary. The RDF graph can be easily converted to a Python
dictionary which can then be converted to an SQL Schema. The main algorithm that was
developed converts JSON or Python dictionaries into SQL schema thus converting the
triples from the RDF graph to the Python dictionary makes it very convenient because
one can now re-use the algorithm (JSON/Dictionary to SQL tables) for converting the
triples into SQL tables.

4.1. Conversion of NEEMs from NoSQL to SQL 23

4.1.4 Linking Triples

In the case of Predicates as Tables, it was found that no linking is needed, since link-
ing in SQL is done using a parent-child relationship between two tables, most predicates
do not have this type of relationship, and the user can infer the relationship between
the data in the tables by looking at the ontology itself instead of the SQL tables and
then the user can perform the required joining between the tables using SQL. Indexing
the columns of the predicate tables was very important because it made the queries of
joining the tables resolve much faster than without indexing, and this is one of the key
benefits of using SQL databases.

In the case of Classes as Tables, each Class relates to other Classes by a Predicate,
these predicates are columns in the tables of each class, and since the classes usually
have a hierarchy, they can be linked together with a child-parent relationship, and thus
the foreign key of the SQL tables can be used, for example, and action is part of a task,
which means one cannot have an action without first having a task, this means that a
row must first exist in the Task table for an instance of a task before having a row in
the Action table that uses this task. Figures 4.4 and 4.5 show the Classes as Tables
schema TimeInterval and Action tables and their links respectively. This is how foreign
keys work as well that is why they can be used in this type of schema but not in the
Predicates as Tables schema. This creates many foreign keys and the schema gets
very complicated, but the user can make use of the foreign keys to infer the relations of
the tables without needing to look at the ontology.

A table summarizing the main differences between the two different schemas of
Classes as Tables and Predicates as Tables is shown in Table 4.1. Looking at
the table it is clear that Predicates as Tables is the clear winner here, that is why it
was chosen as the schema type to use for the NEEMs SQL Database. The only draw-
backs of Predicates as Tables is that there is no hierarchy (i.e. no parent and child
relationship) between the predicates and the relationships between the predicate tables
are not explicitly represented in the database, but this issue can be mitigated by looking
at the ontology and visualizing it using software like Protege6.

Table 4.1: Comparison of Classes and Predicates as Tables showing the advantages (+)
and disadvantages (-) of each.

Classes as Tables Predicates as Tables
More Vague (-) More Understandable (+)
More Joins (-) Less Joins (+)

1000+ tables (-) ∼200 tables (+)
Clear Hierarchy (+) No Hierarchy (-)

Less Stable (-) More Stable (+)
Explicit Relations (+) Implicit Relations (from ontology) (-)

6https://protegeproject.github.io/protege/getting-started/

24 Work Development and Results

Figure 4.4: Overview of the TimeInterval table and some of its related tables in the
Classes as tables schema. The links represent the relationships between the ontology
classes. The links are explicitly represented as foreign keys in the database.

4.1.5 Joining TFs and Triples

The key that is used to link between the TF data and the triples is the time stamp,
the stamp in the TF data that is found in the header part of the message can be used
and compared with the time stamp of the symbolic actions in the triples that can be
found using the predicate/property hasTimeInterval which has action name/instance as
subject and gives an instance of a TimeInterval class as object, every TimeInterval has
a start and end that can be found using the predicates hasIntervalBegin and hasInter-
valEnd respectively. Both of these predicates take as subject a TimeInterval instance
and gives a float as object which represents the time stamp. Figures 4.6 and 4.7 show
a visual explanation of the tree hasTimeInterval, hasIntervalBegin, and hasIntervalEnd
respectively.

4.1. Conversion of NEEMs from NoSQL to SQL 25

Figure 4.5: Overview of the Action table and some of its related tables in the Classes
as tables schema. The links represent the relationships between the ontology classes.
The links are explicitly represented as foreign keys in the database.

Figure 4.6: Explanation of the hasTimeInterval predicate

Figure 4.7: Explanation of the hasIntervalBegin, and hasIntervalEnd predicates.

26 Work Development and Results

The linking is done by finding all the TF frames that have a time stamp between
the start and the end of each action, this links the robot poses and frame coordinates
(which is non-symbolic) with all the symbolic data found in the triples and can be used
together for adding context to the non-symbolic numeric data. In addition, the data
are linked using the NEEM_ID which is a unique id that is given to each NEEM, this
makes it easier to separate the NEEMS and not confuse data from different NEEMs.

4.1.6 Database as a Server

MariaDB offers the ability to add and manage users that can access the database, also
the privileges of each user can be adjusted. This is easily done by having an actual
table of users (shown in Figure 4.8) and their data which can be modified using SQL
commands as any other table in the database, but of course, only the root user or the
owner can have such a privilege to modify the table of users.

Figure 4.8: MariaDB table of users and their allowed privileges.

The table of users has an IP address column that specifies the address of each user,
this allows for remote connections on the local network and even through ssh from non-
local connections. This is especially important when it comes to sharing the database
with multiple institutions across the world which is one of the goals of the NEEMs.

4.1.7 Common Table Views

Most use cases will be confined to a small number of tables from the database, joining
these tables as views for the different use cases will make it much more easy to use. A
table view is a table that is represented or stored as a query, this query can be used by
any user directly without the need to write it, also it is possible for the user to modify
this query to add other tables from the database or remove some of the joined tables in
the default view. These views also serve as an example of how to use the database and
how to join the tables of the predicates and the TF tables.

4.1. Conversion of NEEMs from NoSQL to SQL 27

The currently available views

Actions and TF, this joins the symbolic robot actions with the TF data that occurred
during these actions, this gives information on the poses of the robot arms and the robot
location during the execution of the action. Also, this includes the time interval of each
action and the objects that were acted on by the robot/agent while performing the ac-
tion. The resulting table can be seen in Figure 4.9.

Figure 4.9: Resulting table from the Action and TF common view query

NEEMs for a certain environment, this chooses the NEEMs that occurred in
a certain environment, examples for environments are Kitchen, and Retail Store. This
can be done by conditioning the environment column in the NEEMs metadata table to
be equal to a certain environment, once the NEEMs are filtered the user can choose
only the relevant data from all other tables that occurred in the chosen NEEMs. The
resulting table can be seen in Figure 4.10.

Figure 4.10: Resulting table from the NEEMs for a certain environment common
view query

Task parameters, this shows the relevant parameters, these parameters are things
like the grasping orientation and are software specific, in the NEEMs they are related
to the CRAM action parameters. The resulting table can be seen in Figure 4.11.

Tasks and sub-tasks with parameters, this shows both the tasks and their
sub-tasks with the parameters of each one and the objects that were acted on by the
robot/agent during these tasks and sub-tasks. The resulting table can be seen in Figure
4.12.

28 Work Development and Results

Figure 4.11: Resulting table from the Task parameters common view query

Figure 4.12: Resulting table from the Tasks and sub-tasks with parameters common
view query

TF data of certain robot links, this uses the symbolic knowledge of the robot
and its links which is stored in the predicate tables with the TF data tables which allows
filtering the TF data for certain relevant information related to the symbolic knowledge
like the robot name or the link names without the need to know the frame names. The
resulting table can be seen in Figure 4.13.

Figure 4.13: Resulting table from the TF data of certain robot links common view
query.

4.2 Querying the Database

The common table views are very good examples that shows most use cases of the
database and how to query it for all types of information that include both the symbolic
(predicate tables) and the non-symbolic data (TF tables).

4.2. Querying the Database 29

4.2.1 Filtering NEEMs

Let us start with the simplest one, which finds the NEEMs that have occurred in the
kitchen environment, the first thing to do is to look at how the neems table is related
to the neems_environment_index table, this can be easily done by looking at the
visualization of the tables in Figure 4.14.

Figure 4.14: The neems and environments tables and their link in the database, they are
linked using the neems_ID foreign key which links to the ID of the neem, the relationship
is a many to many relationships where different neems can have same environment or
even multiple environments

The environments are stored in a separate table because the environments are limited
and are used by multiple NEEMs, also some NEEMs can have no environment specified,
and since it is better to reduce the number of NULL values in an SQL table and reduce
the redundancy of the data it is better to separate that column into another table. So
the query that would select the NEEMs that occurred in the kitchen environment can
be written as follows:

SELECT * FROM neems

INNER JOIN (

SELECT * FROM neems_environment_index

WHERE environment_values="kitchen"

)

AS neem_env

ON neems.ID = neem_env.neems_ID;

Here one first selects all columns in the neems table, then joins it with the neems_
environmet_index table conditioned on that the column environment_values have
the value "kitchen". The two tables are joined by matching the ID column in the neems
table with the neems_ID column in the neems_environment_index table. This

30 Work Development and Results

results in the table shown in Figure 4.10. This is just one example of how to choose
certain NEEMs, the NEEMs can be filtered by their name, description, creator, activity
name, and others.

4.2.2 Filtering TF Data

Lets say we are only interested in a specific frame on the robot, this can be easily done
by selecting all rows where the value of the child_frame_id in the tf table equals to the
frame name, for example if we are interested in the "r_gripper_palm_link" frame, the
query would be as follows:

SELECT * FROM (

SELECT tf.* From tf

WHERE tf.child_frame_id = "r_gripper_palm_link"

) AS tf

LIMIT 300000;

Since the TF data is large it is better to limit the results unless you want all the
data.

4.2.3 Joining the TF Data Tables

The TF data structure is similar to the one shown in Figure 4.2, but one can also see it
from the tables relation diagram shown in Figure 4.15.

The TF data tables all have ONE to ONE relationship, this allows having the primary
key of each table as the foreign key to the parent table as well. Thus the joining is done
on the primary key which is always the ID column in the table. Thus the query that
will join all the TF data tables together into one table would be as follows:

SELECT t.*, r.*, th.*, tf.child_frame_id FROM tf

INNER JOIN tf_header AS th

ON tf.ID = th.ID

INNER JOIN tf_transform AS tft

ON tft.ID = th.ID

INNER JOIN transform_translation AS t

ON t.ID = tft.ID

INNER JOIN transform_rotation AS r

ON r.ID = tft.ID;

This results in the table shown Figure 4.16.

4.2. Querying the Database 31

Figure 4.15: The tf tables in the database have the same structure as the tf ROS message
so it is easy to convert between them and easy to understand by users familiar with the
ROS message

Figure 4.16: The resulting table from joining the tf tables together

4.2.4 Filtering TF Data Using Predicate Tables Information

A more interesting use case is one that combines the symbolic data in the predicate
tables and the non-symbolic data in the TF data tables. Lets say we are interested in
the TF data for frames that belong to a certain robot, and naturally the NEEMs have
TF data from many robots or at least that is the intention, but sometimes the frame
names of the robots are not uniquely identified by a certain naming pattern, here comes
one of the benefits of the symbolic data.

The robot links are defined symbolically in the triples and thus in the predicate
tables, these link names are prefixed with the robot name. One of the most important
predicates is the rdf:type which is represented in the rdf_type table in the database,
this gives the type/class of any entity in the ontology, so now we can look for entities
that have type "urdf:link" and filter them so that we only select the links that are

32 Work Development and Results

prefixed with "pr2:" which is the prefix for the PR2 robot, and finally once we have the
PR2 link names we can filter the TF data by selecting the TF data entries that have
child_frame_id equal to one of these link names, thus the query would be as follows:

SELECT tf.* FROM tf

INNER JOIN (

SELECT DISTINCT rdft.s, rdft.ID

FROM rdf_type AS rdft

WHERE o = ’urdf:link’ AND s REGEXP ’^pr2:’

) AS rdft

ON tf.child_frame_id = REPLACE(rdft.s, ’pr2:’,’’)

LIMIT 300000;

The results for this query can be seen in Figure 4.13.

4.2.5 Joining Related Predicate Tables

Predicate tables have three main columns, the neem_id column which relates the row
the NEEM that it belongs to, the subject column which is the input to the predicate,
and the object column which is the output of the predicate. These columns have names
related to class type that is used in the column, but if no class type is defined for it in
the ontology then the column names would be ’s’, and ’o’ for the subject and object
columns respectively.

An easy example is the one represented in the Task parameters table view, this
one used two predicate tables, the first is the dul_hasParameter predicate table and
the second is the rdf_type predicate table. The dul_hasParameter takes as input a
dul_Concept instance and gives a dul_Parameter as output, but we also need to know
what type is this parameter because the parameter value is just a unique name that
identifies the parameter, so the name alone is useless. To find the type we use rdf_type
predicate which tells us what is this parameter exactly when we give the parameter name
as input. The query would be as follows:

SELECT rdft1.s AS task, rdft.s AS parameter

FROM dul_hasParameter as hpara

INNER JOIN rdf_type as rdft

ON rdft.s = hpara.dul_Parameter_o

INNER JOIN rdf_type as rdft1

ON rdft1.s = hpara.dul_Concept_s;

The resulting table is shown in Figure 4.11.

A more interesting example is how actions relate to tasks and how each action/task
has a time interval and each time interval has a begin and an end time, these relations

4.3. Machine Learning on NEEMs 33

are represented by four predicates, the first one is dul_executesTask which takes an
action instance and outputs the task that this action executes, the second predicate is
dul_hasTimeInterval which takes as input a dul_Event and outputs a dul_TimeInterval
for that event, the third and fourth predicates are soma_hasIntervalBegin and soma_has-
–IntervalEnd which take as input a dul_TimeInterval and outputs a float representing
the beginning and end time respectively, the query to get this information in one table
is easily done as follows:

SELECT task.dul_Action_s AS action,

task.dul_Task_o AS task,

task_ib.o AS begin,

task_ie.o AS end

FROM dul_executesTask AS task

INNER JOIN dul_hasTimeInterval AS task_ti

ON task.dul_Action_s = task_ti.dul_Event_s

AND task.neem_id = task_ti.neem_id

INNER JOIN soma_hasIntervalBegin AS task_ib

ON task_ti.dul_TimeInterval_o = task_ib.dul_TimeInterval_s

AND task_ti.neem_id = task_ib.neem_id

INNER JOIN soma_hasIntervalEnd AS task_ie

ON task_ti.dul_TimeInterval_o = task_ie.dul_TimeInterval_s

AND task_ti.neem_id = task_ie.neem_id

Order by task_ib.o;

It is crucial to join on neem_id as well in each predicate to make sure data from two
different neems do not mix or join together, at the end we order by the begin time so
that the table shows the tasks in order of starting time, this increases the query time
significantly so it should be used with care. The resulting table is shown in Figure ??.

4.3 Machine Learning on NEEMs

4.3.1 Joint Probability Trees

The Joint Probability Trees (JPTs) model is a statistical machine-learning model that
finds the most important independent variables in the data and then finds the joint
probability of these variables in the form of trees. This can be considered an efficient
database that summarizes the tables into trees that can be queried faster and can also
generalize to unseen data that can be found through interpolating the existing data.

The way JPTs are constructed makes them a transparent and explainable machine-
learning model, they can predict both symbolic and non-symbolic data, and they can
also be fine-tuned to base their decisions in the tree on specific attributes in the data.
Using JPTs, one can fit models on different aspects of the NEEMs, some of which are:

34 Work Development and Results

• Predict the task tree or the next task in the plan given the current and previous
task or tasks and some other context information.

• Predict the success or failure of a task or a plan.

• Recover from preciously encountered failures.

• Predict non-symbolic data like the best position for the robot to stand in so that
the probability of success of picking up or placing an object is high.

Another important question that these JPTs will answer is “What in the context is
important for each task?”. This will give an insight into what to concentrate on and help
in making more efficient models that focus on these important aspects of the context.

4.3.2 The Pipeline

The machine learning pipeline from NEEMs to working models is done through the
following steps:

1. Figure out what data you need from the NEEMs for your task, which should
include both the input and the output of your machine-learning model.

2. Check common views (section 4.1.7) and if possible just modify what you need,
else write your own query, and check section 4.2 for how to do that.

3. The recommended way is to write your query in an SQL file and execute it
from within your program, if you are using Python you can do that with the
SQLAlchemy7 or with Pandas8 which will give you the resulting table from your
query in a Pandas DataFrame which is very convenient to manipulate and use for
tabular data.

4. Fit your machine learning model on the data.

5. Test the model with some test cases to measure its behavior and accuracy.

6. Iterate over all the steps again until the model reaches the required accuracy and
behavior, sometimes the data is missing important information so iterating over
the first step to figure out the required data is beneficial and then modify the query
as required and fit the model again on the new data.

4.4 Test Cases

To illustrate the pipeline, it’s better to describe it using examples of actual test cases.
7https://www.sqlalchemy.org/
8https://pandas.pydata.org/

4.4. Test Cases 35

4.4.1 Case 1: Predict Next Task

Problem Definition. The first step is to define the problem that the model is going
to solve. To predict the next task, one has to first answer the question "What does the
robot need to know for it to be able to predict the next task in a plan correctly?". As easy
as it may seem, it is not straightforward to get the correct answer. I started with the
simplest solution possible, in which the robot only needs to know the environment and
the current task as shown in Figure 4.17.

Figure 4.17: Predict Next Task from Current Task and Environment

Figure Out The Required Data. The second step is to figure out what data is
needed for our model. A good start is to look at the tasks in the database and see how
they are structured, Figure 4.18 shows the tasks executed for a NEEM in the kitchen.

Figure 4.18: The task hierarchy of a NEEM in the kitchen. This shows the 5 task
hierarchy types in which Openning is the Current Task, Navigating is its Previous Task,
LookingFor is its Next Task, Accessing is its Parent Task, and Transporting is the Top
Task of the whole task tree.

36 Work Development and Results

In this case, the first proposed model takes two inputs the current or previous task
and the environment in which the robot is performing this task. Since the goal is to
predict all the sequence or at least part of the sequence of tasks of a certain plan, the
sequence of tasks needs to be known, in this case only every two consecutive tasks are
needed because the model takes the previous/current task and outputs the next task.
This means each row in the data table should contain the previous/current task, the
next task, and the environment type.

Query Writing. This is not easily done using SQL queries, what can be done is similar
to the Tasks and sub-tasks with parameters common view, where we have a column
for tasks and a column for task types. But the subtasks and parameters are not needed
in this case and can be removed. The task start and end times are needed for sequence
order information. In addition, the execution state of each task is important since task
success or failure affects the next task to be executed. Thus the table will have a total
of six columns. They can be selected at the top of our query like this:

SELECT task.dul_Task_o AS task,

taskt.o AS task_type,

task_ib.o AS task_start,

task_ie.o AS task_end,

task_es.soma_ExecutionStateRegion_o AS task_state,

ne.environment_values AS environment

FROM dul_executesTask AS task

It is important to filter the data from any unnecessary information like unknown
task types which are labeled as soma:PhysicalTask by default, and unnecessary extra
information like owl:NamedIndividual where every instance of a class in the ontology has
this type anyway.

INNER JOIN rdf_type AS taskt

ON task.dul_Task_o = taskt.s

AND taskt.o != ’owl:NamedIndividual’

AND task.neem_id = taskt.neem_id

AND taskt.o not Regexp ’^soma:Phy’

The task start and end times can be added by joining the time interval and then
adding the interval begin and the interval end of each time interval.

INNER JOIN dul_hasTimeInterval AS task_ti

ON task.dul_Action_s = task_ti.dul_Event_s

AND task.neem_id = task_ti.neem_id

INNER JOIN soma_hasIntervalBegin AS task_ib

ON task_ti.dul_TimeInterval_o = task_ib.dul_TimeInterval_s

AND task_ti.neem_id = task_ib.neem_id

INNER JOIN soma_hasIntervalEnd AS task_ie

4.4. Test Cases 37

ON task_ti.dul_TimeInterval_o = task_ie.dul_TimeInterval_s

AND task_ti.neem_id = task_ie.neem_id

Also, the environment type and the execution state need to be added as well. To
add them, a left join on the neems_id is used because in some cases where there is no
environment or execution state specified but the data is still useful, these lines should
be added to the query:

LEFT JOIN soma_hasExecutionState AS task_es

ON task_es.dul_Action_s = hc.dul_Entity_s

AND task_es.neem_id = hc.neem_id

LEFT JOIN neems_environment_index AS ne

ON ne.neems_ID = task.neem_id

Finally, it is beneficial to order the rows according to the interval beginning time to
have the correct sequence of tasks.

ORDER BY task_ib.o;

The resulting table will be as shown in Figure 4.19. To add the next task column some
processing on the data is needed using Python with the help of the Pandas package, the
definition of the previous task is very important. It is important to differentiate between
a parent task and a previous task. A parent task is a task that starts before or at the
same time as a child task. A previous task is the last task that ends before or at the
start of the current task. The final table will be as the one shown in Figure 4.20.

Figure 4.19: Resulting table from querying on the tasks and their related data like the
task state, the task start and end times.

Model Fitting. Once the data is ready as a Python DataFrame, using it with any
machine learning pipeline is easy. If using the JPTs it is as easy as the following lines of
code:

1 from jpt.variables import infer_from_dataframe

2 import jpt.trees

3 variables = infer_from_dataframe(df, scale_numeric_types=False)

4 model = jpt.trees.JPT(variables, min_samples_leaf=0.00005)

5 model.fit(df)

38 Work Development and Results

Figure 4.20: Table for fitting a model to predict the next task with added columns like
the prev task, the next task, the top task, and the parent task which were deduced from
the table shown in Figure 4.19.

For more on JPTs and how to use them check the JPT documentation9.

Test and Model Analisys. This model is used during robot operation, where the
robot queries the model to know what is the next task that it should perform given
the current task and the environment. A test case could be for example in a Kitchen
environment and the robot is performing Opening of a drawer in the kitchen as the
current task. This information is given to the model as input, then the model predicts
the next task. Next, the model output is used as the new input, such that the next task
is now the current task, and the environment is still the same. This is illustrated in the
diagram shown in Figure 4.21.

Figure 4.21: Loop over the model to predict the task sequence given an initial current
task and an environment type

The problem with this approach is that the input is not enough to be able to accu-
rately predict the output. There are many situations with the same current task and
environment and different next tasks. One of the bad cases that occur with this approach
is that the model will loop over two or three tasks without ever reaching an end task
for the plan as shown in Figure 4.22. In this case, there are many possible scenarios,
so the model marginalizes all of them and chooses the most probable scenario (i.e. the
scenario that was the most frequent in its memory or database). This could work but is
not ideal. This increases the model recall but lowers its precision.

9https://joint-probability-trees.readthedocs.io/en/stable/autoapi/jpt/index.html

4.4. Test Cases 39

Figure 4.22: The model loops over three tasks without ever reaching an end task due to
missing information

Redefine The Required Data and Iterate

The output shown in Figure 4.22 means that more context is needed for the model to
accurately predict the next task. At first, I thought the model needs information on
older tasks before the current task, but that resulted in a similar behavior of looping
over some specific tasks although with a longer sequence this time (i.e. instead of looping
over two tasks it loops over three or four tasks). The key to solving this looping problem
was to understand that the robot plan is a hierarchical plan (i.e. there are parent tasks
and child tasks). From this realization, if one has knowledge of what is the parent-task
then, one can predict the next child-task. And this goes all the way to the top of the
hierarchy, where in most cases there is an overarching top task to which all other tasks
are children. This gives much more information than just the previous task. The model
inputs and output is as shown in Figure 4.23.

Figure 4.23: Predict Next Task from Top Task, Parent Task, Current Task, and Envi-
ronment

The output of this model behaves as required and produces the expected task se-
quence for the plan correctly as shown in Figure 4.24.

Figure 4.24: Correct task tree that does not loop, this when the model has knowledge
of the Top Task, Current Task, and Environment as the model shown in Figure 4.23

But this still does not work for all cases, there are still different cases with different
next tasks that have the same Top Task, Current Task, and Environment, for example,
the success or failure of the current task affects the next task. If the task failed then a
common strategy is to retry the current task again or even do a failure recovery task. In

40 Work Development and Results

fact, some tasks are more common to fail than to succeed on the first try, thus for these
tasks, in that case, the model would still go into the looping behavior.

A solution to that is to let the model know what was the previous tasks to this
task, and what is the parent task of each task. The new model would be like the one
illustrated in Figure 4.25.

Figure 4.25: Predict Next Task from Top Task, Parent Task, Current Task, Prev Task(s),
Task State, and Environment.

4.4.2 Case 2: Failure Recovery

Problem Definition. Failure Recovery is very similar to predicting the next task but
with the condition, the next task is a success and the current task is a failure. Thus
we can use a similar model to the one we used to predict the next task but with some
modifications. The most apparent attribute that needs to be added to our model is the
state of each task. The state is the resulting state which could be either succeeded or
failed or none. The state was used in the Predict Next Task Model but only for the
current task not for all tasks. Another addition is the cause of failure in case the task
state is Failed. The new model is the one illustrated in Figure 4.26.

Figure Out The Required Data. The required data is the same as the Predict
Next Task but with the addition of the information of the Task State for all tasks and
the Cause of Failure in the case of a Failed task state.

Write The Query. To add the Cause of Failure, the following line needs to be added
to the SELECT part of the query:

t_sat.dul_Description_o AS task_failure_type

The dul:Satisfies predicate table takes as input a dul:Situation. The tasks are a type
of dul:Situation and this predicate outputs a dul:Description for that input situation.
The description of the task is NONE if the task state is Succeeded, but if the task state

4.4. Test Cases 41

Figure 4.26: Failure Recovery Model, the difference between this and the Predict
Next Task Model shown in Figure 4.25 is the addition of the state of each task, the
cause of failure in case the state is Failed and the enforcing of the success condition of
the next task.

is Failed the description is the cause of failure. Then the following lines need to be
added at the end of the query before the ordering, this line joins the required data from
the dul_satisfies table, the join is done using the task instance name which is stored in
the dul_Action_s column of the task table and referencing it to the dul_Situation_s
column in the dul_satisfies table:

Left join dul_satisfies AS t_sat

ON task.dul_Action_s = t_sat.dul_Situation_s

The resulting table from the new modified query with the failure type is shown in
Figure 4.27.

Figure 4.27: The resulting table from modifying the query of Predict Next Task and
adding the failure type information to be used for the Failure Recovery Model

After retrieving the query result, some modifications are made to it to add the
columns for the previous, parent, and next tasks and their attributes. The attributes
are the task state and the cause of failure.

42 Work Development and Results

After fitting the model and testing with the following inputs:

task_state = soma:ExecutionState_Failed

next_task_state = soma:ExecutionState_Succeded

task_type = soma:Placing

top_1_task_type = soma:Transporting

The resulting task tree adds a recovery strategy that involves navigating and looking
for a new location to perform the placing task as shown in Figure 4.28. Actually, this
shows a very important aspect of JPTs as a machine learning model and of the NEEMs
as a database, because the system has implicitly learned how the automated program
that was designed to recover from failure works. This failure recovery mechanism has
been designed and programmed by the engineers and researchers working on the CRAM
cognitive architecture. Through the NEEMs the experiences of the robot and the rea-
soning process have been successfully captured and stored, and through the JPTs the
exact failure recovery mechanism and logic have been learned.

Figure 4.28: The resulting task tree where the initial task is Placing and the initial task
state is failed, the resulting tree performs a recovery strategy that involves navigating
to a new location and looking for a new placing location

4.5 Analysis & Discussion of Results

4.5.1 Database Tables Diagrams

The NEEMs metadata are stored in the neems table, and any table that is prefixed with
neem_, Figure 4.29 shows the metadata tables, some attributes of the metadata are
separated into their own tables because they exhibit a many to many or one-to-many or
many-to-one relationships with the NEEMs. If they have a one-to-one relationship then
they will be in the neems table.

4.5. Analysis & Discussion of Results 43

Figure 4.29: The tables for the metadata of the NEEMs.

For the predicate tables, each predicate is a table with subject, object, and neem_id
columns, and the table name is the predicate name, prefixed with the ontology prefix,
the subject and object columns are post-fixed with ’_s’ and ’_o’ respectively. Figure
4.30 shows the predicate tables.

The TF data is linked with the triples through a table called tf_header_soma_ hasIn-
tervalBegin, it was constructed by comparing tf_header timestamp with soma_hasIntervalBegin,
and soma_hasIntervalEnd predicates. Figure 4.31 shows the linked TFs and predicate
tables.

4.5.2 Querying the Database

Table 4.2 shows the analysis of the common queries, focusing on the execution time,
rows count, and number of joins in each query. The table shows a clear effect of the
number of rows on the execution time compared to the slight effect of the number of
joins. The query with the least time has the least number of rows to search which is the
NEEMs Filter query, while the query with the longest execution time is Filter TF Data
query which has the highest number of rows to search in.

44 Work Development and Results

Figure 4.30: The tables for the predicates of in the NEEMs and their relationship with
the metadata table of the NEEMs.

4.5.3 Analyses of Joint Probability Trees (JPTs)

The Model Decision Tree

An important aspect of JPTs is that they are transparent models since they are a form
of decision trees. This gives us the ability to look at the decision tree and have an
understanding of how the model behaves and be able to follow its logic. Figure 4.32
shows part of a large generated decision tree with 133 leaves and 9608 parameters. It is
easy to follow the decisions made by the model, from this figure, one can see that if the
Top Task is soma:MovingTo and the Task Type is soma:Placing then the most probable
Next Task is soma:PickingUp and the second most probable is soma:Closing.

The number of leaves is a tuneable parameter for the model, the more the number
of leaves the more closely the model follows the database but the more costly it is to
perform a prediction in terms of computation and time. The best is to manually go
from a low number of leaves and slowly increase it until the model behaves correctly.
For example, a tree with 5 leaves is shown in Figure 4.33, this clearly cannot generate a
correct task tree, which means the number of leaves needs to be increased. Then one can
decrease it again while observing the likelihood of its predictions, using this likelihood

4.5. Analysis & Discussion of Results 45

Figure 4.31: Linked TFs and predicate tables using the time stamp of the TF data and
the time interval of the events defined by the soma:hasTimeInterval predicate.

one can design some limits on the likelihood such that if it is lower than this limit (for
example, a likelihood of 0.3) then reject this prediction. This way one can save more
resources without having to use a large number of leaves.

46 Work Development and Results

Table 4.2: Analysis of the common queries execution time. The time is for retrieving
only the first 500 rows.

Query Name Execution
Time (s)

Max Rows
Count

No. of Joins

NEEMS Filter 0.02 63 2
Tasks and Parameters 0.03 269 3

Actions and TFs 0.05 269 16
Tasks, Subtasks, and

Parameters
0.07 16074 19

Filter TF Data 2.2 18089147 7

Figure 4.32: This shows part of the generated decision tree for a model that was fit on
the Predict Next Task table, where the number of leaves is 133, and the model size
(number of parameters) is 9608. Here the figures illustrate an important part of the
decision tree that focuses on the Task Type and Next Task Type. The green rectangles
show the most probable explanation (MPE) by showing the most probable values for
the model variables for the given path in the decision tree.

4.5. Analysis & Discussion of Results 47

Figure 4.33: This shows a complete JPT-generated tree with a total of 5 leaves. This
shows that 5 leaves in this task are not enough for the model to behave correctly and
generate correct task trees similar to the ones in the NEEMs database.

Querying The Database vs Querying The Model

If one has access to the database during operation, then it is possible using SQL to
directly query the database. The model provides an efficient way to query for informa-
tion from experience because it summarizes the database and finds the most relevant
independent variables and the joint probability of these independent variables. The first
test is to check if the model predictions agree with the database. For that the evidence
that is given to the model as input is also used to query the database for the table rows
that coincide with this evidence or input. One can see from Figure 4.34 that the model
output agrees with the most probable output found from the data statistics.

To measure the benefit of using the model over the data, one could compare the
query time difference between querying the model and querying directly the database.
Table 4.3 shows the time taken to query the database and the model in different use cases.

It is important to mention that the JPTs models have the ability to generalize to
new instances that are not in the database, especially in predicting non-symbolic data
like robot arm pose, robot base location, etc.

48 Work Development and Results

Table 4.3: Comparing the different JPT models with the database in terms of the query
time and correctness of the output. The number in the name of the model is the number
of leaves, and the mean likelihood is the mean log-likelihood of the model with respect
to the database (higher is better), the best one is underlined. The database consists of
14k rows and 8 columns. The correctness of the output is decided by comparing the
predicted task tree to the one from the database. These tests are for the Predict Next
Task test case.

Method Query Time
(s)

Mean
Likelihood

Correct
Output

Database (14k rows) 3.2 - -
JPT-12 0.037 -6.29 False
JPT-69 0.15 -4.4 True
JPT-217 0.61 -4.1 True

4.5.4 Predict Next Task Simulation Results

Using PyBullet10 a physics engine and a simulator with a PR2 robot11 in an apartment
environment with a small kitchen.

The learned model to Predict Next Task has been tested in this simulation using
PyCram12 as the robot cognitive architecture which does the planning and execution of
the robot tasks and reasoning process. The task trees that are in the NEEMs database
are based on the original CRAM (Cognitive Robot Abstract Machine) which is in Lisp
programming language, while PyCram is a migration of the Lisp based CRAM to Python.

Figure 4.35 shows the screenshots of the simulation results (Also available on Youtube13)
of executing the generated task tree predicted by the learned JPT model to predict the
next task iteratively. The robot and environment start with an initial state where the
robot just finished opening a drawer in the kitchen table and there is a milk bottle inside
that drawer. This information given to the model of the initial state is just the task that
was just completed which is soma:Opening and the top task which is soma:Transporting
this information was enough for the model to correctly figure out the remaining tasks of
the plan.

To find a good initial state where the picking up of the milk is certainly possible
given the robot’s kinematics and the environment. The task tree shown in Figure 4.36 is
executed and the good initial state is defined by the found successful positions. This is
actually how it is done without the machine learning model in the real implementation

10https://pybullet.org/wordpress/
11https://robotsguide.com/robots/pr2?interactive=1
12https://github.com/cram2/pycram
13https://youtu.be/LjDn91rC7RY

4.5. Analysis & Discussion of Results 49

of the CRAM plans. One can see that having a model that can directly get these good
poses is very beneficial.

In PyCRAM, every motion requires the generation of cost maps, these cost maps are
based on constraints of the kinematics of the robot, the obstacles in the environment,
and any user-specified constraints. There is cost maps for robot locations as seen in
Figure 4.37, and there are arm cost maps as the one seen in Figure 4.38. Using these
costmaps the poses are randomly picked, and that is how it works in CRAM as well.
In the next steps, the machine learning model will be used to decide on the next tasks,
while these coast map heuristics will still be used to figure out the poses of the arms and
the locations of the robot. Although these could also be learned from the NEEMs, this
is not the focus of this experiment.

After each step the model is called again with the new information fromt the previous
step to predict the next task until the model predicts None as the next task indicating
that this is most likely the last task of the plan. The generated plan is the one shown
in Figure 4.24.

4.5.5 Resulting Software

The resulting software is two repositories and a Jupyter Notebook tutorial14 on the actual
usage of the whole pipeline on a robot in a simulation environment. The first repository
called neems_to_sql15 provides the software for converting NEEMs from MongoDB to
MariaDB. The second repository provides software for executing the machine learning
pipeline on the NEEMs starting from querying to testing of learned models, the reposi-
tory is called neems_research16.

4.5.6 Analysing deviations from the Initial Planification

The first task group Migrate NEEMs from NoSQL to SQL took much longer than
expected due to my lack of experience in the domain of databases. A lot of time has
been spent on studying databases and understanding how to use SQL and how to make
good, efficient, and maintainable schemas that work well with time and can be regurarly
updated.

The consequence of this was that I had to spend an extra month in the development
of the NEEMs Database and less amount of time in the Machine Learning and Robotics
applications on the data in the Database. Nevertheless, the experiments and the simu-
lation provided provide concrete evidence to the efficacy of the resulting Database and
the benefit of NEEMs.

14https://github.com/AbdelrhmanBassiouny/pycram/blob/complex_plans/examples/neems_to_cram_plan_tutorial.ipynb
15https://github.com/AbdelrhmanBassiouny/neem_to_sql
16https://github.com/AbdelrhmanBassiouny/neems_research

50 Work Development and Results

Figure 4.34: The posterior probability distribution of the Next Task Type variable from
the database (Top), the 5-leaf model (middle), and the 133-leaf model (Bottom). The
given evidence for this posterior is that the Task Type is soma:Placing and the Top Task
Type is soma:MovingTo.

4.5. Analysis & Discussion of Results 51

Figure 4.35: This shows the simulation results of the task tree predicted from a JPT
model executed in PyBullet using PyCRAM cognitive system to execute the generated
plan. The robot and environment start with an initial state where the robot just finished
opening a drawer in the kitchen table and there is a milk bottle inside that drawer in
step (1).

52 Work Development and Results

Figure 4.36: This shows the task tree that gets executed before using the machine
learning model to initialize the environment and robot state in a good initial state
where there is certainly a possible way to pick up the milk from the drawer. This also
shows how without the machine learning model executing such tasks would be much
slower and more prone to failure.

4.5. Analysis & Discussion of Results 53

Figure 4.37: Visualized costmap of pr2 standing locations

Figure 4.38: Visualized costmap of PR2 arms

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 55
5.2 Future work . 56

5.1 Conclusions

This master thesis contributed to moving robotics a step forward towards big data by
taking the Narrative-Enabled Episodic Memories (NEEMs) and putting them in an SQL
database and making them accessible through the cloud.

This thesis work showed that NEEMs (including its two types of data, that is, sym-
bolic and non-symbolic) containing the robot sensor and motor data, and the semantic
information of the task, the plan, the environment state, the robot state, the robot
reasoning process, etc. is a key to enable big data in robotics and more specifically
in robotic manipulation. Linking all these types of data together using the database
key system and giving them the correct structure and data types makes it much more
convenient for machine learning pipelines.

The Joint Probability Trees (JPTS), a transparent model based on decision trees has
been used on two machine learning tasks using the NEEMs SQL database. The purpose
was three-fold, the first is to show the importance of the context and the semantic data
that is a unique part of the NEEMs database compared to any other database. The
second purpose is to show a complete robotics machine learning pipeline starting from

55

56 Conclusions and Future Work

problem description, and going through all of the steps like figuring out required infor-
mation, querying the database for that information and generating tables, then fitting
the machine learning model and evaluating it in simulation. The third and last purpose
was to show the benefit of JPTs as a transparent and efficient machine learning model
and show what parameters affect its performance and how being transparent has suc-
cessfully guided the tuning and model improvement and debugging process.

The first test case was to try to fit a model to Predict Next Task, that is, it tries to
predict the next task that the robot should perform given the context which includes
information on current and previous tasks, the environment, and the task states whether
succeeded or failed. Applying this model iteratively generates a complete task tree that
can be executed on an actual or simulated robot. The simulation has been chosen for
convenience and ease of control given the time and resources available.

The second test case was on the task of Failure Recovery. Failure Recovery is very
similar to Predict Next Task problem with the difference that the last performed task
has failed so more information related to the cause of failure is required in addition to
enforce the success of the next task.

Finally, it has been shown that each problem requires some context for a model to
learn to solve the problem successfully. The NEEMs is an approach which provides
this context in an efficient and scalable manner. Each developed software is publicly
available on my Github1 and has been tested. A command line interface is available
for the conversion of the NEEMs database from MongoDB to MariaDB and has been
used by multiple people at the Institute For Artificial Intelligence (IAI), University of
Bremen, Germany.

5.2 Future work

Although the main purpose of this master thesis work has been to make the NEEMs
available in SQL and test them in a complete machine learning pipeline, an important
side goal has been to show the importance and benefit of the NEEMs and this still has
much more potential to be shown.

The NEEMs are information-rich, and the two test cases that have been done in
this work are not nearly enough to cover the variety of tasks that could be learned
from them, some of which are: learning the task parameters, fitting a model to learn to
predict the best location for the robot to stand on to pick or place an object, learning
how to perform pouring, learning how to interact properly in the presence of human
collaborators, learning motions and plans from humans performing a certain task from
NEEMs that involve humans in virtual reality, and much more.

1https://github.com/AbdelrhmanBassiouny

5.2. Future work 57

A very interesting application is to learn manipulation plans and motions from video
demonstrations (see Figure 5.1). The NEEMs already have a huge advantage in anno-
tating parts of videos and simulations using time stamps to relate them to a specific task
or motion in the plan. In addition, scene graphs will play a fundamental role in video
understanding and in bridging the gap between the sub-symbolic data in the video to
the symbolic data in the ontologies and enable the application of logic and reasoning.

Figure 5.1: PR2 robot learning plans and motions to perform a certain task from a video
demonstration.

Using Scene Graphs to annotate the videos not just of real videos but also of vir-
tual reality simulations where much more data and annotation can be easily done and
retrieved can a very important step toward learning from demonstrations. Figure 5.2
shows how the NEEMs can be used to store all this information due to it having the
capability to store symbolic data from the scene graphs that can be modeled as pred-
icates and the motion trajectories from the humans in the virtual reality and the real
world in its non-symbolic database. Using the very easy SQL language to query this
information for all kinds of machine-learning tasks will push the research forward in the
area of learning from demonstrations.

58 Conclusions and Future Work

Figure 5.2: NEEMs used with virtual reality and scene graphs to enable learning from
demonstrations. Storing and learning both the semantics from the scene graphs and also
the non-symbolic motions trajectories and motion primitives.

Bibliography

[1] JR Anderson, D Bothell, MD Byrne, S Douglass, and C Lebiere. & qin,
y.(2004). An integrated theory of mind. Psychological Review111, pages 1036–1060.

[2] Michael Beetz, Daniel Beßler, Andrei Haidu, Mihai Pomarlan, Asil Kaan Bozcuoğlu,
and Georg Bartels. Know rob 2.0—a 2nd generation knowledge processing frame-
work for cognition-enabled robotic agents. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 512–519. IEEE, 2018.

[3] Michael Beetz, Lorenz Mosenlechner, and Moritz Tenorth. Cram — a cognitive
robot abstract machine for everyday manipulation in human environments. pages
1012 – 1017, 11 2010.

[4] Daniel Beßler, Robert Porzel, Mihai Pomarlan, Abhijit Vyas, Sebastian Höffner,
Michael Beetz, Rainer Malaka, and John Bateman. Foundations of the Socio-
Physical Model of Activities (SOMA) for Autonomous Robotic Agents1. 12 2021.

[5] Manfred Jaeger. Probabilistic decision graphs - combining verification and ai tech-
niques for probabilistic inference. Int. J. Uncertain. Fuzziness Knowl. Based Syst.,
12(Supplement-1):19–42, 2004.

[6] Kazuhiko Kawamura, Stephen M Gordon, Palis Ratanaswasd, Erdem Erdemir, and
Joseph F Hall. Implementation of cognitive control for a humanoid robot. Interna-
tional Journal of Humanoid Robotics, 5(04):547–586, 2008.

[7] Davis E Kieras and Davis E Meyer. An overview of the epic architecture for cog-
nition and performance with application to human-computer interaction. Human–
Computer Interaction, 12(4):391–438, 1997.

[8] Iuliia Kotseruba, Oscar J Avella Gonzalez, and John K Tsotsos. A review of 40
years of cognitive architecture research: Focus on perception, attention, learning
and applications. arXiv preprint arXiv:1610.08602, pages 1–74, 2016.

[9] Pat Langley and Dongkyu Choi. A unified cognitive architecture for physical agents.
In Proceedings of the National Conference on Artificial Intelligence, volume 21, page
1469. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

59

60 Bibliography

[10] Daniel Nyga, Mareike Picklum, Tom Schierenbeck, and Michael Beetz. Joint prob-
ability trees, 2023.

[11] Fabian Peller-Konrad, Rainer Kartmann, Christian R. G. Dreher, Andre Meixner,
Fabian Reister, Markus Grotz, and Tamim Asfour. A memory system of a robot
cognitive architecture and its implementation in armarx. Robotics Auton. Syst.,
164:104415, 2022.

[12] David Vernon. Cognitive architectures. Cognitive Robotics. MIT Press, Cambridge,
2022.

[13] Jan Winkler, Moritz Tenorth, Asil Bozcuoğlu, and Michael Beetz. Cramm — mem-
ories for robots performing everyday manipulation activities. 12 2013.

A
p

p
e

n
d

ix A
Source code

NEEMs To SQL:
https://github.com/AbdelrhmanBassiouny/neem_to_sql
This is a repository for converting NEEMs from MongoDB to MariaDB.

NEEMs Research:
https://github.com/AbdelrhmanBassiouny/neems_research
This is a repository for fitting Joint Probability Trees (JPTs) on tasks that could be
learned from the NEEMs database. More specifically the two tasks of Predict Next
Task and Failure Recovery.

NEEMs with PyCRAM in Jupyter Notebook:
https://github.com/AbdelrhmanBassiouny/pycram/blob/complex_plans/examples/neems_to_cram_plan_tutorial.ipynb
This is a Jupyter Notebook that shows how to use the learned JPTs with PyCRAM in
simulation.

61

	Contents
	Introduction
	Work Motivation
	Literature Review
	Objectives
	Environment and Initial State

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	System Design
	Interface Design

	Work Development and Results
	Conversion of NEEMs from NoSQL to SQL
	Querying the Database
	Machine Learning on NEEMs
	Test Cases
	Analysis & Discussion of Results

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code

