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Supervisor: Prof. Francisco Fernandes Castro Rego

Members of the Committee: Prof. David Alexandre Cabecinhas
Prof. Daniel de Matos Silvestre

November 2023



This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).



Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

i



Acknowledgments

I would like to thank my family for their support, encouragement, and caring over all these years, for

always being there for me through thick and thin and without whom this project would not have been

possible. I would also like to thank my supervisor Dr Rego and Professor Busvelle for their unequivocal

support during this work. I would like to express my thanks to Professor Batista - the coordinator for

Marine Intelligent Robotics (MIR) of which I am a member of - for facilitating the logistics during my stay

in Instituto Superior Tecnico.

Last but not least, to all my friends and colleagues who helped me grow as a person and were always

there for me during the good and bad times in my life. Thank you.

To each and every one of you – Thank you.

ii



Abstract

Radioactivity monitoring offers the opportunity to understand its impact on ocean ecosystems in various

extreme locations, such as underwater volcanoes, seismic faults, or deep-ocean drilling locations. To

expand radioactivity monitoring capabilities, the RAMONES project aims to develop lightweight, high-

resolution, power-efficient radiation spectrometers integrated aboard autonomous underwater vehicles,

namely underwater gliders, to perform in situ natural and artificial radioactivity measurements in the

marine environment. The problem of detecting sources of radioactivity with one or more underwater

gliders equipped with radiation spectrometers is a challenging one given the large search areas and the

small detection distance of the sensors. To address this problem, in this thesis project, coverage algo-

rithms are devised to generate a path so that gliders can determine the most efficient route to maximize

the probability of detecting a radioactive source while avoiding obstacles and ensuring safe navigation

through complex environments. The implemented algorithms are Travelling Salesman Problem (TSP),

Minimum Spanning Tree (MST), and Optimal Control Problem (OCP). The latter considers the dynamics

of the vehicle, that’s why, modeling of the vehicle is considered.

Path planning simulations for each algorithm have been implemented using Matlab and an analysis has

been done according to the processing time, uncovered areas, length of the traversed path, and time

taken during each path. OCP is considered to be more useful if the time to traverse the path is con-

strained but has a much higher processing time than the other algorithms, and is less suitable when the

objective is to cover the area, where a TSP algorithm fares better. Moreover, if the main goal is to obtain

a solution fast, MST-based approaches yield smaller processing times.
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1.1 Pollutants

Marine habitats are particularly vulnerable to pollution from human activity. Several pollutants have

just started to enter the pristine habitats of the Arctic and Antarctic. For many years, industrial waste,

radioactive, chemicals (including chemical weapons), wastewater, rubbish, and other waste from ter-

restrial sources have been dumped in the oceans. Although the dumping of some compounds, such

as radionuclides, has been prohibited recently, radioactive sources are nevertheless still present in the

environment. For instance, hydrothermal deep-sea vent fauna [3], which was discovered in 1977, is

exposed to a particular environment that is loaded with potentially harmful species such as sulfides,

heavy metals, and natural radionuclides. It is now well recognized that some of the organisms present

in such an environment collect metals during their lives. Although there are not many radionuclide mea-

surements, it appears likely that the communities around hydrothermal vents receive substantial natural

radiation exposures. Various archived biological samples gathered on the East Pacific Rise and the Mid-

Atlantic Ridge in 1996, 2001 and 2002 were analyzed to be able to determine their uranium contents

(U-238, U-235, and U-234) [4]. Moreover, Polonium and Lead were determined in 2 samples collected

in 2002 [4]. Vent organisms are characterized by high Uranium, Polonium, and Lead levels compared to

what is generally encountered in organisms from outside hydrothermal vent ecosystems. Even though

the number of data is low, the results reveal various trends about the site, the location within the mixing

zone, and/or the organisms’ trophic regime.

The advancement of contemporary remote sensing methods, simpler access to spatial data, data on

environmental quality, and developments in analytical chemistry are all advancing our understanding of

marine garbage. The size, location, and temporal variability of waste sources and channels, the destiny

of waste, and biological and chemical interactions in the environment are all areas where there are still

significant knowledge and information gaps [5]. The management of garbage that endangers the oceans

frequently faces legal issues, such as the absence of suitable rules, the ambiguity or non-compliance of

current laws, and the absence of sufficient policies and strategies.

Figure 1.1 shows the location of ocean garbage patches, the global inventory of radioactive waste

disposal at sea (total amounts in petabequerels per region), and chemical weapons dumped at sea.

According to [4], From 1946 through 1993, radioactive waste was thrown into the oceans. The first

dump site was situated close to the California coast in the Northeast Pacific Ocean.

The London Convention 1972 came into effect in 1975, outlawing the disposal of high-level radioac-

tive waste at sea. Low-level rubbish disposal in seas and oceans was put on hold for ten years starting

in 1983, and since 1993, it has been completely prohibited. However, it should be noted that not all na-

tions followed the restrictions. For instance, the former Soviet Union continued to dispose of radioactive

waste by national law in the Arctic Seas and the Northwest Pacific, and this practice involved both low-

4



Figure 1.1: The location of ocean garbage patches, the global inventory of radioactive waste disposal at sea (total
amounts in petabequerels per region) and chemical weapons dumped at sea

and high-level radioactive waste. There are roughly 8.5×104 TBq of radionuclides disposed of in marine

ecosystems overall. The maximum decay-corrected inventory of radioactive waste dumped at sea was

reached in 1982 and was anticipated to be at 4.5× 104 TBq; it is currently less than 2.0× 104 TBq, and

it is predicted to be decreased to less than 1.0× 104 TBq by 2050.

According to [6], the International Atomic Energy Agency (IAEA) maintains a global inventory of an-

thropogenic radioactive material entering the marine environment, which includes radionuclides from

two sources: (i) dumping radioactive waste at sea, and (ii) accidents and losses at sea involving actual

or potential releases of radioactive material into the marine environment [6]. The report excludes ra-

dioactive materials from nuclear sites on land, inputs from nuclear weapons testing in the past and other

military operations, and inputs relating to naturally occurring radioactivity.

According to IAEA, the sources of radioactive material entering the marine environment are as fol-

lows: waste dumping at sea including radioactive waste and packaging (nuclear reactor pressure ves-

sels, with and without fuel; solid waste; liquid waste); moreover, radioactive materials enter the sea from

accidents and losses (nuclear-powered navy ships and submarines, nuclear weapons, and military ves-

sels capable of carrying such weapons, nuclear-powered civilian ships, nuclear energy sources used

5



in spacecraft, satellites and acoustic signal transmitters, radioisotope thermoelectric generators, i.e., for

lighthouses power supply, sealed radiation sources).

Conducted analyses showed most low- and intermediate-level radioactive waste dumped in the At-

lantic and Pacific Oceans and in the Arctic Seas between 1946 and 1993 was located in Atlantic and

Arctic dumping sites, the least in Pacific sites, 53.43%, 44.87%, and 1.70% of total activity, respectively.

At the North Atlantic, tritium (3H) together with other beta and beta-gamma emitters (90Sr, 134Cs, l37Cs,

55Fe, 58Co, 60Co, 125I, and 14C) accounted for over 98% of the total activity of the waste. The Arctic

Seas were dominated by 90Sr and 137Cs, as well as 60Co, 63Ni, and 152Eu, representing 86% and

12% of the total inventory, respectively. Low-level radioactive waste dumped at the Northeast Atlantic

sites and the high-level radioactive waste dumped by the former Soviet Union in the Arctic Seas and in

the Pacific Ocean account for more than 93% of the activity of all the radioactive material dumped at sea.

Discharges from nuclear facilities in the Baltic Sea region are one of the largest sources of anthro-

pogenic radionuclides in the sea (nuclear power plants and research reactors), the Chernobyl disaster

(1986), releases from nuclear reprocessing facilities (Sellafield in England and La Hague in France),

and atmospheric nuclear weapons testing (mostly carried out by the US and the USSR in the 1950s and

1960s) [7]

Several nuclear submarine sinkings that occurred after 1963 have been verified. Two of them from

the USA Navy—Thresher in 1963 and Scorpion—were in the Atlantic Ocean. The Russian Federation

Navy’s two submarines perished in the Arctic Seas (K-141 Kursk in 2000, K-159 in 2003). Studies

done so far have verified the presence of 137Cs in water and soil samples close to the Komsomo-

lets submarine wreck and 60Co in sediment samples taken in the area of the Scorpion and Thresher

submarines. [8], [9]

As previously indicated, nuclear power plant accidents result in radionuclides entering the seas and

oceans; the worst of these occurred in 1986 at Chernobyl (now in Ukraine) and Fukushima (Japan,

2011). Initial radiation exposure from the Chernobyl nuclear power plant disaster was caused by short-

lived 131I (with a half-life of eight days), while long-lived 137Cs (with a half-life of 30 years) are the main

threat to marine ecosystems. Additionally, higher concentrations of two other radionuclides present in

the fallout, 134Cs and 90Sr, have been observed in marine ecosystems [10]. Currently, the Baltic Sea’s

primary marker of anthropogenic radioactivity is 137Cs. Compared to Chernobyl, releases from the

Fukushima Daiichi nuclear power plant were considerably smaller (estimated at 10–15% of the Cher-

nobyl value) [11]. Literature sources give divergent data on the total activity released during accidents

at both power plants. An extensive analysis, comparison, and compilation of the data from different

sources is found in the work by Steinhauser et al. [11].
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Eighty-two percent of the 137Cs that entered the Baltic Sea came from the Chernobyl accident, four-

teen percent from nuclear weapon testing, and four percent from Sellafield (England) and La Hague

(France) facilities that reprocess nuclear material. In contrast, 81% of 90Sr comes from atmospheric nu-

clear bomb testing and 13% from the Chernobyl emission [8]. Nuclear reprocessing facilities in Western

Europe (Sellafield and La Hague) have recently reduced their radioactive output significantly, making

them a small supplier of radionuclides [7].

1.2 Ramones Project

As a result of all of the aforementioned issues, RAMONES project [1] was founded. The new H2020-

EU FET Proactive Project RAMONES aims to provide innovative and effective approaches for in situ,

ongoing, long-term radioactivity monitoring in challenging underwater environments. Advanced under-

water radiation measurement equipment uses artificial intelligence and advanced robots to understand

coastal locations, develop regulations, and establish standards for environmental sustainability, eco-

nomic expansion, and human health.

Figure 1.2: A simplified sketch of the RAMONES concept [1]

RAMONES offers a new vision of wisdom-enabled cutting-edge results in both instrumentation and

robotic seeing platforms towards a step change in Radioactivity Monitoring in Ocean Ecosystems. RA-

MONES aims to prove that innovative combination and advancement of recent developments in sensi-

tive environments, low power independent robotic systems, and process modeling propositions, have

the eventuality to overcome current limitations and open the window to high temporal and spatial res-
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olution aquatic radioactivity measures, in situ and in near real-time, forming a game changer in deep-

water environmental monitoring.

1.2.1 Goal of the Project

The primary goal of RAMONES is to forge a completely new approach to close the current marine

radioactive under-sampling gap and encourage new interdisciplinary research in imperiled natural deep-

sea ecosystems.

RAMONES will work hard to provide tools for rapid, long-term deployments, creative robotics, and

AI-driven supported methodologies, and scaled-up solutions to communities, decision-makers, and re-

searchers. To respond effectively to both natural and man-made threats, RAMONES will combine SoA

technology from diverse disciplines with advanced modeling in a highly synergistic manner. The work of

RAMONES will help to shape future policies for the entire world’s population.

The RAMONES project aims to design, develop, and validate a new generation of radiation-detecting

instruments for marine terrain. These instruments will offer high effectiveness and fine resolution for

spectroscopic studies in extreme oceanic environments. The project will use state-of-the-art detectors

and innovative designs to create a novel generation of low-power, fast integration-time aquatic instru-

ments for radiation measurements. It will focus on providing tools for long-term, cost-effective deploy-

ments, introduce AI-driven methodologies, and offer valuable results to researchers, policymakers, and

communities.

Furthermore, RAMONES will contribute to AI development by creating advanced recurrent neural

networks and online learning frameworks for time series analysis, abnormal radioactivity detection, and

deep learning for identifying radioactivity hotspots in multi-dimensional imaging datasets. The project

also aims to develop innovative modeling approaches for various applications, including radiation dose

assessment, health concerns, geohazard modeling, and industrial waste radiation. RAMONES will

provide forecasts for the likelihood of exceeding radiation thresholds, propose new risk indices, offer

policy recommendations, disaster response modeling, and support policy implementation strategies.

RAMONES focuses on using gliders which is explained in section 1.3.

1.3 Underwater vehicles: Gliders

Autonomous underwater gliders [12] represent a rapidly maturing technology with a large cost-saving

potential over currently available ocean sampling techniques, especially for sustained, month-at-a-time,

real-time oceanographic measurements. Underwater gliders move efficiently through the water column

by exploiting their ability to change their weight in water.

8



Due to frequent communications and shallow dives, which reflect frequent changes in buoyancy,

there is an increase in power consumption and therefore a reduction in mission length. Currently, the

operational endurance of the gliders varies from 3 to 4 weeks for the shallow SLOCUM glider figure 1.3

(max. depth 200m) to several months for the deeper diving gliders Seaglider (max. depth 1000m) and

Spray (max. depth 1500m). All three gliders are comparable in size and handling requirements. Their

weight in air is approximately 50 kg and their total volume change capacity is between 0.5 and 1% of

their total displacement. The horizontal speed relative to the surrounding water is typically around 35

cm/s.

Figure 1.3: SLOCUM glider and components

1.4 The need for Search Algorithms

Searching for such radioactive sources requires a path-planning algorithm to guarantee a high probabil-

ity of finding radioactive sources. This could be achieved through optimal control approaches mentioned

in chapter 2. This can also lead us to an important concept which is motion planning or path planning.

Geographic information systems, robotics, computer graphics, and other industries all encounter path-

planning or motion-planning problems. The problem consists of finding an optimal route that avoids

obstacles and achieves a certain goal. Normally, the path’s quality is evaluated based on its Euclidean

path length, smoothness, and obstacle-free status. In particular, we consider the coverage problem,

which amounts to visiting every point in a defined area within a predefined distance.

Throughout this thesis, several covering algorithms are to be discussed and implemented based

on the state-of-the-art planning methods and coverage problem mentioned in chapter 2. These meth-

ods can be classified into standard path planning methods e.g. Travelling Salesman Problem (TSP),
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Minimum Spanning Tree(MST), etc., and Optimal Control Problems (OCP) as in the Koopman Search

Theory [13]. The methodology of each algorithm is discussed in chapter 3 as well as a framework for

modeling basic search problems that were established as part of WWII antisubmarine warfare activities

and have since been widely used in industrial and tactical applications [14]. Afterward, the mathematical

difficulty of the Nomoto Steering Model3.1.1 is studied as well as the new numerical methods that are

now available to solve it. These methods are then used to implement a high-dimensional search problem

with many searchers, nonlinear searcher dynamics, and control restrictions.

Several implemented algorithms can be found in chapter 4 associated with several meaningful sim-

ulations and graphs shown in chapter 5, where a comparison between the aforementioned algorithms

is done according to several key points e.g. Length of the traversed path and time taken during each

path. For, the MST problem, 2 configurations were utilized which are the square configuration and the

Hexagonal configuration to define the path traversed in each algorithm.
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2.1 Search Theory Problem

Search theory [15] plays a crucial role in the field of robotics, offering a structured approach to solving

problems related to navigation, decision-making, and resource management. One of its primary appli-

cations is path planning, particularly for autonomous robots. By employing search theory, robots can

determine the most efficient route to maximize the probability of detecting a determined object while

avoiding obstacles and ensuring safe navigation through complex environments.

Moreover, search theory enables the optimization of resources in robotics. Robots often have limited

resources, such as energy and computational power. Through the principles of search theory, they can

plan their actions to minimize energy consumption and maximize operational time. This is of paramount

importance in scenarios where robots are deployed in remote or hostile environments and must operate

efficiently with constrained resources.

In addition to path planning and resource optimization, search theory assists robots in making in-

formed decisions in ambiguous or dynamic settings. Robotics sometimes entails dealing with partial

or imprecise information. In such instances, search theory provides a framework for generating optimal

decisions, allowing robots to adapt and choose the best course of action depending on the available data.

Furthermore, search theory is useful in exploration and mapping activities. When robots are en-

trusted with mapping unknown or partially known settings, this theory guides their exploration, allowing

them to efficiently map the surroundings and uncover new areas or places of interest. It is essential in

applications such as search and rescue, environmental monitoring, and archaeological exploration.

Search theory can aid in task assignment and resource allocation in multi-robot systems. When

many robots collaborate, tasks are divided ideally among the robots, taking their skills and the nature of

the jobs into account. Resource allocation is also properly handled, ensuring that shared resources are

dispersed in such a way that the system’s efficiency and overall performance are maximized.

Several research papers give a taxonomy of search problems that illustrates the distinctions caused

by differing assumptions about searchers, targets, and the environment. Some papers, that focus on the

search theory applications, are mentioned in the next part.

Starting with [15], which covers recent advances in pursuit-evasion and autonomous search that

apply to mobile robotics applications. Figure 2.1 refers to situations in which the target is unaware

of the search process and does not attempt to disguise its location or actively elude an approaching
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searcher. Search optimization is unopposed, which may apply in operations if the searcher’s stealth

ability exceeds that of the target. Search games, on the other hand, have relevance to the antagonistic

behaviors discussed in the previous section. Many works in this area, however, incorporate discrete time

and space, including stationary positioning of a target to impede the searcher’s efforts. The following

papers illustrate the importance of search theory in different applications as well as the advantages and

disadvantages of applying these approaches.

Figure 2.1: Illustration of the partial taxonomy provided by Benkoski et al. [2] for search theoretic problems and ap-
plication areas previously considered in the operations research and applied mathematics communities

Karaman & Frazzoli (2011) discuss sampling-based algorithms for optimal motion planning in robotics.

They present algorithms such as Probabilistic Roadmaps (PRM) and Rapidly-exploring Random Trees

(RRT) that have been shown to work well in practice and have theoretical guarantees of probabilistic

completeness [16].

Masakuna and Fukuda Masakuna et al. (2019) [17] address the problem of search by a group

of solitary robots. They propose a coordinated search strategy for self-interested robots without prior

knowledge about each other. The results demonstrate the effectiveness of the strategy in achieving

efficient search.

Ismail & Hamami (2021) [18] conduct a systematic literature review on swarm robotics strategies

applied to the target search problem with environment constraints. The review identifies various strate-

gies and highlights their applicability in different research domains, including computational and swarm

intelligence.

Yang et al. (2019) [19] propose an extended particle swarm optimization (PSO) based collaborative

searching approach for robotic swarms with practical constraints. The approach aims to address the

problem of collaborative search for specific targets in an unknown area. The results demonstrate the

effectiveness of the approach in achieving efficient search.

Luo et al. (2020) [20] focus on the target search process in swarm robotics. They propose a search

approach based on robot chains with an elimination mechanism. The approach utilizes limited percep-
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tion and local interaction of robots under a self-organizing mechanism. The results show the effective-

ness of the approach in achieving cooperative search.

Zhou et al. (2021) [21] propose a multi-target coordinated search algorithm for swarm robots consid-

ering practical constraints. The algorithm addresses the challenges of multi-target search in unknown

complex environments. The results demonstrate the effectiveness of the algorithm in achieving efficient

search.

2.2 Coverage Problem

The coverage problem in robotics refers to the task of ensuring that one or more robots visit each point in

a target area at least once in an optimal manner, considering factors such as time, energy, and resource

utilization. This problem is particularly relevant in applications such as environmental monitoring, search

and rescue missions, cleaning tasks, agriculture, and surveillance.

To properly complete their tasks, robots must make well-informed decisions on how to navigate

and cover an area. Several researchers consider the covering problem as part of the motion planning

problem.

Another critical component related to the coverage issue is time efficiency. Identifying the most time-

efficient methods for area coverage is critical in search and rescue missions, inspection activities, and

surveillance, especially when time is of the essence. Furthermore, in mobile robotic systems, energy is

frequently a valuable and restricted resource. Efficient coverage tactics are critical for reducing energy

consumption, prolonging the robot’s operational time, and improving overall efficacy.

One benefit of this approach is that the sensors mounted on the robots gather data uniformly through-

out the area, reducing the risk of overlooking important information in data collection applications like

environmental monitoring and exploration. In other cases, such as floor cleaning robots or crop harvest-

ing equipment, complete coverage is required because missing any part of the area is undesirable.

Furthermore, coverage methods are frequently included in path planning. They aid in the generation

of pathways that not only cover the area effectively but also take obstacle avoidance and safe navigation

into account, especially in dynamic contexts. The coverage problem has several practical applications,

including autonomous lawnmowers, vacuum cleaners, agricultural robots, and autonomous cars, all of

which require good area coverage to complete their tasks.

Furthermore, as robots gain autonomy, the capacity to make independent coverage decisions be-

comes increasingly important. This autonomy allows robots to operate with little human involvement,

increasing their utility and decreasing the need for ongoing supervision.

In industrial contexts, effective coverage can result in significant cost savings. Painting, welding,

and inspection robots benefit from optimized coverage, which reduces production costs and increases
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productivity.

In general, the coverage problem becomes more critical and complex in multi-robot systems. Co-

ordination of various robot movements to achieve complete and efficient coverage is a big task that

necessitates complex algorithms and coordination methodologies. In essence, the coverage problem

drives the growth of automation and autonomy in robotics by underpinning the efficiency, effectiveness,

and cost-effectiveness of robotic operations across a wide range of applications.

Several papers have addressed this problem and proposed different approaches and algorithms.

Yehoshua et al.(2016) [22] focused on the robotic adversarial coverage of known environments. They

introduced a unique problem where the environment is adversarial, and the robot may be physically

harmed. They presented preliminary results and discussed the challenges and potential solutions for

this problem.

Batalin & Sukhatme (2004) [23] defined the coverage problem as the maximization of the total area

covered by a robot’s sensors. They discussed the exploration and deployment of a mobile robot in a

communication network and proposed algorithms for efficient coverage.

Galceran & Carreras (2013) [24] conducted a survey on coverage path planning for robotics. They

presented a collection of algorithms for complete coverage path planning using a team of mobile robots

in unknown environments. They discussed various approaches, including boustrophedon decomposition

and cellular decomposition.

Le et al. (2018) [25] proposed a modified A-Star algorithm for efficient coverage path planning in a

self-reconfigurable robot with an integrated laser sensor. They aimed to advance coverage path planning

in robots used for applications such as cleaning, painting, and mining.

Strimel & Veloso (2014) addressed the coverage planning problem with finite resources. They fo-

cused on finding a motion path for a robot that traverses all points in a given area or space [26].

Ku et al. (2019) presented a graph theory-based approach to accomplish complete coverage path

planning tasks for reconfigurable robots. They considered scenarios where the mobile robot is equipped

with reconfigurable modules. Their approach utilized graph theory to plan efficient coverage paths for

reconfigurable robots [27].

Algorithms mentioned by Batalin & Sukhatme (2004) [23] and Le et al. [25] improved the efficiency

of coverage path planning, however resource constraints and coverage optimization were not studied,

which was done by Strimel & Veloso (2014) [26].

2.2.1 Minimum Spanning Tree

A Minimum Spanning Tree (MST) is a fundamental concept in graph theory that is frequently used in

robotic path planning to discover an efficient way to connect a set of points in space (usually representing

places or waypoints) [28]. MSTs are important in robotics for tasks such as motion planning, exploration,
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and connection analysis. Here’s an explanation of how MSTs are utilized in robotic path planning. The

environment is typically represented in robotics as a graph, with nodes representing points of interest

like obstacles, targets, or waypoints and edges representing relationships or distances between these

points. The major goal is to figure out how to connect these places while minimizing the overall distance

traveled, which is a challenge strongly connected to path planning.

An MST is a graph tree given by a subset of edges that connects all nodes while minimizing the

overall sum of edge weights. In robotics, these nodes can represent critical sites that the robot must

visit, and the MST acts as a roadmap for linking these spots effectively. Robots can cross the MST’s

edges to visit all essential places while traveling the least amount of distance.

While MSTs are optimal for connecting all nodes with the least total distance, they may not be op-

timal for specific path-planning scenarios with extra limitations, such as avoiding obstacles or passing

across non-uniform terrain. Additional path planning approaches, such as a potential field or Dijkstra’s

algorithm, may be employed to move within the edges of the MST, optimizing the path for various criteria,

to handle these specific issues.

In dynamic contexts with changing conditions, the MST may need to be computed regularly as new

information becomes available. This adaptability is required to account for the movement of barriers

or changes in the robot’s goals and ensure that the robot operates successfully and efficiently. In con-

clusion, MSTs are an important component of robotic path planning, as a core element for connecting

waypoints and guiding the robot through its surroundings. However, they are frequently combined with

other strategies to solve the unique constraints of certain robotic tasks.

2.2.2 Traveling Salesman Problem

An alternative casting for the coverage problem can implemented through the Travelling Salesman Prob-

lem (TSP) [29].The TSP belongs to the class of combinatorial optimization problems, where the objective

is to find the shortest single path that, given a list of cities (or nodes) and distances between them, visits

all the cities only once. Here is an example solution of the TSP in figure 2.2.

2.2.2.A Applications

The TSP has practical applications in diverse fields such as logistics, transportation planning, circuit

design, and DNA sequencing. Efficient solutions to the TSP can significantly impact resource utilization

and operational costs.
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Figure 2.2: Solution of a traveling salesman problem: the black line shows the shortest possible loop that connects
every red dot.

2.2.2.B Complexity and Intractability

NP-Hardness: The TSP is classified as NP-hard, indicating that finding an optimal solution in polynomial

time is unlikely. This inherent complexity has motivated the exploration of approximation algorithms and

heuristic methods to obtain near-optimal solutions.

Decision and Optimization Versions: The decision version of the TSP involves determining whether

a tour with a given length exists, while the optimization version seeks the shortest tour.

2.3 Optimal Control Problem

Optimal control problems present themselves in a variety of domains, such as path planning, to deter-

mine the control inputs that minimize a given cost function while fulfilling system dynamics and con-

straints.

There are various types of optimal control problems, depending on the performance index, the type

of time domain (continuous, discrete), the presence of different types of constraints, and what variables

are free to be chosen. The formulation of an optimal control problem requires the following:

1. a mathematical model of the system to be controlled,
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2. a cost function,

3. a specification of all boundary conditions on states, and constraints to be satisfied by states and

controls,

4. a statement of what variables are free.

Numerous algorithms for solving optimal control problems are reviewed as Evolutionary Algorithms, col-

location, Dynamic Programming, Pontryagin’s Maximum Principle, Linear Quadratic Regulator, Model

Predictive Control (MPC), Gradient-Based Optimisation Methods, Direct Methods, Stochastic Optimisa-

tion, Mixed-Integer Programming (MIP), Simulated Annealing and others.

Each algorithm from the aforementioned ones has its advantages and limitations, and the choice of

algorithm depends on the problem characteristics and computational requirements.

2.3.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are population-based optimization algorithms inspired by natural evolution

processes. [30] proposed a fast multiobjective genetic algorithm. EAs have been extensively used to

solve multiobjective optimization problems, including optimal control problems. Evolutionary algorithms

like Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) can be applied to search for

optimal control policies. They are beneficial when it comes to dealing with complex and non-linear

systems.

2.3.2 Dynamic Programming

Dynamic Programming (DP) is a mathematical optimization method that breaks down a complex problem

into simpler subproblems. [31] applied the Conjugate Gradient Approach to solve a nonlinear optimal

control problem with model-reality differences. DP is Highly helpful for problems with a discrete state

and control space.

2.3.3 Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle (PMP) is a powerful tool for solving optimal control problems with contin-

uous state and control variables. [32] considered optimal control problems governed by linear unsteady

fluid-structure interaction problems. PMP offers the required circumstances for optimality and aids in the

formulation of the control law.
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2.3.4 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is a popular control technique that solves optimal control prob-

lems for linear systems with quadratic cost functions. [33] used the LQR method to solve a heat transfer

model in the continuous cast secondary cooling area. LQR provides an analytical solution for linear

time-invariant (LTI) systems, however it is not applicable for non linear systems.

2.3.5 Model Predictive Control (MPC)

Model Predictive Control (MPC) is a control strategy that solves an optimal control problem at each time

step using a dynamic model of the system. MPC has received a lot of attention because of its capacity

to deal with constraints and uncertainty. [34] compared optimization algorithms based on combining FD

approximations and stochastic gradients with methods based only on a stochastic gradient for optimal

well-control problems.

2.3.6 Gradient-Based Optimization Methods

Gradient-Based Optimization Methods utilize the gradient of the cost function to iteratively update the

control inputs. [35] proposed a distributed continuous-time algorithm for constrained convex optimiza-

tions using a nonsmooth analysis approach. Gradient-based methods are efficient for problems with

smooth cost functions and constraints.

2.3.7 Stochastic Optimization

Stochastic Optimization algorithms incorporate randomness in the optimization process to explore the

search space efficiently. [36] presented distributed continuous-time approximate projection protocols for

shortest-distance optimization problems. Stochastic optimization methods are useful when the problem

involves uncertainties or noisy measurements.

2.3.8 Mixed-Integer Programming (MIP)

Mixed-integer programming (MIP) formulations handle problems with discrete decision variables. [37]

discussed production optimization with adjoint models under nonlinear control-state path inequality con-

straints. MIP algorithms can handle complex constraints and discrete decision-making, making them

suitable for certain optimal control problems.
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2.3.9 Simulated Annealing

Simulated Annealing is a metaheuristic algorithm inspired by the annealing process in metallurgy. [38]

discussed the use of swarm and evolutionary algorithms, including simulated annealing, for energy

disaggregation problems. Simulated annealing is effective for exploring the search space and escaping

local optima.

2.3.10 Direct Methods

Direct Methods transcribe the optimal control problem into a finite-dimensional nonlinear programming

problem. [39] exploited sparsity in direct collocation pseudospectral methods for solving optimal control

problems. Direct methods provide a direct solution to the problem but can suffer from high computational

complexity for large-scale problems.

2.3.11 Shooting Method

The shooting method is a numerical technique used to solve optimal control problems. Optimal control

problems involve finding the optimal trajectory or sequence of controls that minimizes or maximizes a

given performance criterion, subject to dynamic system constraints. The shooting method is particularly

useful for solving problems where the system dynamics are described by ordinary differential equations

(ODEs) and the goal is to find the optimal control inputs. one can start at the initial value of the working

conditions and work towards the solution. However, this approach fails to handle boundary value issues

since there aren’t enough beginning value conditions to solve the ODE and produce a singular result.

To address this challenge, the shooting techniques were created.

Several scientific methods will be stated based on the state of the art for each method studied and

they will be categorized according to some classifications e.g. direct and indirect Methods, and so on.

According to the references in [40], it is clear that If the differential equations are unstable or very

stiff, they will be very sensitive to the initial conditions. Consequently, very good initial estimates are

required to start the method. Otherwise, the forward integration can overflow, or the Jacobian matrix

used in computing the corrections can be very ill-conditioned. Unfortunately, very good initial estimates

are often difficult to obtain without prior knowledge of the solution.

This difficulty can be alleviated by using the multiple shooting method. In this method, the original in-

terval is divided into several (not necessarily equal) subintervals. This decreases the sensitivity of the

problem to the initial conditions as the integration is performed over shorter intervals. The concept of

the multiple shooting method is readily adapted to parallel processing.

Moving to another paper [41] discussing multiple shooting advantages, the author discusses a novel

20



flexible multiple-shooting technique, that is developed to greatly improve robustness of convergence,

and achieves a reduction in the design space, improved solution accuracy compared with direct meth-

ods, large convergence domain with the aid of multiple shooting, flexibility for handling discrete system

parameters, and rapid problem convergence that allows more trials of initial guesses to locate global

optima.

In [42] the idea of the Combination of direct Multiple Shooting and Collocation was studied. There

was a new direct method for trajectory optimization has been developed, allowing for a combination of

different types of transcription within one problem. Each phase of a problem can either be discretized

using collocation or multiple shooting. For multiple shooting and collocation, several different types of

integration and transcription methods are available.

Meng et al. focused on creating an analytical gradient-based hybrid continuation approach to in-

crease the effectiveness of solving the fixed-time minimum-fuel bang-bang control trajectory. The tech-

nique facilitates the continuing process and can accelerate the solution of a nonlinear programming

problem (NLP) connected to a hybrid multiple-firing scheme. The analytical formulations that have been

created are, in order, the Jacobian of the equality constraints concerning the decision variables, the

gradient of the performance index about the decision variables, and the decision variables concerning

a continuation parameter (thrust magnitude in this work). The last one is used to forecast initial values

in a thrust magnitude continuation, whereas the first two are used to solve an NLP with a given thrust

magnitude [43].

Shippey and Subbarao worked on fusing the genetic algorithm with the shooting Method in this paper.

In their study, they presented a hybrid numerical optimization method using the direct Hermite-Legendre-

Gauss-Lobatto collocation method for trajectory synthesis. The transfer trajectory from a geocentric

circular orbit to an areocentric circular orbit with the least amount of time was calculated. Using the

genetic algorithm and the shooting method, the initial hypotheses for the nonlinear programming problem

were found by scouring the state space for workable candidate solutions. The comparison between the

obtained and published results is very favorable [44].

Searching for some sources in an environment can be approximated as searching for uncertain

targets as expressed in [45], which has implemented the shooting approach principles. The shooting

approach has been depicted in the optimal search problem, created in the 1940s, offering a fundamental

framework for motion planning when looking for uncertain targets. The optimal search problem exam-

ines how to maximize the likelihood of detecting a non-evasive target with uncertain properties, given

the capabilities of the detection equipment and some restrictions on searcher trajectories.
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2.3.11.A Koopman Search Theory

An example of the shooting method is the Koopman Search Theory algorithm [13], which was first cre-

ated as part of the Second World War anti-submarine warfare efforts, and has been extensively used in

tactical and industrial applications. Further details about the mathematical issue of this model are stud-

ied as well as the modern numerical techniques that can now be used to solve it. Then, applying these

techniques to a multi-searcher, nonlinear searcher dynamics, and control constraint high dimensional

search issue.

Moving to another category, which is the ”Collocation Method”, there are plenty of papers to be men-

tioned .

2.3.12 Collocation Method

Starting with Kelly’s reference in [46] for studying the Direct Collocation Method, which is used to gen-

erate an optimized trajectory. Kelly has presented an overview of numerical trajectory optimization with

a special emphasis on direct collocation techniques. These approaches are generally easy to compre-

hend and successfully address a broad range of trajectory optimization issues. a series of four example

problems have been used to demonstrate each new set of topics throughout the paper. The best gait

for a bipedal walking robot is computed using Hermite-Simpson collocation after we first use trapezoidal

collocation to solve a straightforward one-dimensional toy problem. Some tips for creating well-behaved

optimization problems, along with fundamental debugging techniques, are discussed.

A summary of additional strategies for trajectory optimization is towards the end of the study. The

well-documented MATLAB code for each of the examples and methodologies is also available as an

electronic supplement. The main objective is to support the reader with the tools they need to compre-

hend and effectively use their direct collocation approaches.

In [47] the orthogonal Collocation Method is introduced, where the Gauss pseudospectral method

is used for dealing with nonlinear optimal control issues. At the Legendre-Gauss points, the approach

described here performs orthogonal collocation of the dynamics. It is possible to map the costates of the

continuous-time optimum control problem to the Karush-Kuhn-Tucker (KKT) multipliers of the nonlinear

programming problem (NLP) that results from this type of orthogonal collocation. As a result, the KKT

multipliers of the NLP can be used to obtain an accurate estimate of the costate at both the Legendre-

Gauss points and the boundary points. The costate mapping at the boundary points is specifically

caused by the Legendre-Gauss collocation. The approach is illustrated on a sample problem where it is

revealed that extremely precise costates equations are achieved. According to the findings of this study,
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direct route optimization and costate estimation can be accomplished using the Gauss pseudospectral

approach. It is shown that the errors in the state, costate, and control decrease rapidly as the number

of collocation points increases. The results obtained in this paper demonstrate the viability of the Gauss

pseudospectral method as a means of obtaining accurate solutions to continuous-time optimal control

problems.

Starting with the direct numerical solution of an optimal control problem in which [48] Hargraves and

Paris have stated that state variables are represented by cubic polynomials, control variables are linearly

interpolated, and collocation is used to solve the differential equations. The Optimal Control Problem

(OCP) is converted into a mathematical programming problem, which is then resolved using sequential

quadratic programming. The method is demonstrated to be highly effective for several sample problems

and is simple to program for a fairly broad trajectory optimization problem. Results are contrasted with

conclusions drawn from different techniques.

Hargraves and Paris have presented a trajectory optimization technique that combines mathematical

programming and an embedded collocation strategy. This approach has been tested on a wide range

of test cases, and it has been discovered that it is competitive in terms of price and robustness. Their

objective is to include that approach in a program for generic trajectory optimization.

Moving to 2019, [49] when Patel et al. suggested a technique to increase trajectory optimization

accuracy for dynamic robots with intermittent employing orthogonal collocation to make contact Up un-

til recently, mode-scheduling, which requires an a priori understanding of the contact order and can-

not produce complex or counter-intuitive behaviors, constituted the majority of trajectory optimization

techniques for systems with contacts. By allowing the optimization to create or dissolve contacts as

necessary, contact-implicit trajectory optimization methods provide a remedy for this, although their ac-

curacy has been lacking up to this point. To produce trajectories with substantially higher precision,

they combined techniques from direct collocation employing higher-order orthogonal polynomials with

contact-implicit optimization. The crucial idea is to raise the polynomial representation’s order while con-

tinuing to operate under the presumption that effect happens throughout one finite element.

Moving to 2000, [50] when Fahroo and Ross developed a novel approach at that time to be able to

solve the trajectory optimization problem using mixed approaches. Using a direct method and an indi-

rect collocation technique, the Bolza problem that arises in trajectory optimization is resolved. The time

histories of the state and control variables are approximated using piecewise continuous polynomials in

traditional collocation methods. The dynamic constraints across the subintervals whose endpoints are

the collocation points are then satisfied using a numerical integration method.
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Global orthogonal polynomials, such as Legendre polynomials, are utilized in the pseudo spectral

approaches as opposed to standard collocation methods to approximate the state and control variables.

A differentiation matrix forces the state equations precisely at the collocation locations. The co-state

equations are also roughly calculated using the indirect method. They demonstrated that the funda-

mental structure of the original equations may be preserved while using this method to approximatively

satisfy the necessary criteria obtained from the Pontryagin minimal principle. As a result, the Jacobians

are few and have a clear structure, which makes efficient numerical implementation possible. For pre-

cisely resolving optimal control issues, this method offers an alternative to conventional indirect methods

(like indirect shooting) and is simple to apply in conjunction with direct methods. To illustrate the value

of this approach, a numerical example is provided.

In [51] Ross and Fahroo provided a mathematical framework that distinguishes or blends the vari-

ous approaches. This framework is facilitated by distinguishing a transformation from the discretization

rather than bundling them together. Two clear layers emerge with two types of convergence notions. A

Covector Mapping Principle is enunciated which facilitates the definition of a Complete Method. Many

competing claims and issues can now be resolved. A surprising conclusion that can be drawn from this

is that only a few fundamental methods for trajectory generation and optimization of complex dynamical

systems have been studied in the literature.

In [52], Bhattacharya and Gavrilova are presenting an algorithm based on the Voronoi diagram to cal-

culate the best path between the source and the destination when there are simple polygonal barriers

that are disjoint. Furthermore, the path’s quality is assessed according to its total length, smoothness,

and obstacle-clearance. They also offered a thorough explanation of the dynamic updates and mainte-

nance algorithm for Voronoi diagrams. The experimental results of this technique shows great potential

of finding an optimal path.

2.4 Voronoi Diagram Approach

The division of a plane with n points into convex polygons such that each polygon has precisely one

generating point and that each point in a particular polygon is closer to its generating point than it is to

any other creates a Voronoi diagram. Applications for the Voronoi diagram and its dual, the Delaunay

triangulation, are numerous and include collision detection [52].

Compared to several algorithms e.g. optimal control approaches, the Voronoi Diagram approach has

numerous advantages e.g. simplicity, versatility, low computational power, and efficiency. For instance,

the Voronoi diagram as a roadmap has a big O Notation of O(nlogn) faster than a quadratic order
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O(n2). Big O notation is a mathematical notation used to describe the performance or complexity of an

algorithm. It provides an upper bound on the growth rate of an algorithm’s time or space complexity as

a function of the input size.

2.5 Voronoi Diagram

Voronoi diagram is a representation of how the space is partitioned among the random points while

considering polygonal obstacles. This diagram can be useful for path planning or other applications

where spatial partitioning is required.

The following example generates a Voronoi diagram for a set of random points in a bounding box,

considering polygonal obstacles. The Main Components of the aforementioned algorithm are depicted

in the following flowchart 2.3 as follows:

Figure 2.3: Flowchart of Voronoi Diagram
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The generated Voronoi diagram 2.4 is presented as follows:

Figure 2.4: Voronoi diagram generated with 50 random points (blue points), Voronoi cells (red polygons), and 2
obstacles (black squares), navigation path (green)

The red polygons in 2.4 represent the Voronoi cells or regions associated with each of the Voronoi

vertices. Each red polygon outlines the region of space that is closest to a particular vertex (a random

point or a point on the boundary of an obstacle) in the set of random points.

Important terminologies for the Voronoi path planning approach are listed below

1. Voronoi Vertex: Each Voronoi vertex represents a significant point in the space, which is usually

one of the random points you generated or a point on the boundary of an obstacle.

2. Voronoi Cell: The Voronoi cell associated with a vertex is the region of space that is closer to that

vertex than to any other vertex. It is the set of points for which the associated vertex is the nearest

point.

3. Space Partitioning: The Voronoi diagram effectively divides the entire space into regions, where

each region belongs to one of the Voronoi cells. These regions are outlined by the red polygons.

In path planning, the Voronoi diagram 2.4 can be used to determine paths that navigate through the

space while staying within the regions associated with the random points and avoiding collision with any
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of the obstacles. Paths that stay within the Voronoi cells are guaranteed to be the shortest paths to their

respective associated points.

So, in summary, the red polygons in the Voronoi diagram represent regions in the space that are

closer to specific points (the Voronoi vertices) than to any other point in the set, and they provide a way

to partition the space based on proximity to these points.
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3.1 Modeling

System modeling is needed for the optimal control approach explained in part 3.2. Throughout this

thesis, an underwater autonomous glider is approximated to an Unmanned Surface Vehicle (USV), which

is extensively studied in the literature. For this research, it has been decided to follow the method studied

in [53], which is devoted to Mine Countermeasures (MCM) search missions. For instance, to develop

a model for these vehicles, it is assumed that USVs conduct search missions at a constant velocity,

without aggressive maneuvers, and therefore exhibit simple planar motion at the sea surface (pitch,

roll, and heave motions are zero) Assuming also that no sway slipping is performed. The equations

of motion (EOM) can be easily modeled by kinematics as in equations (3.1) to (3.4). Using figure 3.1,

let the state variable pair (x(t), y(t)) be the vehicle’s position (vertical and horizontal respectively) in

meters north and east from an inertial reference frame, ψ(t) be its heading angle in radians measured

clockwise from north, and r(t) is its turn rate in radians per second. If the vehicle travels at constant

forward velocity V meters per second, the state–space Equation Of Motion (EOM) for the state vector
−−→
x(t) ≡ [x(t), y(t), ψ(t), r(t)]T and control input u(t) are

˙x(t) = V cosψ(t), (3.1)

˙y(t) = V sinψ(t), (3.2)

˙ψ(t) = r(t), (3.3)

˙r(t) =
1

T
(Ku(t)− r(t)). (3.4)

Equation 3.4 implements a first-order approximation to the well-known Nomoto model for ship-steering

equations, after applying the Laplace transform L{f(t)} to the differential equation 3.4 assuming zero

initial conditions, a simple transfer function in S-domain between rudder deflection angle u(s) = δr(s)

and turn rate r(s) that “is the most popular model used for ship autopilot design due to its simplicity and

accuracy” [ [53], p. 5]. Note that a transfer function is a relation between output Y(s) and input U(s) in the

S or Frequency domain as follows: G(s) = Y (s)
U(s) . The Laplace transform L{f(t)} is a tool for analyzing

Linear Time-Invariant systems (LTI), providing a way to analyze their behavior in the frequency domain.

3.1.1 Nomoto Steering Model

A Nomoto Steering model [53] is derived as follows:
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Figure 3.1: Model: Horizontal Plane Geometry of a USV

m− Yv̇ −Yṙ 0
−Nv̇ Izz −Nṙ 0
0 0 1


 ˙υ(t)

˙r(t)
˙ψ(t)

+

−Yυ mu0 − Yr 0
−Nv −Nr 0
0 −1 0

υ(t)r(t)
ψ(t)

 =

YδrNδr

0

 δr(t) (3.5)

where

υ(t) sway velocity in the y-axis direction;

r(t) yaw rate, a control variable driven from equation 3.3;

ψ(t) yaw angle;

δr(t) rudder angle;

m vehicle’s mass;

Izz vehicle’s moment of inertia about the z-axis;

Y hydro. coefficients producing sway forces;

N hydro. coefficients producing yaw moments.

In general, control inputs and state variables (and their derivatives) produce nonlinear hydrodynamic

forces and moments. It is common practice, however, to approximate these effects by multiplying each

contributing variable with a linearized hydrodynamic coefficient. In equation (3.5), Y and N denote

coefficients that produce sway forces and yaw moments, respectively, while subscripts denote their

corresponding control input e.g. δr(t) or state variable e.g. υ(t). Considering no sideslip (υ(t) = 0),

equation 3.5 can be arranged to
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[
Izz −Nṙ 0

0 1

] [
ṙ(t)
˙ψ(t)

]
+

[
−Nr 0
−1 0

] [
r(t)
ψ(t)

]
=

[
Nδr

0

]
δr(t) (3.6)

3.1.2 Assumptions

For the sake of simplicity, some assumptions were considered as follows:

1. Zero stream current

2. Vehicle traveling at a constant speed

3. The Problem is considered to be a simple planar motion at the sea surface (i.e. pitch, roll, and

heave motions are zero).

4. yaw rate can be directly controlled (Nomoto time constant is considered to be very large)

3.2 Optimal Control Problem: Optimal motion planning for search-

ing of uncertain Targets

Searching for radioactive sources can be considered as searching for uncertain targets as expressed

in [45].

For the sake of constructing a performance criterion for the optimal search problem, the probability

of target detection must be modeled. According to the Koopman search theory [13], an exponential

probability of detection model is derived which has since become ubiquitous in optimal search literature.

Given the position of a searcher at p1(t) and a target at p2(t), this instantaneous rate of detection

is a function η(p1(t); p2(t); t) such that the probability of detection in a quite small interval [t, t + ∆t] is

independent from previous time intervals and given by the quantity η(p1(t); p2(t); t)∆t. The rate func-

tion η(p1(t); p2(t); t) is chosen to model the qualities of sensor equipment such as acoustic and sonar

sensors, which have fast enough sweep rates to be modeled as continuous processes. An example of

a detection rate function using the Poisson Scan Model is shown in figure 3.2.

Taking into account the previous assumptions, an explicit formula for the probability of target detection

is derived. If we denote the probability of non-detection with the function P(t), the independence of the

time intervals creates the following difference equation:

P (t+∆t) = P (t)[1− η(p1(t), p2(t), t)∆t]
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Figure 3.2: Example detection rate function η: Poisson Scan Model

where

• η(p1(t),p2(t),t)·∆t: This term represents the probability of detection during the time interval ∆t. It’s

the product of the instantaneous detection rate and the duration of the time step.

• 1−η(p1(t),p2(t),t)·∆t: This is the probability of non-detection during the time interval ∆t. It com-

plements the probability of detection, indicating the likelihood that the target remains undetected

during the time step.

• P(t+∆t): This is the updated probability of non-detection at the next time step t+∆t. It’s determined

by multiplying the current probability of non-detection P(t) by the probability of non-detection during

the time step.

As ∆t→ 0 this has an exponential solution:

P (t) = e
−

t∫
0

η(p1(τ),p2(τ),τ)dτ
(3.7)

Using similar techniques, a range of probability for multiple searchers and targets can be obtained.
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These include the likelihood of finding every target and, in the worst case, the likelihood of finding none

of the targets. Generally, this can be expressed as follows:

P (t) = G

( t∫
0

η(p1(τ), p2(τ), τ)dτ

)
.

Throughout this thesis, the model of conditionally deterministic motion is taken into consideration. That

model assumes that the motion of the targets is given entirely by a function of time and a parameter

ω. This parameter is an element of a bounded parameter space Ω ⊂ Rn and has a known probability

density function p : Ω → R.

Considering a conditionally deterministic target motion y(t|ω) = h(t|ω) leads to a probability quantity

which is itself a random variable, i.e. P(t,ω). A natural performance metric is to minimize the expectation

of this random variable over a time interval [0, T]. This will create such a cost function class:

J =

∫
Ω

G

( T∫
0

η(p1(t), u(t), p2(t, w), w)dt

)
p(w)dw (3.8)

Using the derivations in the reference paper [45], Equation (3.8) can be rewritten in another way to

perform discretization if needed but it is outside the scope of this thesis.

3.3 Minimum Spanning Tree

A Minimum Spanning Tree (MST) [28] is a fundamental concept in graph theory, particularly in the field

of optimization. Given a connected, undirected graph G = (V,E) with a set of vertices V and edges E,

an MST is a tree that spans all vertices in V while minimizing the total edge weight.

3.3.1 Problem Formulation

Let G = (V,E,w) be a weighted graph, where w : E → R+ assigns a non-negative weight to each edge.

The goal is to find an MST T with the minimum total weight:

minimize
∑
e∈T

w(e)

subject to the constraint that T forms a tree that spans all vertices in V .
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3.3.2 Prim’s Algorithm

One algorithm to find the MST is Prim’s algorithm [28], which starts with an arbitrary vertex and greedily

grows the tree by adding the smallest-weight edge that connects a vertex in the tree to a vertex outside

the tree. The process continues until all vertices are included in the MST.

The algorithm can be described using the following steps:

1. Initialize an empty set T to represent the MST.

2. Choose an arbitrary vertex v0 and add it to T .

3. While T does not span all vertices:

(a) Select the smallest-weight edge (u, v) such that u ∈ T and v is outside T .

(b) Add vertex v and edge (u, v) to T .

The algorithm maintains a set T that grows into the MST.

3.3.3 Kruskal’s Algorithm

Another algorithm for finding the MST is Kruskal’s algorithm, which is based on sorting the edges by

weight and greedily adding edges to the MST while avoiding cycles.

The algorithm can be summarized as follows:

1. Sort all edges E in non-decreasing order of weight.

2. Initialize an empty set T to represent the MST.

3. Iterate through the sorted edges and add each edge (u, v) to T if adding it does not form a cycle.

The algorithm builds the MST incrementally by adding edges to the growing set T .

3.3.4 Equations and Notations

Here are some equations and notations used in the context of Minimum Spanning Tree:

G = (V,E,w) (Weighted graph) (3.9)

w(e) (Weight of edge e) (3.10)

T (Minimum Spanning Tree) (3.11)∑
e∈T

w(e) (Total weight of edges in T ) (3.12)

The total weight of edges in the Minimum Spanning Tree (T ) is the objective function to be minimized.
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3.4 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) [29] is a classic optimization problem in the field of combinatorial

optimization. It involves finding the shortest possible tour that visits each city exactly once and returns

to the original city. TSP can be formulated as an Integer Linear Programming (ILP) problem. In the

ILP formulation, binary decision variables are introduced to represent whether an edge (the connection

between two cities) is included in the tour or not.

3.4.1 Problem Statement

Consider a set of n cities C = {1, 2, . . . , n}, and let dij represent the distance between cities i and j.

The objective of the TSP is to minimize the total tour length L for a given permutation of cities.

3.4.2 Decision Variable

Introduce a binary decision variable xij for each pair of cities i and j to indicate whether the tour includes

the direct route from city i to city j. The variable xij is defined as follows:

xij =

{
1, if the tour includes the route from city i to city j
0, otherwise

3.4.3 Objective Function

The total tour length L can be expressed as the sum of distances traveled between consecutive cities in

the tour:

L =

n∑
i=1

∑
j ̸=i

dijxij (3.13)

3.4.4 Constraints

To ensure a valid tour, the following constraints are imposed:

∑
j ̸=i

xij = 1, ∀i ∈ C (3.14)

∑
i∈C

xij = 1, ∀j ∈ C (3.15)∑
i∈S

∑
j /∈S

xij ≥ 1 for all non-empty proper subsets S ⊆ {1, 2, . . . , n} (3.16)
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Equation (3.14) ensures that each city is visited exactly once, and Equation (3.15) ensures that the

salesman leaves each city exactly once. Equation (3.16) ensures Subtours elimination which prevents

cycles that do not include all cities.

3.4.5 Binary Decision Variable Constraint

To handle the binary decision variable xij , we add the following constraint:

xij ∈ {0, 1}, ∀i, j ∈ C, i ̸= j (3.17)

3.4.6 Complexity of TSP

The TSP is known to be a Non-deterministic Polynomial-time (NP-hard) problem, meaning that no known

algorithm can solve all instances of the problem efficiently. Various heuristic and approximation algo-

rithms are commonly employed to find near-optimal solutions in practice.

3.4.7 Solution of a TSP

For the Traveling Salesman Problem (TSP), there can be multiple solutions or sequences of solutions,

especially if there are multiple paths that result in the same optimal total distance. The goal of the TSP

is to find the tour with the minimum total distance, and there might be more than one tour that achieves

the same optimal distance.

In mathematical terms, if there are multiple Hamiltonian cycles in the graph (cycles that visit each

node exactly once), and all of them have the same total weight (sum of edge weights or distances), then

there are multiple optimal solutions to the TSP. A Hamiltonian cycle is visiting each node exactly once

and returning to the starting node.

The number of possible solutions grows rapidly with the number of cities, and finding all possible

solutions is generally not practical for large instances of the TSP. Instead, optimization algorithms are

used to efficiently find a single optimal or near-optimal solution. While there may be multiple optimal

solutions to the TSP, the focus is typically on finding any one of these optimal solutions efficiently.
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This chapter discusses the implemented algorithms that are responsible for achieving the path plan-

ning concept which mainly relies on covering the environment as much as possible, avoiding any obsta-

cles, and reaching the goal if possible. Some algorithms e.g. the Traveling Salesman Problem (TSP),

and Minimum Spanning Tree (MST) have various configurations e.g. hexagonal and square routes to

increase the covered area. Some also take into consideration the dynamics of the vehicle e.g. Optimal

Control Problem (OCP) achieving more optimality. In all of the aforementioned algorithms, 3 basic steps

are done to build the environment needed for implementing the algorithms.

Firstly, a random map is generated with polygons with the help of the Matlab function rng(N), where

N is the map Number. These polygons represent obstacles in the environment. The size and number

of polygons are set under control by various parameters like Average obstacle radius and Maximum

number of vertices.

Secondly, polygon intersection is considered, as in equation 4.3, it is guaranteed that the created

polygons do not collide with one another, preventing obstacles from overlapping. If two polygons are

found to be included within each other, one of them is ignored.

b = (x1 − x2)(y2 − y1)− (x1 − x2)(y2 − y1) (4.1)

where (x1, y1) and (x2, y2) are the endpoints of one line segment, and (x1’, y1’) and (x2’, y2’) are the

endpoints of the other line segment.

a = (x′1 − x2)(y
′
2 − y′1)− (x′1 − x′2)(y

′
2 − y′1) (4.2)

The intersection point (x, y) is calculated as follows:

ζ =
a

b
(4.3)

If 0 <ζ <1, then an intersection exists.

The Euclidean distance between two points (x1, y1) and (x2, y2), which can be expressed as:

Distance =
√

(x1 − x2)2 + (y1 − y2)2 (4.4)

Thirdly, the map is represented by a graph. The graph’s edges show the possible connections be-

tween the nodes, which are valid locations in the surrounding space. The adjacency matrix is computed

by the algorithm by utilizing the intersections of the obstacles and nodes.
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4.1 Minimum Spanning Tree (MST) Algorithm

This algorithm is responsible for generating a random map filled with randomly placed obstacles and

finding a minimal spanning tree (MST) for path planning [54].

The minspantree built-in Matlab function is used to calculate the graph’s minimal spanning tree. The

connected path represented by this MST minimizes the overall distance while covering every vertex. An

optional visualization of the MST in the main figure is also included in the code. The aforementioned

algorithms find the tree that connects all vertices with the minimum total edge weight. The solution of an

MST is a collection of vertices defined at a distance d from each other, where these vertices are located

outside the polygons. In figure 4.1, two possible configurations for the path are implemented which are

the square and hexagonal configurations where the vertices are chosen to be at a d distance from each

other in the form of a hexagon and the same way for a square configuration.

Figure 4.1: MST Hexagonal grid (left) and square grid(right) configurations

In the hexagonal configuration, the vertices are governed by the following equations:

v1 = (i · 3
2
· d, j ·

√
3

2
· d)

v2 = (v1 + (d, 0))

v3 = (v1 + (
d

2
,

√
3

2
· d))

v4 = (v1 + (−d
2
,

√
3

2
· d))

v5 = (v1 + (−d, 0))

v6 = (v1 + (−d
2
,−

√
3

2
· d))
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In these equations, i and j represent the grid coordinates of the hexagon, and d is the spacing between

the hexagons. The equations provide the coordinates of the six vertices of the hexagon.

In 4.2, the randomly generated map number 492 is generated with obstacles and path. For the sake

of analysis and debugging, the MST is transformed into this Morphological dilatation in figure 4.4. Then,

computing a line that gives contour which gives a path to be traversed as in figure 4.5.

Figure 4.2: Main figure: Map and Path Figure 4.3: Minimal covering Tree

Figure 4.4: Morphological dilatation Figure 4.5: Generated Contour

4.1.1 Path Tracing

The script forms a path by traveling from one of the tree’s nodes to its neighboring nodes, tracing a path

through the resulting minimal-spanning tree. In the main figure, the path is represented by a succession

of black dots. The path is traced by iteratively moving from one point to the next. The code tracks the

change in position (dx, dy) to move to the next point, which can be expressed as:

dx = xnext − xcurrent (4.5)

dy = ynext − ycurrent (4.6)
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4.1.2 Output and Visualization

The script provides information about the length of the generated path and visualizes it on the main

figure, showing the path through the polygons(obstacles).

4.2 Traveling Salesman Problem (TSP) Algorithm

This algorithm is responsible for implementing the Traveling Salesman Problem (TSP) with additional

features e.g. obstacle avoidance [55]. Similar to MST, vertices are chosen at a specified distance but

here it is 0.5*d instead of d. Here is a breakdown of the algorithm as below:

4.2.1 Initialization

In this part, point generation and obstacle definition are implemented via the following steps:

1. Generating random points within a bounding box.

2. Defining polygonal obstacles based on input parameters.

3. Filtering out points that are included within the dimensions of the obstacles.

4.2.2 Graph Construction

In this part, a graph is created with the filtered points as nodes. Then using 4.4, the distance between

the nodes is calculated. In order to find all paths from one node to another in a graph, a helper function

(”AllPath”) is defined. AllPath accepts inputs as node numbers and adjacency matrix and generates

nodes of the path that are visited one time at most, applying the main concept of a TSP.

4.2.3 TSP Problem Formulation

In this part, the TSP problem is formulated as follows:

1. Set up the ILP problem to solve the Traveling Salesman Problem (TSP).

2. Defining constraints to ensure that each node is visited exactly once.

The objective function in TSP seeks to minimize the total distance traveled while maintaining the Hamil-

tonian cycle which is visiting each node exactly once and returning to the starting node. This can be

represented as follows:

Minimize
N∑
i=1

N∑
j=1

cij · xij (4.7)
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Where:

N represents the number of nodes (locations to visit).

cij represents the distance or cost between nodes i and j

xij is a binary decision variable, where xij = 1 if traveling from node i to node j occurs, and 0 otherwise.

4.2.4 Initial TSP Solution

This step is responsible for solving the TSP problem and computing an initial solution.

4.2.5 Subtour Elimination

Several Subtours elimination is done by first identifying and eliminating subtours in the solution using

linear inequality constraints as in equation 3.16. Then, repeat the optimization process until there is only

one subtour remaining.

4.2.6 Plotting and Visualization

The optimal path is plotted in chapter 5. As well as taking into consideration the performance criteria

used.

4.3 Optimal Control Problem (OCP)

The Nomoto Steering Model parameters are chosen according to the following table 4.1:

Design Parameter Value

Nomoto Gain Constant,K 0.5 1/s
Nomoto Time Constant,T 5.0 s

Velocity,V 2.5 m/s

Table 4.1: Design Parameters for a USV Model

For this algorithm, Matlab is also used for generating some simulations for the optimal Control Prob-

lem alongside Casadi [56] optimization toolbox and Ipopt [57], a library for large-scale nonlinear opti-

mization implementing an interior point method for nonlinear programming, which is suitable for solving

both convex and nonconvex nonlinear optimization problems.

The following algorithm solves an optimal control problem (OCP) using direct multiple-shooting [45].

The problem involves finding an optimal path for a robot navigating through a map with obstacles while

avoiding collisions and minimizing a cost function.
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1. Initialization

• The algorithm begins by setting up the problem’s parameters, including the map size, obstacle

positions, control intervals, and various constants.

• It defines the optimization problem using the CasADi library, specifying decision variables

(state trajectory and control trajectory), an objective function to be minimized, dynamic con-

straints, control constraints, and boundary conditions.

2. Solving the NLP (Nonlinear Programming Problem): In section 2, there are numerous techniques

and solvers stated to solve the programming problem, but in order to solve a nonlinear program-

ming problem (NLP) in a computationally efficient way, the IPOPT solver is chosen to solve the

defined in the optimization setup.

3. Post-processing: The code post-processes the optimization results to calculate and visualize vari-

ous quantities related to the solution.

4. Plotting Several plots to visualize the results, including gamma functions, trajectories, probability

of not detecting, and control inputs.

4.3.1 Main components of the aforementioned algorithm

• Optimization variables, and dynamic constraints to find the optimal state and control trajectories.

1 % ---- decision variables ---------

2 Cellpos1 = repmat(xrange ,length(yrange) ,1);

3 Cellpos2 = repmat (( yrange) ',1,length(xrange));

4 X = opti.variable(3,N+1); % state trajectory

5 pos = X([1 2],:);

6 pos1 = X(1,:);

7 pos2 = X(2,:);

8 yaw = X(3,:);

9 U = opti.variable(N); % control trajectory (throttle)

10

11 % ---- dynamic constraints --------

12 f = @(x,u) [speed*cos(x(3));speed*sin(x(3));u]; % dx/dt = f(x,u)

• An objective function that considers the cost associated with navigating through the map, avoiding

obstacles, and minimizing a cost related to gamma functions.
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1 % ---- objective ---------

2 dt = T/N; % length of a control interval

3 cost = 0;

4 for i=1: length(yrange)

5 for j=1: length(xrange)

6 indic = 0;

7 for k=1:(N+1)

8 distsq =(pos1(k)-Cellpos1(i,j))^2+( pos2(k)-Cellpos2(i,

j))^2;

9 indic = indic+dt*gamma_distsq(distsq);

10 end

11 cost = cost + apf_disc(i,j)*exp(-indic);

12 end

13 end

14

15 opti.minimize(cost);

• Integration using Runge-Kutta 4 for dynamics propagation.

1 for k=1:N % loop over control intervals

2 % Runge -Kutta 4 integration

3 k1 = f(X(:,k), U(k));

4 k2 = f(X(:,k)+dt/2*k1 , U(k));

5 k3 = f(X(:,k)+dt/2*k2 , U(k));

6 k4 = f(X(:,k)+dt*k3 , U(k));

7 x_next = X(:,k) + dt/6*(k1+2*k2+2*k3+k4);

8 opti.subject_to(X(:,k+1)== x_next); % close the gaps

9 end

• Control constraints to limit the control inputs. Boundary conditions for the initial position and yaw

angle of the robot.

1 % ---- control constraints --------

2 opti.subject_to(rmin <=U<=rmax);% control is limited

3 % ---- boundary conditions --------
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4 opti.subject_to(pos(:,1)==pos0); % start at position 0 ...

5 opti.subject_to(yaw(1,1)==yaw0); % start at yow 0 ...

• Post-processing to visualize the results, including trajectory plots and probability maps.

Here the resulting simulations show various explanations about placing the obstacles randomly on a

defined map, and a trajectory is created achieving obstacle avoidance as much as possible.

Figure 4.6: Control Signal (yaw angle) Figure 4.7: Gamma against distance

Figure 4.8: Random Obstacles placed Figure 4.9: Position1 against Position2

Figure 4.10: Generated Trajectory with priori
distribution

Figure 4.11: Probablity of not detecting know-
ing the location of the source
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5.1 Traveling Salesman Problem

The solutions and obstacles (polygons) are visualized on the same graph.

To have performance criteria, path computation is performed simply by computing the time it takes

to traverse the optimal path, considering a specific speed. Moreover, computing the final positions (first

coordinate and second coordinate) and the associated time. Here is the generated path for the randomly

generated maps 493 and 292 using the Matlab function rng(N).

Figure 5.1: TSP map 493 Figure 5.2: TSP map 292

5.2 Minimum Spanning Tree

Here is the generated path for the randomly generated map, starting the script with rng(493) and

rng(292). In figures 5.3 to 5.6, a collision between the path and obstacles could be observed, how-

ever, after zooming in, it is a border-overlapping. Border-overlapping is considered a drawback of this

implementation.

Figure 5.3: MST with square configuration map 493 Figure 5.4: MST with square configuration map 292
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Figure 5.5: MST with hexagonal configuration map
493

Figure 5.6: MST with hexagonal configuration map
292

5.3 Optimal Control Problem

Here is the generated path for the randomly generated map, using rng(493). It can be observed that

there are a lot of uncovered areas due to a large radius of detection.

Figure 5.7: OCP Path map 493
Figure 5.8: OCP Path map 292

Note: OCP failed to give a proper solution in some maps e.g. 101 due to a failure of the solver.

5.4 Discussion

In this chapter, the results of maps 493 and 292 are discussed concerning several performance criteria

taken into consideration e.g. processing time of each algorithm, uncovered area, traversed path, and

traversed distance. Note: due to the available computational resources, only 2 maps were analyzed as

an example. First, let’s start with plotting all paths together as shown in 5.9 and 5.10.
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Figure 5.9: Map493: Paths of all algorithms are plotted

Figure 5.10: Map292: Paths of all algorithms are plotted

52



Figure 5.11: Map 493: Traversed distance taken for
each algorithm

Figure 5.12: Map 292: Traversed distance taken for
each algorithm

The processing time graphs are as follows:

Figure 5.13: Processing time taken for each algo-
rithm map 493 Figure 5.14: Processing time taken for each algo-

rithm map 292

It is observed that the MST square algorithm takes the longest time to traverse the path unlike OCP,

which is preset to 1500s. OCP has the shortest traversed distance, unlike MST square with the largest

traversed path.

From figure 5.13, one can see that there is a prominent drawback of OCP which is the processing

time with an average time between the 2 maps of about 2550s, which is the maximum processing time

compared to the other algorithms while the MST Hexagonal holds the record for the least processing

time with about 1s.
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5.4.1 Uncovered Areas

The uncovered areas are shown in the environment for each algorithm using map 493. The uncovered

areas are represented with dots.

Figure 5.15: Map493: Uncovered Areas with TSP
Figure 5.16: Map493: Uncovered Areas with MST

square configuration

Figure 5.17: Map493: Uncovered Areas with MST
Hexagonal configuration Figure 5.18: Map493: Uncovered Areas with OCP

Likely the uncovered areas for map 292 are also shown as follows:
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Figure 5.19: Map292: Uncovered Areas with TSP
Figure 5.20: Map292: Uncovered Areas with MST

square configuration

Figure 5.21: Map292: Uncovered Areas with MST
Hexagonal configuration Figure 5.22: Map292: Uncovered Areas with OCP

Using the uncovered areas graphs and 5.23, one can deduce that there is a trade-off between un-

covered area and traversed path. The larger the traversed path means less uncovered area. Starting

from figure 5.15 to figure 5.22, there are some intersections between the path and some obstacles which

means failure to compute a suitable path.
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Figure 5.23: uncovered Areas for each algorithm
for map 493 Figure 5.24: uncovered Areas for each algorithm

for map 292

It is clear that the uncovered areas for the OCP are more in map 292 than 493 and this is clear from

graphs 5.18 and 5.22.

In a nutshell, OCP is considered to be more useful if the time to traverse the path is constrained but

has a much higher processing time than the other algorithms, and is less suitable when the objective is

to cover the area, where a TSP algorithm fares better. Moreover, if the main goal is to obtain a solution

fast, MST-based approaches yield smaller processing times.

OCP is more flexible to adapt to other situations where different detections could be done for diver-

sified applications with the help of different sensors being fitted on the vehicle, where different sensors

can change the simulations which was not studied in this thesis. It has been observed that there are

fewer missing spots as the radius of detection is reduced but that comes with a disadvantage with more

computational power since it increases the coverage area. OCP has a fixed traversed time with a draw-

back of more uncovered area.

The OCP approach considers the dynamics of the vehicle, unlike other algorithms. However, there

is a drawback for the OCP which is having quite noticed uncovered areas, which is controlled by the

parameter ”radius of detection”. As the radius increases, this will lead to more processing time but more

covered area to solve the problem of high covered areas in graphs 5.18 & 5.22.
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A summary of the thesis and future developments are discussed in this chapter.

6.1 Conclusion

Trajectory generation is an important problem as part of the RAMONES project for which underwater

gliders are used to monitor underwater radioactivity, which requires significant covering and traversing.

Coverage algorithms are devised to generate a trajectory that maximizes the probability of detecting a

radioactive source and covers the working environment as much as possible in particular through the

solution of a generalized optimal control problem (OCP) with an exponential detection model. To have

a fair comparison with another algorithm found in the literature review, the Travelling Salesman Problem

(TSP) and Minimum Spanning Tree (MST) were implemented to analyze the trajectory generated and

compare it with the OCP concerning some performance criteria e.g processing time, uncovered areas,

traversed time and distance of the trajectory. OCP is considered to be more useful if the time to traverse

the path is constrained but has a much higher processing time than the other algorithms, and is less

suitable when the objective is to cover the area, where a TSP algorithm fares better. Moreover, if the

main goal is to obtain a solution fast, MST-based approaches yield smaller processing times.

6.2 Future Work

Due to time constraints, an image processing algorithm could not be continued but it is crucial to identify

and label obstacles from a Google Maps image.

Applying the Voronoi-based coverage path planning approach can lead to good results. Huang

et al. [58] propose a method, for planning the paths of mowers. The approach utilizes an algorithm

based on Voronoi diagrams to navigate through irregular environments. By dividing the environment

into regions and generating paths that cover each region the robot can effectively cover the area while

avoiding obstacles.
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