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Abstract

This abstract outlines the activities undertaken during a master’s internship at Robotnik
Automation. The overall goal was to validate Intel’s tools for autonomous mobile robots
for industrial inspection and surveillance. To achieve this goal, Intel Edge Insight for
Autonomous Mobile Robots (Intel EI for AMR) and, in particular, Intel’s Distribution
of OpenVINO Toolkit, a robust open-source library for optimizing and deploying deep
learning models, were studied, tested, and validated for various perception applications
in the context of mobile robots, specifically, object detection and semantic segmentation.

The first objective was to work with the Intel EI framework to assess its feasibility and
efficiency in supporting autonomous functionalities for Robotnik’s mobile robots. This
framework offers various tools and algorithms that aid in real-time decision-making,
perception, and control, thereby enabling robots to navigate autonomously in dynamic
environments. Ultimately, EI for AMR was deemed unfeasible for use due to its con-
flicting software ecosystem and dependencies compared to Robotnik’s existing software
stack. However, one of its frameworks, OpenVINO, was discovered to be a promising
candidate for developing and deploying AI applications for mobile robots at Robotnik
Automation. Therefore, OpenVINO was used to create object detection AI applica-
tions, particularly for docking station, COCO objects, fire, and smoke detection using
YOLOv7. The object detection AI has been developed, tested, deployed, and is now
commercially used with mobile robots at Robotnik Automation.

Additionally, the study addressed challenges related to point cloud data hindering
indoor navigation, particularly during obstacle avoidance. Therefore, point cloud filter-
ing by means of semantic segmentation of RGBD and LIDAR data was further explored,
tested, and optimized. The excessive computation and requirement of re-training the
model were the limiting factors for point cloud filtering.

Throughout the internship and thesis work, extensive experimentation, testing, and
validation were conducted to evaluate the performance and effectiveness of the proposed
automation and object detection solutions.
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This chapter reflects on the motivation and the activities carried out during the
master’s internship period.

1.1 Background
Before delving into the technical details, it is important to briefly introduce the back-
ground, context of the proposed activities, and key terminologies to the reader for better
understanding.

1.1.1 Robotnik Automation

This thesis activity was primarily conducted at Robotnik Automation [1], located in
Paterna, Valencia, Spain. Robotnik, headquartered in Valencia, is an international mo-
bile robotics company specializing in designing and developing mobile robots, mobile
manipulators, and customized robotic solutions for industrial automation and research.
Robotnik offers a range of mobile robots, including RB-Robout, RB-Theron, RB-Vogui,
RB-1 Base, Summit-XL Steel, Summit-XL, RB-Car, and RB-Watcher, designed for tasks
such as logistics, research, surveillance, and inspection. The RB-Watcher robot, the lat-
est addition to Robotnik’s offerings, is specifically designed for surveillance and security

1



2 Introduction

(a) RB-Watcher (b) RB-Theron

Figure 1.1: Pictures of Robotnik’s platforms utilized during the given master’s thesis
work

tasks to minimize potential hazards and risks in the deployed environment. Its software
stack is adaptable, modular, and integrable with new algorithmic functional capabilities.
Consequently, all proposed activities, including software development and validation, are
focused specifically on the RB-Watcher robot (see Fig. 1.1a, [2]). To ensure reliability
and quality assurance, the software packages are also verified using RB-Theron (see Fig.
1.1b, [3]).

1.1.2 Indoor Autonomous Mobile Robots (AMR)

A self-contained robotic system explicitly designed to navigate and carry out assigned
tasks in an indoor space without direct human intervention is known as an indoor Au-
tonomous Mobile Robot (AMR). These robots are equipped with a variety of sensors,
algorithms, and control systems that enable them to function autonomously and make
decisions based on their perception of the surroundings and predetermined goals. They
can perform activities such as path planning, obstacle avoidance, mapping and localiza-
tion, and interfacing with devices or objects in the indoor environment. The hallmark of
these robots is their ability to efficiently carry out repetitive or complex tasks, thereby
improving overall productivity and enhancing safety by minimizing human involvement.
These robots’ applications span warehouses, industries, hospitals, offices, and homes.
Examples of indoor autonomous mobile robots include pick-and-place robots in ware-
houses, cleaning robots, surveillance robots, and more. The indoor AMR application of
interest for the proposed activity was security and surveillance.
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1.1.3 AMR for Security and Surveillance

These AMRs enhance the security and surveillance capabilities of the facilities in which
they are deployed. These robots are equipped with advanced sensors, cameras, and de-
tection capabilities, along with autonomous patrolling and monitoring functionalities to
detect and respond to security threats or suspicious activities. The tasks may also re-
quire navigating through corridors, rooms, and other indoor spaces, utilizing algorithms
for mapping, navigation, and obstacle avoidance. In general, AMRs play a vital role in
enhancing security by providing real-time monitoring, triggering alarms, gathering vi-
sual data, and even interfacing with centralized security systems. In offices, warehouses,
data centers, and critical infrastructure facilities, their autonomous nature reduces the
need for constant human presence, minimizing the chances of human error and enabling
more efficient and comprehensive surveillance, threat detection, and response.

1.1.4 Intel Edge Insights for AMRs and OpenVINO

Edge Insights for Autonomous Mobile Robots (EI for AMR, [4]) is an end-to-end mobile
robot framework developed by Intel. This framework leverages advanced edge comput-
ing, data analytics, and machine learning technologies to enhance the capabilities of
mobile robotic systems. It facilitates modular software development and deployment on
mobile robots with the help of Docker [5] and the open-source ROS2 (Robot Operating
System 2, [6]) as shown in Fig. 1.2. Key characteristics of EI for AMR include real-
time data processing at the edge, data analytics for businesses to gain better insights,
advanced in-built perception algorithms, real-time host-robot health monitoring, fleet
management, data security with compliance, and additional customization capabilities.

Intel EI for AMR also leverages OpenVINO (Open Visual Inference and Neural Net-
work Optimization, [7]) for optimized computer vision and deep learning implementa-
tions. OpenVINO is an advanced framework developed by Intel that optimizes and
accelerates deep learning models for various Intel hardware platforms, including Cen-
tral Processing Units (CPUs), Graphical Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs), and neural accelerators1. Through Intel’s OpenVINO library, EI
for AMR provides optimized deep learning model deployment on AMRs to process com-
plex data and perform tasks such as semantic segmentation, pose estimation, object
detection, tracking, sensor fusion, face recognition, etc.

1.1.5 VDA5050 and Fleet Management

Fleet management refers to controlling, monitoring, and regulating a collection of vehi-
cles, which may include trucks, cars, buses, or Automated Guided Vehicles (AGVs). This
process includes activities, such as planning travel routes, monitoring vehicle positions,
overseeing fuel usage, and handling maintenance timetables. A novel and promising
standard for communication between AGVs and fleet management software is known as

1Specialized hardware and processors that are optimized specifically to handle neural network work-
loads



4 Introduction

Figure 1.2: EI for AMR Architecture [4]

VDA5050. VDA is an acronym of the Verband der Automobilindustrie (VDA)2 - the Ger-
man Association of the Automotive Industry - a pivotal contributor to this technology.
The other major contributors include the Mechanical Engineering Industry Association3,
the Institute for Material Flow and Logistics (IFL) at KIT4, and several AMR indus-
try collaborators. VDA5050 is an open-source communication protocol among different
AGV fleet vehicles and central master control [8]. The VDA5050 is becoming increas-
ingly important (especially in Europe) as it encapsulates the complex commissioning
and interoperability of various AGVs (even from different manufacturers) and creates a
collaborative space (a unified path) for all AGVs to operate. Considering these benefits
of the VDA5050, the objective was to evaluate EI for AMR inbuilt fleet management
and VDA5050 functionalities, specifically, VDA5050 to ROS2 conversion, the possibility
of customized usage, and basic advanced fleet management (robot orchestration).

1.1.6 Automated Docking in the Context of AMRs

Mobile robots with the capability to automatically approach, align, and connect to a
designated docking station or charging point are said to be capable of automated docking.
There are various levels of autonomy in docking, enabling mobile robots to transfer data,
recharge their batteries, switch their batteries, and carry out their assigned tasks without
human intervention. Different sets of sensors, algorithms, and control systems are used

2www.vda.de
3www.vdma.org
4www.ifl.kit.edu

www.vda.de
www.vdma.org
www.ifl.kit.edu
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to enable the mobile robots to maneuver and align themselves with the docking station
precisely. Automated docking ensures operational autonomy and continued operation
for an extended period without human assistance in various applications such as, but
not limited to, delivery, cleaning, warehousing, and surveillance.

1.1.7 Object Detection

Object detection is a computer vision task involving detecting and localizing objects
of interest in an image or video frame. Unlike an image or frame classification task,
it not only assigns a label to the object but also identifies the object’s class, draws
a bounding box around it, and assigns a confidence score for each detection. Object
detection finds its application in robotics, autonomous vehicles, medical imaging, and
many other domains.

Object detection algorithms have evolved over the past two decades. Initial work
that appeared on object detection utilized conventional image processing and machine
learning approaches. Notably, the pioneering work of Viola–Jones appeared in 2001 [9].
It combined different image processing concepts, such as Haar-like Features, Integral
Images, the AdaBoost Algorithm, and the Cascade Classifier, for face detection problems.
Later, HOG Detector [10] and DPM [11] gained a significant reputation.

With the inception of Convolutional Neural Network (CNN) in 2012 [12], deep
learning-based object detection models began to emerge in 2014. These models are
further categorized into two types: two-stage detection and single-stage detection.

1.1.7.1 Two-Stage Object Detection:

These models use a two-step process for object detection: identifying the potential loca-
tions of objects in an image, and then classifying the objects and creating bounding boxes
around them. Two-stage methods appeared in the literature before one-stage methods,
so two-stage detection methods are discussed first in the following paragraph. Note
that the following list is not exhaustive and only includes major milestones of two-stage
detectors in the order of their appearance in the academic literature.

Region with CNN features (R-CNN) [13]: It is considered a pioneering work in
deep learning-based object detection. It utilizes CNN to generate a smaller set of possible
regions where an object of interest could be present. Afterward, it individually extracts
features of each specific region and decides whether the region contains an object or not.

Spatial Pyramid Pooling Networks (SPPNet) [14]: The key innovation of SPP-
Net is the inclusion of a spatial pyramid pooling strategy to handle input images of
varying sizes or dimensions.

Fast R-CNN [15]: It augmented R-CNN models with key innovations like region
proposals, single forward pass over the entire image, and region of interest pooling, to
name a few. Refer [16] for detailed insights.



6 Introduction

Faster R-CNN [16]: It builds on top of Fast R-CNN [15] and introduces the concept
of Region Proposal Networks (RPNs) to improve object localization. It generates region
proposals and refines them for more accurate detection.

Mask R-CNN [17]: It is an extension of Faster R-CNN. It generates object masks in
addition to bounding boxes, boosting accuracy on various object detection benchmarks
and robustness to occlusions at the expense of a minor difference in computational speed.

Feature Pyramid Networks (FPN) [18]: It utilizes input images as a pyramid of
feature maps, each having a different spatial resolution. This addresses the underlying
issue of detecting smaller objects (or objects of different sizes) that faster RCNN was
unable to solve.

1.1.7.2 One-Stage Object Detection

Single-stage object detection methods predict the bounding boxes and class labels of
objects in an image in a single step. In the following paragraphs, single-stage object
detection methods are discussed.

Single Shot Detectors (SSD): It uses a single pass through the neural network to
predict object classes and bounding box coordinates. They are lightweight, efficient, and
suitable for real-time applications [19].

You Only Look Once (YOLO): It takes a different approach by dividing the image
into a grid and predicting object properties directly from the grid cells. It achieves real-
time performance and is famous for real-time applications. There have been numerous
iterations since the inception of YOLO [20], and the latest in the series is YOLOv8 [21].

1.1.8 Common Object in Context (COCO) Dataset

COCO is one of the most popular, open-source, and large-scale object detection, seg-
mentation, and annotation datasets [22]. It is widely used for training and evaluating
object detection and segmentation models with up to 80 object categories and up to 1.5
million object segmentation masks. The dataset is divided into training, validation, and
testing subgroups with an approximate size of 118000, 5000, and 21000 images, respec-
tively. Splitting the dataset into train, validation, and test sets is standard practice. The
training set is a portion of data used to fit a deep learning model. A validation set is
used to evaluate a deep learning model in the development phase frequently. The testing
set comprises of entirely unseen data samples for the final evaluation of the model.

1.1.9 Semantic Segmentation

In computer vision, semantic segmentation refers to classifying each pixel in an image
into a specific category or class, thus assigning semantic meaning to each pixel. It enables
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understanding and distinguishing between different objects, backgrounds, and elements
within the image. The goal is to partition an image into meaningful regions correspond-
ing to objects or structures of interest with applications in autonomous driving, medical
image diagnosis, and robotics. There are various types of segmentation, such as instance,
panoptic [23], binary, multi-class, real-time/video, or panorama segmentation. The focus
of this work is real-time multi-class semantic segmentation algorithms.

Starting from 2012, various semantic segmentation models based on CNNs have been
introduced in consecutive years up until the present. Discussing all of them is outside
the scope of this work; however, significant enhancements in architecture and milestones
are summarized below.

1.1.9.1 Early Fully Convolutional Networks (FCN)

FCN was a breakthrough by introducing end-to-end learning for semantic segmenta-
tion. It replaced fully connected layers with convolutional layers, enabling pixel-wise
predictions. The first time FCN-based object segmentation was presented in [24].

1.1.9.2 Dilated Convolutions

Dilated convolutions expanded the receptive field without increasing the number of pa-
rameters, allowing networks like DeepLab [25] to capture context while maintaining
efficiency. Specifically, DeepLab introduced Atrous Spatial Pyramid Pooling (ASPP) to
capture multi-scale context, and its successors followed the improvement with newer in-
novations later. FastFCN also gained notable consideration at that time as it improved
the speed of DeepLab by incorporating Joint Pyramid Upsampling blocks [26].

The original DeepLab model’s creators later integrated the ASPP into DeepLabv2
[27]. Subsequently, in DeepLabv3 [28], they extended this approach by introducing
a cascaded deep ASPP module to incorporate multiple contextual features. Following
DeepLab and aiming to enlarge the receptive field with multi-scale context incorporation,
Pyramid Scene Parsing Network [29] employed a pyramid pooling module to capture
global context at different scales.

1.1.9.3 Top-down/Bottom-up approaches

These models have a similar architecture as their predecessors, except the second part of
their architectures, are hierarchically opposite of the first half. For example, U-Net [30]
architecture combined contracting and expanding paths to capture both local and global
contexts, proving effective for medical image segmentation tasks. Similarly, SegNet [31]
introduced an encoder-decoder architecture with skip connections, efficiently handling
object boundaries and fine details.

1.1.9.4 Vision Transformer-based models

With the inception of the vision transformer [32], many efforts have been carried out to
utilize them for various perception applications, including semantic segmentation. Unlike
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conventional CNN-based architectures, vision-based transformers apply the transformer
architecture, originally designed for natural language processing tasks, to visual data.
The ability of vision-based transformer models to capture long-range dependencies in
images using a self-attention mechanism makes them superior in performance compared
to conventional CNNs. Vision-based transformer models usually utilize a combination of
CNNs, encoder-decoder structures, and variations of transformer architectures. Trans-
formers for semantic segmentation tasks offer improved accuracy, better generalization,
and increased efficiency at the expense of computational complexity, higher memory
requirements, and weaker interpretability. Some notable works on vision transformer-
based image segmentation include [33–38]

1.1.9.5 Semantic Segmentation in Real-time Videos

For robotics applications, semantic segmentation goes beyond image segmentation and
focuses on complete scene understanding of videos. The primary issue in this form of
semantic segmentation is the demanding computational task of expanding the spatial
aspect of the video alongside the temporal frame rate. It is illogical to disregard tempo-
ral features and focus solely on spatial frame-by-frame characteristics when dealing with
video segmentation. Given the interconnected flow between video frames, the tempo-
ral context within video semantic segmentation remains crucial, despite the significant
computational cost involved.

Researchers have made efforts to address the computational demands of video pro-
cessing. Strategies such as feature reuse and feature warping [39] have been suggested as
solutions. Notably, datasets such as Cityscapes [40] and CamVid [41] serve as extensive
resources for frame-by-frame video segmentation [42]. Recent studies have introduced
segmentation techniques, including selective re-execution of feature extraction layers [43],
optical flow-based feature warping [44], and Long Short-Term Memory (LSTM)-based
fixed-budget keyframe selection policies [45]. Despite these advancements, a key chal-
lenge is the limited consideration of the temporal context in these approaches. Notably,
using video optical flow for temporal information to expedite uncertainty estimation
has been proposed as a sensible approach [46]. Prominent Transformer models such as
VisTR [47], TeViT [48], and SeqFormer [49] have been applied to video segmentation
tasks.

1.2 Work Motivation

Artificial Intelligence (AI) robots equipped with sophisticated algorithms and cutting-
edge capabilities have the potential to transform various sectors, bringing versatility
while enhancing productivity, reliability, efficiency, and safety. One of the most promi-
nent examples of AI-powered robots is AMRs, transforming industries worldwide.

AI plays a fundamental role in the operation and functionality of AMRs. Through
AI algorithms and machine learning techniques, these robots gain the ability to per-
ceive, interpret, and respond to their environment autonomously. Various industries
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are benefiting from AI integration and advancing their AMR operational capabilities,
including Robotnik Automation. However, a significant limitation, especially for com-
mercial entities, to power AI algorithms in AMRs is the availability and affordability of
GPUs. Specifically, Nvidia’s GPUs are in high demand and short supply. Many rea-
sons are attributed to this cause, such as the disruption of the global supply chain for
semiconductors due to the COVID-19 pandemic, the cryptocurrency mining boom, the
trend of AI adoption worldwide, and the increased price of raw materials. To address
these challenges, commercial entities are following alternative options suitable to them,
such as procuring from different vendors, buying at a higher price, using refurbished
GPUs, switching to cloud services, and switching to neural accelerators or CPUs. For
mobile robots, utilizing the CPU processors or neural accelerators appears to be the
most promising option for AI inference. In this regard, Román Navarro García, Soft-
ware Engineer Head at Robotnik Automation, suggested exploring the potential of EI
for AMRs [4] and OpenVINO [7] for AMRs at Robotnik Automation. OpenVINO’s ver-
satility, performance, and ease of optimized usage with Intel’s processors was the reason
for the consideration, as earlier discussed.

1.3 Objectives
The following activities are outlined to be undertaken during the intended internship
duration at Robotnik Automation.

• Work in and validate all the relevant Intel EI for AMR packages on Robotnik’s
mobile robot platforms

• Develop and Integrate deep learning models for object detection in real-time video
streams using Intel OpenVINO

• Assess point cloud filtering strategies to facilitate indoor/outdoor mobile naviga-
tion

1.4 Environment and Initial State
No prior work related to AI has ever been attempted in the proposed area at Robotnik
Automation. The concerned staff at Robotnik Automation learned about the EI4AMR
and OpenVINO through the Intel team, and they were unaware of the associated chal-
lenges.
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Planning and resource evaluation information is provided in this chapter. Planning
and resource evaluation is not as important in industrial settings due to the dynamic
nature of the environment. For instance, resources are allocated according to the chang-
ing needs of ongoing and future projects. Similarly, plans are dynamically updated as
per the customer’s changing needs, incoming projects, and resources.

2.1 Planning

In this section, the time planning of activities and sub-activities in the form of a Gantt
chart is provided (see Fig. 2.1).

2.2 Resource Evaluation

Robotnik Automation uses an internal Enterprise Resource Planning (ERP) system to
manage human and hardware resources. The feasibility of the proposed activities has
already been investigated by the Software Department Manager. The proposed activities
are software-based, and no direct hardware costs are involved other than utilizing existing
mobile robots and vision sensors. Likewise, the human resources costs cannot be quoted
due to the industrial nature of the work. Nevertheless, a tentative estimation of work

11
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Figure 2.1: Gantt Chart of the activities performed at Robotnik Automation

hours can be inferred from the planning sheet, assuming a 40-hour workweek at Robotnik
Automation.
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This chapter presents the requirements analysis, design, and architecture of the pro-
posed OpenVINO-based activities.

3.1 Requirements Analysis

To carry out proposed project activities at Robotnik Automation, a requirements anal-
ysis is performed for each project activity. In this section, the functional and non-
functional requirements are listed separately for each project activity.

3.1.1 Functional Requirements

The functional requirements of all the activities are separately identified and outlined in
Tables 3.1, 3.2, 3.3, and 3.4.

3.1.2 Non-functional Requirements

The following sections individually discuss the non-functional requirements related to the
specific activities, concerning their applicability and reusability at Robotnik Automation.

13
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Input: Study, Install, and Test Intel’s EI for AMR on a Robotic Plat-
form

Output: Validate the Intel EI for AMR for use at Robotnik Automation

Understand the EI for AMR container-based implementations of different pack-
ages. Implement the VDA5050, OpenVINO-AI, and RealSense Framework of
EI for AMR on a local robotic platform

Table 3.1: Functional requirement «Activity1: Validate EI for AMR»

Input: Real-time video feed

Output: Real-time bounding boxes around docking station and dis-
tance, if docking station is in the frame

Robotnik’s Software team wants their robots to autonomously detect and dock
with the docking station for charging. The robot captures video in real time
and passes it to the AI model, which then performs processing and inference to
detect and localize the docking station in the video.

Table 3.2: Functional requirement «Activity2: Docking Station Detection»

Input: Real-time video feed

Output: Real-time bounding boxes around concerned objects, if those
objects are in the frame

Robotnik’s Software team wants their robots to detect COCO objects, fire, and
smoke. The robot captures video in real time and passes it to the AI model,
which performs processing and inference to detect and localize objects of interest
in the video.

Table 3.3: Functional requirement «Activity3: Detection of COCO Objects, Fire, and
Smoke»

Input: Dense point cloud or RGBD

Output: Semantically segmented point cloud

Robotnik’s Software team wants to enhance the situation understanding and
obstacle avoidance capabilities of their robots. The input to the model is either
RGBD frames or dense point clouds from the RGBD camera. The AI model
performs the necessary processing and inference.

Table 3.4: Functional requirement «Activity4: Semantic Segmentation via PointCloud
and RGBD»
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3.1.2.1 User Manual and GitHub Repositories

All the activities performed and software developed during the project have to be pro-
vided with a user manual. The user manual should provide a brief overview of the
activity, a step-by-step approach to using or reproducing it on any current or future
robotic platform at Robotnik Automation, including software dependencies, and con-
cluding remarks on the project.

3.1.2.2 ROS (Ubuntu) Integrable

Each activity performed or project developed should be integrated with ROS (Ubuntu).
To achieve this, additional ROS or software wrappers should be written, wherever nec-
essary, to ensure smooth deployment and usage of the developed packages.

3.1.2.3 Minimum Dependency on ROS (Ubuntu) Version

Robotnik Automation is continuously upgrading its software stack to meet the require-
ments of its clients and to take advantage of advancements in newer software function-
alities. Therefore, at the production scale, it is necessary to minimize software package
dependency on the ROS version by disintegrating the actual AI inference code from
the ROS core functionality. This can be done using object-oriented programming and
Python packaging structure. The package should be tested with different versions of
ROS (e.g., ROS Noetic and ROS 2 Foxy) in order to ensure compatibility.

3.1.2.4 Real-time performance

Each AI application developed during the proposed activity should be tested and ex-
pected to work on a real-time robotic platform. Therefore, the AI packages must have
minimal latency and satisfactory Frames Per Second (FPS).

3.1.2.5 Lighting and illumination conditions

All developed AI applications are expected to have robust performance under various
lighting conditions (indoor and outdoor).

3.2 System Design

A brief overview of the system is depicted in Fig. 3.1. More detailed architectural block
diagrams are provided in the following sections.

3.3 System Architecture

This section describes the hardware capabilities and additional sensing modalities used
for the given project.
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Figure 3.1: A simplified diagram of the system

3.3.1 Hardware Specification

• Intel RealSense D435i [50]

• Dedicated GPU server with NVIDIA GeForce RTX 3090 (used for training object
detection models)

• Master Laptop#1 (used for scene segmentation purposes): 12th Gen Intel® Core™
i7-12650H × 16, NVIDIA RTX3060, 16GB DDR4 RAM, 1 TB HDD

• Master Laptop#2 (used for object detection algorithm development, optimization,
and testing): 7th Gen Intel® Core™ 7700HQ × 8, NVIDIA GTX1050, 32GB
DDR4 RAM, 1 TB HDD

• The target hardware system (RB-Watcher) specifications are available via the
datasheet [51]

3.3.2 System-level Software Specification

• Ubuntu: 20.04 LTS (Long Term Support)
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• ROS Noetic and ROS 2 Foxy (Some functionalities of code are tested with dif-
ferent versions of ROS as per the software requirement at Robotnik Automation,
discussed in Section 3.1.2.3)

• Nvidia Driver Version is 510.47.03 and CUDA Version is 11.6 (Laptop#1)

• Docker Engine (client) with Docker Desktop (Server) version is 23.0.3

• Nvidia Driver Version is 470.199.02, and CUDA version is 11.4 (GPU server)

3.3.3 Activity-oriented Software Specification

For finding the activity-level software dependencies, refer to Appendix A.1.
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The developed work and the preceding results are explained in detail in this chapter,
including all possible deviations from the initially intended goals.

4.1 Validate EI for AMR
There are three core benefits of the EI for AMR toolkit. First, it allows containerized
software development that is deployable and scalable to many hardware systems. Second,
it accelerates deployment by minimizing middleware and firmware-level developments.
Third, it offers inherent device-to-edge deployment capabilities with the help of Intel’s
software ecosystem and cloud resources. Lastly, it provides guided tutorials, examples,
and online support.

To use EI for AMR (version 2022.3.0), the base software requirements are Ubuntu
20.04 LTS, ROS 2 Foxy (with data distribution service), OpenVINO version 2021.4,
Intel oneAPI Base Toolkit version 2022.2, Intel RealSense™ SDK v2.50 or higher, and
the supported simulation platform is Gazebo v11.8.1 or higher. Likewise, the EI for
AMR development platform’s minimum hardware requirements are Intel processors, 8
GB RAM, a 64GB hard drive, and a RealSense camera D435i (if applicable). EI for AMR
requires two platforms: a development station (developer’s computer) and a deployment
station (robot’s target computer).

19
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The EI for AMR requires a fresh installation of Ubuntu (with all the necessary
GPU and other support packages), which was performed on a separate workstation as
a first step to validate this toolkit at Robotnik Automation. Next, EI for AMR is
downloaded, extracted, and installed. The EI for AMR toolkit is installed in the form of
successive container images, so to validate the installation, any sample application can
be independently run via a container.

After a successful installation, the use cases of VDA5050 and OpenVINO-AI on a
local robotic platform were tested. The use of VDA5050 with EI for AMR was found to
offer no significant benefits compared to Robotnik’s existing Open-RMF (Open Robotics
Middleware Framework1) usage. EI for AMR was also found to have hard dependency
conflicts between Robotnik’s existing software stack and EI for AMR. The validation
of OpenVINO was also performed by assessing OpenVINO capabilities inside EI for
AMR containers. Specific tests were conducted for use cases of containerized object
detection and semantic segmentation, which were found suitable for usage. However,
it was decided to use OpenVINO separately from EI for AMR due to the previously
mentioned software dependency conflict. The details of OpenVINO-based packages are
discussed in the following sections.

The lessons learned were that OpenVINO can be used with CPU, integrated-GPU2,
and accelerator. It has a model optimizer, and inference can be done locally or remotely.

4.2 Object Detection

In the following sections, work developments related to object detection are presented.

4.2.1 Docking Station Detection

Mobile robots at Robotnik Automation can autonomously dock to the docking station
if it is visible to the camera. This process combines conventional image processing with
ArUco markers3, Light Detection and Ranging (LIDAR) data4, and a set of movement
primitives (with odometry) to reach the desired target goal while continuously minimiz-
ing the deviation error

As it can be seen in Fig. 4.1, the docking station is equipped with an ArUco marker
to guide the robot during docking. The mobile robot performs satisfactorily under
normal conditions. However, it fails to dock when the illumination is insufficient to
read ArUco markers. To address this issue, two luminescent/reflective surfaces (located
on the left and right of the ArUco marker) have been added to the docking station,
as depicted in Fig. 4.1. Despite this additional feature, the mobile robot occasionally
misses the docking station. Consequently, the software team at Robotnik Automation

1A modular open-source software framework that ensures interoperability between multiple robot
fleets and physical infrastructure

2Integrated graphics support built into the processor
3An open-source library for camera pose estimation using squared markers [52]
43D point cloud captured by laser-based remote sensing technology [53]
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Figure 4.1: A picture of the Docking Station used by mobile robots manufactured by
Robotnik Automation

aimed to implement a more robust mechanism capable of detecting and measuring the
distance from the docking station. Introducing an AI model for docking station detection
emerged as an attractive alternative solution. Therefore, a decision was made to develop
an optimized AI pipeline for this purpose, leveraging the advantages of OpenVINO. A
comprehensive overview of the development-to-deployment phase is presented in Fig.
4.2 and further detailed in the subsequent sections from 4.2.1.1 to 4.2.1.5.

4.2.1.1 Model Selection

The first stage of the development process involves the feasibility study, requirement
analysis, and resource consideration. During this stage, various similar examples were
explored and benchmarked. The YOLOv7 framework [54, 55] was identified as a suit-
able candidate for docking station detection due to its reasonable efficiency, versatility,
scalability, online support/resources, ease of integration, and optimization.

Specifically, the striking balance of YOLOv7 between accuracy and speed on resource-
constrained hardware is of significant interest. Additionally, the possibility of scaling
the object detection pipeline to other tasks and OpenVINO support for the YOLO
architectures were practical considerations for this adoption. It is noteworthy that at
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Figure 4.2: Simplified representation of docking station detection pipeline

the initiation of this project in February 2023, YOLOv7 was the most state-of-the-art
model in the YOLO series with optimization support.

YOLOv7, short for "You Only Look Once version 7," was the most state-of-the-art
object detection model and the latest iteration of the YOLO family of neural architec-
tures at the initiation of this project with several key innovations and improvements
over its predecessors. YOLO models are renowned for their ability to perform real-time
object detection and classification in images and videos. Usually, the YOLO series of
networks comprises three components - Backbone, Neck, and Head. Firstly, the Back-
bone encompasses a convolutional neural network that generates image features, often
referred to as embeddings. These embeddings capture meaningful patterns and charac-
teristics within the input images. On the other hand, the Neck comprises a set of neural
network layers meticulously designed to amalgamate and blend the extracted features.
This fusion of features is then transmitted to the subsequent stage, setting the stage
for accurate predictions. Lastly, the Head is responsible for taking in the feature rep-
resentations provided by the Neck and utilizing them to generate prediction outputs.
YOLOv7 follows the same architecture with three key innovations: Extended-Efficient
Layer Aggregation Network (E-ELAN), model scaling, and Bag of Freebies (BoF). First,
E-ELAN (an extension of ELAN [56]) is used to improve the learning ability of the
network without destroying the original gradient path (deteriorating the original perfor-
mance), as shown in Fig. 4.3. E-ELAN is a combination of expand, shuffle, and merge
operations to increase the cardinality of the computational blocks in the network - a
notion of grouping convolution. In a standard convolutional layer, all input channels are
connected to all output channels. This can lead to a long gradient path, as the gradient
must travel through all of the input channels before it can reach the output channels.
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Whereas group convolution divides the input channels into groups, and only allows con-
nections between channels within the same group. This shortens the gradient path, as
the gradient only needs to travel through the channels in the same group. E-ELAN addi-
tionally incorporates shuffle convolution, which introduces a random reordering of input
channels prior to group convolution operations. This way, the gradient path is effectively
shortened, requiring gradients to traverse through a randomized sequence of channels.
This strategic utilization of group convolution and shuffle convolution within E-ELAN
enhances the YOLOv7 model’s capacity for effective learning, particularly in deep net-
work architectures. This advancement contributes to YOLOv7’s remarkable accuracy
across diverse object detection benchmarks. Furthermore, E-ELAN not only enhances
learning but also maintains computational efficiency by reducing the network’s param-
eter count. This efficiency, coupled with its improved learning capabilities, positions
YOLOv7 as an excellent choice for real-time object detection applications, underscoring
its significance in the field of computer vision.

Figure 4.3: E-Elan architecture [54]

Second, model scaling serves as a technique aimed at modifying certain characteristics
of a model and generating variants of varying scales, tailored to fulfill specific require-
ments for inference speeds. In this approach, the dimensions of width and depth are
coherently scaled, aligning with concatenation-based models. This optimization tech-
nique aims to enhance the performance of YOLOv7 by systematically adjusting both
width and depth parameters in a coordinated manner, as shown in Fig. 4.4.

Lastly, YOLOv7 combines BoF to improve the model performance without increas-
ing the training cost. These techniques include Re-parameterization Convolution (Rep-
Conv), varying granularity of label assignment, batch normalization, augmentations,
implicit knowledge distillation, feature map fusion, and channel pruning that balance
accuracy, stability, and computational efficiency. By adopting and adjusting these tech-
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Figure 4.4: The compound scaling used in YOLOv7 [54]

niques, YOLOv7 achieves improved object detection performance while maintaining flex-
ibility to tailor the model to specific use cases and hardware platforms.

4.2.1.2 Data Preparation

After finalizing the model, the second stage involved data gathering and preparation.
Since the docking station had a unique shape, there was no existing dataset available for
this task. Therefore, data had to be manually collected, labeled, and annotated. The
data was collected in the form of pictures of docking stations using an Intel RealSense
Depth Camera D435i and a Google Pixel 7 Pro, personal mobile phone, with a 50-
megapixel back camera, capturing images at various illumination levels, orientations,
and poses. The dataset comprised approximately 1200 images. Special consideration
was given to capturing data in very low or bright lighting conditions to ensure the
model could work accurately in extreme conditions. The collected data was manually
labeled and annotated using Roboflow [57], a data labeling, preprocessing, and training
platform. All pictures in the dataset were resized to 640 x 640 pixels. The labeled
data was further augmented with geometric transformations (horizontal flip, crop, or
translation), adjustments in color (intensity, saturation, hue), and the application of
kernels (blur). Specifically, horizontal flipping between -7◦ and +7◦, ±9◦ horizontal
shear, ±9◦ vertical shear, up to 5% grayscale images, adjustments in hue between -46◦

and +46◦, exposure changes between -25% and +25%, and up to 3% pixel noise were
applied. The labeled data was made available on Roboflow Universe [58].

4.2.1.3 Model Training

The third stage is training the model, i.e., YOLOv7. The unavailability of GPU-capable
platforms at Robotnik Automation was a significant hurdle for this task. This problem
was solved by leveraging the GPU servers of UJI. Instead of training the model from
scratch, a transfer learning approach was adopted that utilized the pre-trained YOLOv7
model weights of the COCO dataset. The labeled data of the docking station (created
in an earlier stage) were downloaded from Roboflow and placed inside the YOLOv7
data folder. Some necessary changes (e.g., number of classes, hyperparameters, etc.)
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were made in the .yaml files in the configuration folder of the original YOLOv7. The
term "hyperparameter" here refers to the user-defined numerical values that control and
influence the learning process of a machine learning model. The remaining training
process was fairly simple with the GPU servers of UJI. Both tiny and full YOLOv7
models were trained to evaluate the accuracy-to-speed trade-off on mobile robots.

After the completion of training, both models were evaluated before proceeding to the
optimization or deployment phase. This involved evaluation and analyses of performance
metrics over training and validation datasets to gather insights about whether the model
would be able to generalize to future unseen data. Among these metrics, the epoch loss
results, confusion matrix, F1 score, precision curve (P Curve), precision-recall curve (P-
R Curve), and recall curve (R Curve) play vital roles in assessing a model’s performance
in different aspects. It is to be noted here that the given dataset was split into three sets
- training, validation, and testing - in a proportion of 88%, 8%, and 4%, respectively.

The results discussed in the following paragraphs are generated with the training
and validation sets. Specifically, except "Training & Validation Results" all the plots of
the remaining metrics are created with the validation set.

Training & Validation Results: This description explains the plots in Fig. 4.5,
which provide useful insights about the training and validation performance of the model.
Referring to Fig. 4.5, there are eight different plots against epochs (the number of
training/validation passes the algorithm has taken). Each plot is briefly explained below:

1. Box: The Box metric reflects the localization accuracy of the bounding box pre-
dicted by the model. The box loss, sometimes called the regression loss, is a loss
function used to train the YOLOv7 model to accurately predict the bounding boxes
around an object of interest in an image. Mathematically, it is computed by taking
a mean of (1- CIoU) between potential and actual bounding boxes, where CIoU
is an acronym of Complete Intersection over Union, initially introduced in [59].
CIoU is an augmentation of the Intersection over Union (IoU), one of the most
important performance metrics used in object detection and semantic segmenta-
tion. IoU encapsulates the difference in an overlap between the predicted and the
true/annotated bounding boxes. Mathematically, the overlap is estimated by di-
viding an area of intersection between the original and predicted bounding boxes
to the union of both boxes. A higher IoU (near 1) means a perfect overlap. How-
ever, IoU has some limitations, as it only considers the overlap between actual and
potential bounding boxes, leading to issues with bounding boxes of different sizes,
aspect ratios, and center offsets. CIoU addresses these inherent issues of IoU by
incorporating two additional terms to prevent deviation from the true sizes and
centers of the true bounding boxes (see [59] for more details). In Fig. 4.5, the
decrease in the box (or regression) loss over the training and validation sets shows
that the model can correctly identify and localize the object within the scene.

2. Objectness: In a given context, the objectness score implies the likelihood of the
proposed region of interest (ROI) containing an object. The proposed ROI is a list
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(a) YOLOv7 (Tiny)

(b) YOLOv7

Figure 4.5: Results for the docking detection model



4.2. Object Detection 27

of possible rectangular regions in an image that could be bounding boxes around
the object of interest. YOLOv7 assigns an objectness score to every proposed ROI
between 0 and 1. For prediction, YOLOv7 discards the ROIs with lower objectness
scores, and selects the ROIs with higher objectness scores. YOLOv7 refines the top
ROIs to form the final bounding box prediction. In light of the earlier explanation
of the objectness score, the objectness loss is used here to train the YOLOv7 model
to predict the likelihood of the docking station’s existence in the proposed ROI. It
is estimated as a binary cross-entropy loss with the sigmoid layer in a single class
(BCEWithLogitsLoss [60]) between the predicted objectness probabilities and the
ground truth objectness score. In Fig. 4.5, the decrease in objectness loss over
the training and validation sets shows that the model can correctly distinguish
between the docking station and the background.

3. Precision & Recall: To comprehend the concepts of precision and recall, it is
essential for a reader to understand the associated terminologies of True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN). These
terminologies typically reflect the four possible outcomes of a binary classification
problem and are briefly explained below.

a) True positives (TP) means the model correctly predicts an instance belonging
to the positive class. In other words, the model accurately identifies instances
that are positive.

b) True Negatives (TN) means the model correctly predicts an instance belong-
ing to the negative class. In other words, the model accurately identifies
instances that are negative.

c) False Positives (FP) are cases where the model incorrectly predicts that an
instance belongs to the positive class when the true class is negative, also
called Type I error.

d) False Negatives (FN) are cases where the model incorrectly predicts that an
instance belongs to the negative class when the true class is positive. This is
also called a Type II error.

Both precision and recall are estimated with the help of the above four scores.
Precision is the fraction of predictions that are correct, i.e., TP/(TP+FP), while
recall is the fraction of ground truth objects that are detected, i.e., TP/(TP +
FN). Higher values of both precision and recall are preferable. It is worth noting
that the above four scores (TP, TN, FP, and FN) serve as the foundation for other
evaluation strategies, such as the F1 score and confusion matrix. Returning to the
discussion, the precision and recall scores in Fig. 4.5 appear to improve as the
epochs pass, signifying the model’s improvement.

4. mAP@0.5: In simple words, the mean average precision (mAP) metric indicates
how effectively the model can localize and identify objects when allowing for a
moderate amount of overlap between predicted and ground truth bounding boxes.
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In technical terms, mAP is the average of the Average Precision (AP) scores for
individual classes, calculated at an IoU threshold of 0.5. AP is the area under
the P-R curve, which is a plot of the precision of a model as a function of its
recall (discussed in 4.2.1.3). The IoU threshold defines a minimum cut-off overlap
between predicted and true bounding boxes required for a prediction to be labeled
as a correct prediction. In other words, a prediction of a docking station with an
IoU value below 0.5 would not be considered a correct prediction by the model.
In Fig. 4.5, the given metrics reach higher values over the duration of training,
indicating the model’s effectiveness.

5. mAP@0.5:0.95: This metric shows the mean average precision at an IoU thresh-
old of 0.5 to 0.95. It provides a more comprehensive assessment of the model’s
performance across different levels of bounding box overlap. Higher values indi-
cate better object detection across a range of IoU thresholds. In Fig. 4.5, the
mAP@0.5:0.9 metrics reach higher values over the training duration, indicating
the model’s effectiveness. It can also be seen that the evolution of YOLOv7 recall,
precision, and mAP over training epochs is more stable than YOLOv7(tiny).

Confusion matrix: The confusion matrix provides a holistic overview of a classifier’s
performance by summarizing the TP, TN, FP, and FN predictions in a tabular form
(an NxN square matrix, where N is the number of classes). In a binary classification
problem, the top left and bottom right corners of the confusion matrix represent TP and
TN blocks, respectively. All the upper diagonal elements are FP cases and all the lower
diagonal elements are FN cases, considering the columns represent the actual/true values
in a confusion matrix. The performance of the model could be analyzed by looking into
the instances when the classes are correctly or incorrectly classified. If normalized for
a binary classification problem, an ideal 2x2 confusion matrix would be of the form [1,
0; 0 1]. Assuming that the rows represent predicted classes and the columns represent
actual/true classes, the sum of each column would be equal to 1 if the confusion matrix is
normalized. All diagonal elements are considered correct classification, while off-diagonal
elements (false-negative, false-positive) are considered mislabeled classification.

The above explanation of a confusion matrix for classification problems could be ex-
tended to object detection with a minor difference in interpretation. The primary reason
for this difference in interpretation is due to the difference in the nature of the object
detection task. Firstly, in the object detection task, an additional class of background
is appended. Therefore, in the case of the docking station, the number of classes is 2
(Background and Docking Station). Consequently, the confusion matrix would be a 2x2
matrix, as shown in Fig. 4.6. It is important to note here that the background class is
not predicted as a background by the model. This is because there are no annotated
samples of background in the object detection dataset; instead, every background image
in the dataset is marked as "Null". In other words, a background image is considered
to have no object of interest. Therefore, the TN portion of the confusion matrix (i.e.,
the bottom-right box) would ideally be empty, and it does not mean the incorrectness of
the model or confusion matrix. Another key consideration here is of two terminologies,
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Background FP and Background FN, as appeared in Fig. 4.6. Background FP refers
to background objects that do not belong to either of the classes but are detected as
one of them, and Background FN refers to Docking Station or Non-Docking Station
objects missed by the detector and considered as some other background objects. It is
important to note here that the Background FP includes cases even when more than one
correct detection is made for the same object. Therefore, the terms "FP" and "FN" are
concatenated along with the term "Background" instead of simply writing "Background"
to signify that background does not represent a true class.

The model should ideally minimize both Background FN and Background FP (off-
diagonal elements). As evident from Fig. 4.6, there is no FN or FP detection (no numeric
values inside the FN/FP box means zero). Likewise, a numeric value of 1 (maximum,
equivalent to 100%) appears inside the TP box. Therefore, it can be concluded that the
given model detects objects satisfactorily. It should also be noted here that YOLOv7
(full) and YOLOv7 (Tiny) have similar confusion matrix plots, depicting there is no
major difference in their performance for the given task.

It is essential to mention here that the confusion matrix in Fig. 4.6) and all the sub-
sequent figures in the following docking station detection problem are generated with a
confidence threshold of 0.5 and IoU threshold of 0.65.The concept of IoU threshold is
already explained earlier; however, it is important to introduce the concept of confidence
threshold, as it will also be referred to later. The confidence threshold refers to the level
of confidence with which the object detection model is allowed to make detections. When
an object detection model makes a prediction, it assigns a probability score to all of its
predictions, indicating the model’s confidence that a specific prediction instance belongs
to a specific positive class. A confidence threshold serves as a numerical boundary crite-
rion that plays a pivotal role in the classification of objects. If the predicted probability
or score is above the threshold, the instance is classified as positive; otherwise, it is
classified as negative. To illustrate, consider a scenario in which object detection with a
confidence threshold of 0.5 is required. If the model predicts an object of interest with
a 0.4 confidence value, it would not be classified as an object of interest.

P-R curve: A P-R curve for an object detection problem is a plot of precision (y-
axis) versus recall (x-axis). It is a useful tool for evaluating the performance of object
detection models, as it shows the trade-off between precision and recall.

The ideal P-R curve is a straight line from the top left corner of the graph (0,1) to
the top right corner (1,1) and from the top right corner (1,1) to the bottom right corner
(1,0). This signifies the maximum area under the P-R curve (AUC-PR), equivalent to 1.
The AUC-PR is a metric that is often used to summarize the performance of an object
detection model on a given dataset. A higher AUC-PR indicates that the model has
a better overall performance, meaning that it is able to detect all of the ground truth
objects with good precision. In practice, P-R curves often deviate from ideal behavior.
Therefore, it is important to evaluate a model’s P-R curve in comparison with an ideal
curve to assess its suitability for the given task.

The P-R curve of the docking station detection model is plotted in Fig. 4.7. As
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(a) YOLOv7 (Tiny) (b) YOLOv7

Figure 4.6: Confusion Matrix Plot for the docking station detection models

evident from the figure, both models have a near-ideal plot and achieve an approximate
AUC-PR of 0.98 at mAP@0.5. Therefore, it can be concluded that these models are
accurate and usable.

(a) YOLOv7 (Tiny) (b) YOLOv7

Figure 4.7: P-R Curve Plot for the docking station detection models

F1 Score curve: The F1 score curve is a visual plot of the F1 score (y-axis) against
confidence or decision thresholds (x-axis). F1 score is a commonly used metric in object
detection tasks to evaluate the model’s performance. It is mathematically computed as,
F1 = Precision×Recall

Precision+Recall . The F1 score provides an estimate of a model’s accuracy, taking
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(a) YOLOv7 (Tiny) (b) YOLOv7

Figure 4.8: R Curve Plot for the docking station detection models

(a) YOLOv7 (Tiny) (b) YOLOv7

Figure 4.9: P Curve Plot for the docking station detection models
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(a) YOLOv7 (Tiny) (b) YOLOv7

Figure 4.10: F1 Curve Plot for the docking station detection models

both precision and recall into account. Usually, when the model has a higher confidence
threshold, precision improves while recall deteriorates. In the case of the docking station
dataset, the normal and tiny YOLOv7 models achieve similar maximum recall scores of
around 0.98 at zero confidence threshold, as shown in Fig. 4.8. The precision score for
both models is close to 1 at all confidence values, as shown in Fig. 4.9.

Now by plotting the F1 score curve, a balance between precision and recall in terms
of confidence threshold is investigated, and then an AI model could be operated at that
value of confidence. From Fig. 4.10, it can be seen that both models operate well
between the confidence threshold range of 0-0.78 at the IoU of 0.65, and the maximum
F1 score value is approximately 0.99. In other words, the model can predict accurately
between this range of confidence threshold with an approximate 0.99 F1 score. The F1
score at a higher confidence threshold is zero because it is linked to precision and recall
values. Since recall shrinks to zero at a higher confidence threshold, the F1 score also
reduces to zero. However, analyzing Fig. 4.10, it can be concluded that the confidence
threshold of 0.5 is the most suitable.

4.2.1.4 Model Optimization

The fourth stage involves the conversion and optimization of the trained YOLOv7 mod-
els from PyTorch to OpenVINO. PyTorch is a free and open-source machine learning
library based on the Torch library, widely used for developing deep learning models and
their associated applications. Initially developed by Meta AI5, it is now part of the

5https://ai.meta.com/
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Linux Foundation6. PyTorch offers a flexible and dynamic computational framework,
allowing users to conveniently build, train, and optimize neural networks. Its defin-
ing feature, the dynamic computation graph, makes it more intuitive and suitable for
tasks involving dynamic or variable-sized data compared to static computation graph
frameworks like TensorFlow. Considering all the aforementioned technical advantages
provided by the PyTorch framework, along with its flexibility, community support, ease
of experimentation, and compatibility with hardware acceleration, all recent versions
of YOLO (including YOLOv7) were originally developed as PyTorch models. This, in
turn, contributes to and advances the state of the art in object detection.

The conversion of the PyTorch model to OpenVINO is a two-step process: the con-
version of the PyTorch model to ONNX (Open Neural Network Exchange7) and then
the conversion of the ONNX-based model to OpenVINO Intermediate Representation
(IR). Although OpenVINO can directly read, load, and infer with the ONNX model, it
is recommended and better to use IR. All PyTorch models are defined in Python and
can be exported to ONNX representation using the built-in torch.onnx.export() method.
Calling the torch.onnx.export() method requires a model instance, input shape, and out-
put model path/name. Running the aforementioned proecdure, internally traces the
model execution and then exports the traced model to the requested path (as .onnx).
The correct and accurate conversion to the ONNX model is essential for the next step,
i.e., IR. Special consideration is required for the opset version8 while converting a Py-
Torch model to ONNX, as old opset versions may not support the new neural network
layers, leading to compatibility issues with ONNX runtime and the model. The opset
used during this task is 11. The Python file (code) responsible for converting PyTorch
to ONNX is provided in the [54] with the name "export.py".
See the command for converting the PyTorch model (e.g., tiny) to the ONNX without
the non-maximum suppression layer [62]:

1 $ python3 export.py --weights best-tiny.pt --img 640 --batch 1

See the command for converting the PyTorch model (e.g., tiny) to the ONNX with the
non-maximum suppression layer:

1 $ python3 export.py --weights .best-tiny.pt --grid --end2end --simplify

2 --iou-thres 0.65 --conf-thres 0.5 --img-size 640 640

The additional arguments are recommended by the original YOLOv7 implementation
[54]. Therefore, additional arguments are passed as it later simplifies the inference
implementation and end-to-end usage.

After obtaining the ONNX representation, a model optimizer is used. Specifically,
OpenVINO’s Model Optimizer with the ONNX network path, output layers, input

6https://www.linuxfoundation.org/
7ONNX is an open-source standard for representing deep learning models. ONNX runtime optimizes

and accelerates ONNX-based machine-learning models [61]
8Each ONNX model uses a specific set of operators and specifications, called opset version
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size, batch, and the other necessary arguments as inputs. YOLOv7 ONNX conver-
sion to IR requires output node specification as well. In order to know the output
layers of YOLOv7, Neutron [63] is used for visualization. After identifying the out-
put nodes (here /model/model.77/m.0/Conv, /model/model.77/m.1/Conv, and /mod-
el/model.77/m.2/Conv are three output nodes), the model optimizer is called.
See the command for converting the ONNX to the IR without the non-maximum sup-
pression layer:

1 $ mo --input_model best-tiny.onnx --output /model/model.77/m.0/Conv,

2 /model/model.77/m.1/Conv,/model/model.77/m.2/Conv

See the command for converting the ONNX to the IR with the non-maximum suppression
layer:

1 $ mo --input_model best-tiny.onnx

4.2.1.5 Model Deployment

The fifth and final stage was the integration of the optimized YOLOv7 model obtained
in an earlier stage into the existing software stack of robots at Robotnik Automation.
For this purpose, a ROS wrapper was written that subscribes to RGB camera nodes
(or launches, if non-existent), and gathers real-time images (video feed). It publishes
to YOLOv7 nodes (or launches, if non-existent) the images (video feed) with marked
bounding boxes, bounding boxes pixel coordinates, and confidence scores. The launch
and configuration files are set up accordingly. The ROS wrapper uses standard and pri-
vate ROS libraries outlined in Appendix A.1. The YOLOv7 inference class is separately
importable as per the software standardization guide of Robotnik Automation.

After the whole integration, the RB-Watcher was incorporated with the developed
pipeline and tested in real-time. The performance and speed were found to be satisfac-
tory by the software department team. The code repository and demonstration video
are in the results section 4.4. Additionally, a support guide (readme file) is created to
help colleagues reuse and reproduce the package on any of the existing and future mobile
robots at Robotnik Automation and provided along with the code repository.

4.2.2 Detection of Objects from the COCO Dataset

In order to facilitate additional surveillance and inspection functionalities, the pre-
trained YOLOv7 model with the COCO dataset [22] is utilized, optimized, and inte-
grated. Using the mentioned AI model, a customized ROS package is developed to
detect objects of interest within the available classes of the COCO dataset (defined by
the user). By default, only human detection capability is enabled; however, based on the
user’s needs, other classes from the COCO dataset can also be detected. Therefore, the
object detection demo from the COCO dataset in section 4.4 only displays a bounding
box around humans in the video.
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4.2.3 Detection of fire and smoke

A YOLOv7 model is also trained using a custom fire/smoke dataset, available at [64].
The preparation of the fire/smoke dataset is relatively simpler than that of the docking
station dataset. This is because images of fire and smoke are not manually captured and
annotated; instead, various smaller fire/smoke datasets are combined (or augmented) to
create a larger fire/smoke dataset for our use [64] to achieve satisfactory performance.
The curated dataset comprises approximately 1800 training images, 200 validation im-
ages, and around 70 images for testing. Each image in the dataset has dimensions of
640 x 640. This dataset is also created using Roboflow [57], similar to the docking
station dataset. Data augmentation is applied, including geometric horizontal flip, max-
imum zooming up to 38%, color hue variation between -31◦ and +31◦, kernel blur up
to 1.75px, exposure variation between -25% and +25%, and pixel noise up to 5%. The
same training procedure is followed as for the docking station detection. The mean Av-
erage Precision (mAP), Precision, and Recall of the training process are 84.2%, 88.8%,
and 79.0%, respectively. Similar to Section 4.2.1.3, the YOLOv7 (tiny) trained model is
evaluated.

Training & Validation Results: Referring to Fig. 4.11, it is interesting to see that
the Box and Objectness loss gradually reduce over a larger span of epochs. This indicates
that training over a higher number of epochs has helped improve the model. Ultimately,
the model converges to lower precision, recall, mAP, and other loss scores at the end of
the training epochs, indicating the model’s suitability for use.

Figure 4.11: Training Results of YOLOv7 (Tiny) model for fire and smoke detection

Confusion Matrix: Similar to the docking station detection, the confusion matrix
is plotted for fire and smoke detection with the validation set. A confidence threshold
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of 0.4 and an IoU threshold of 0.75 is used for plotting the confusion matrix shown in
Fig. 4.12. Unlike the docking station detection task with two classes, here in the given
task, there are three classes: fire, smoke, and background (i.e., no fire and no smoke). It
is noteworthy that fire and smoke detection pose a relatively more challenging problem
for an AI model compared to docking station detection. Consequently, there are some
FN predictions for both fire and smoke, as well as FP predictions for these classes. To
elaborate, referring to Fig. 4.12, the model fails to detect fire 23% of the time, while it
detects fire correctly 77% of the time. Similarly, the model fails to detect smoke 7% of
the time, while correctly detecting it 93% of the time. If the FP cases are considered, the
model incorrectly detects fire with a 9% probability and smoke with a 31% probability
when there is only background. A higher FP rate does not necessarily imply that the
model would always generate false predictions; it is simply a score indicating the model’s
performance on the given validation set. Furthermore, in critical situations such as a
fire alert, it is preferable to have a higher FP rate than FN rate. In simpler terms, it is
better to incorrectly detect a fire than to miss detecting a fire when it is present.

Figure 4.12: Confusion Matrix Plot of the YOLOv7 (Tiny) model for fire and smoke
detection
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Figure 4.13: R Curve Plot of the YOLOv7 (Tiny) model for fire and smoke detection

Figure 4.14: P Curve Plot of the YOLOv7 (Tiny) model for fire and smoke detection
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F1 Score curve: Referring to Fig. 4.13 and 4.14, the smoke class apparently has a
better precision and recall score than fire at different confidence thresholds. Referring to
Fig. 4.15, it is also evident that the confidence threshold of 0.4 is suitable for balancing
precision-recall.

Figure 4.15: F1 Curve Plot of the YOLOv7 (Tiny) model for fire and smoke detection

P-R curve: Referring to Fig. 4.16, it is noticeable that YOLOv7 demonstrates ac-
ceptable performance. This is evident from the fire and smoke plots, each having an area
under the curve (AUC-PR) of over 50%, with values of 0.562 and 0.885, respectively (as
indicated in the legends at the top right corner).

It is noteworthy that all object detection models (docking station detection, fire/smoke,
and COCO dataset) are separately trained, optimized, and deployed in a mobile robot.
This approach optimizes resource usage, speed, and accuracy for individual use cases,
instead of integrating all detection functionalities into one model.

4.3 Scene Segmentation

In the following sections, work developments related to scene segmentation are presented.
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Figure 4.16: PR Curve Plot of the YOLOv7 (Tiny) model for fire and smoke detection

4.3.1 Ground Plane Segmentation

The current methodology employed by Robotnik Automation associates point clouds
below a specified height, such as 0.05m, to the floor and disregard (filter out) such
data points for mapping and navigation purposes. This approach becomes vulnerable
to inaccuracies in certain situations, especially when confronted with sloped surfaces,
reflective materials, or small obstacles on the floor. Therefore, the main goal of ground
plane segmentation is to improve the identification and filtering of the ground point cloud
data to aid obstacle avoidance and navigation of mobile robots at Robotnik Automation.
Typically, the segmentation process involves classifying each point in the point cloud as
belonging to the ground or other objects. Usually, points belonging to the ground are
identified based on geometric characteristics, e.g., relatively flat and having consistent
height values. There are various methodologies of clustering, plane fitting, and machine
learning for ground plane segmentation.

In the given case, RANSAC (Random Sample Consensus, [65]) is used to filter hor-
izontal planes from point cloud data robustly. RANSAC is an iterative algorithm for
estimating the parameters of a mathematical model from a set of observed data that
contains outliers. RANSAC follows a four-step process to identify the plane. First,
randomly select a subset of data. Second, fit a plane model (Ax + By + Cz + D = 0)
to the given data using any numerical method. Third, calculate inliers, points whose
distance from each other is below a certain threshold. Fourth, repeat the process for a
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(a) with unfiltered point cloud (b) with filtered ground plane point cloud

Figure 4.17: A snapshot of Gazebo’s Simulation visualized in RViz

(a) unfiltered point cloud (b) filtered floor point cloud

Figure 4.18: A snapshot of RB-Watcher’s real-time point cloud visualized in RViz
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(a) Correctly segmenting (b) Not correctly segmenting

Figure 4.19: A snapshot of the floor segmentation model with two different elevation
angles

certain number of iterations. Lastly, select the best-fitted model with the highest num-
ber of inliers. The RANSAC ground segmentation task is implemented via the Open3D
library [66], an open-source library for 3D data software development (in C++ and
Python). Both simulation (a custom grid station scenario) and real-world (indoor lab
Robotnik Automation) demo videos are provided in the results section, and screenshots
are added here to aid discussion. An RB-Watcher platform is used to obtain results
from RANSAC. It is clear from the simulation results in Fig. 4.17 that RANSAC could
segment and filter the ground plane. For example, in Fig. 4.17b, it can be observed that
the point clouds at a higher elevation on the top right are still present (in white color),
while ground points are entirely filtered. However, when the same method was tested
in the real world, the performance was unsatisfactory even after tuning the RANSAC
parameters. Specifically, RANSAC could not entirely filter all the ground points, as
evident from Fig. 4.18 (some of the ground points in the top right portion of Fig. 4.18b
are not filtered). In other words, although RANSAC can filter the ground plane to some
extent, it still leaves some ground plane points, especially in far-off regions. Therefore,
a more robust approach is necessary for exploration.

The next attempt to solve the ground segmentation problem involves exploring the
OpenVINO pre-trained road segmentation model (road-segmentation-adas-0001 ) from
Open Model Zoo [67]. This network classifies each pixel into four classes: background,
road, curb, and mark. The pre-trained model’s mean IoU and mean accuracy over
all classes are 0.844 and 0.899, respectively, calculated based on 500 images from the
“Mighty AI” dataset. The results are initially tested on the RealSense RGB stream to
evaluate the feasibility of subsequent usage. The model correctly segments the floor to
some extent in the case of a lower elevation field of view. However, it completely fails
to segment the ground when the field-of-view is at a higher elevation, as shown in Fig.
4.19. Therefore, advanced methods of semantic segmentation are explored, motivated
by two primary reasons. First, to accurately filter the floor, and secondly, to achieve
more segmentation classes that could be helpful for indoor/outdoor navigation, such as
vegetation and clutter.
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4.3.2 Semantic Segmentation

In the context of a given task, semantic segmentation is used to identify surrounding
objects and obstacles such as the floor, ceiling, clutter, humans, etc. This task is of
interest to the Software team at Robotnik Automation because it could provide mobile
robots with better situational awareness. Specifically, there is a significant interest in
filtering the floor and ceiling point cloud data to enhance obstacle avoidance during
indoor navigation tasks.

Two possible directions are considered for this semantic segmentation task: RGBD
semantic segmentation and point-cloud segmentation. First, the methodology adopted
for RGBD semantic segmentation is described, followed by the point-cloud segmentation
methodology.

The methodology adopted for the proposed RGBD segmentation is from [68]. There
are three specific reasons for using this model: firstly, its acclaimed real-time perfor-
mance on mobile robots; secondly, it demonstrates improved performance due to the
incorporation of additional depth channels; and lastly, the model employs simple neural
network operations designed specifically for use with ONNX (in this case, with Open-
VINO) [68]. A brief overview of [68] is presented here to provide a better understanding
of the aforementioned justifications.

Figure 4.20: A Flow diagram taken from [68] representing RGBD segmentation (top)
and specific network parts (bottom)

The ESANET [68] draws inspiration from the RGB segmentation approach of Swift-
Net [69]. It follows a similar structure, featuring a shallow encoder based on the pre-
trained ResNet18 backbone, substantial downsampling, and a context module to aggre-
gate features at different scales to overcome the limited receptive field of ResNet, similar
to the Pyramid Pooling Module in PSPNet [29]. Additionally, it uses a shallow decoder
with encoder skip connections. However, unlike SwiftNet, which solely focuses on RGB
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data, ESANet leverages an additional encoder dedicated to depth data. This supple-
mentary depth encoder captures valuable geometric details, which are then fused into
the RGB encoder using an attention mechanism at various stages. The RGBD fusion
is one of the key components of this entire architecture. In each of the five resolution
stages within the encoders (as shown in Fig. 4.20), depth-related features are integrated
into the RGB encoder. First, features from both RGB and depth modalities undergo
reweighting via a Squeeze and Excitation (SE) module [70], followed by element-wise
summation, highlighted in gray in the RGBD Fusion block in Fig. 4.20. This uti-
lization of a channel attention mechanism allows the model to discern and emphasize
specific features from each modality while suppressing others, based on the input pro-
vided. The authors demonstrated that their experimental results of this fusion approach
significantly enhanced the segmentation performance. Moreover, both encoders are op-
timized for quicker inference through architectural revisions. The decoder consists of
multiple modules, each upscaling the resultant feature maps by a factor of 2, refining
features through convolutions, and integrating encoder features. Ultimately, the decoder
maps these features to class labels and rescales the class mapping to the original input
resolution. The implementation is in PyTorch, with a special emphasis on not using
intricate neural architectures and operations to ensure compatibility and practicality for
optimized deployment.

The ESANET pre-trained network is utilized with the NYUv2 ResNet34 NBt1D
backbone. It maps and segments 40 classes in the scene. The NYUv2 dataset [71]
is a semantic segmentation dataset containing a large number of indoor RGBD scenes
gathered with a Microsoft Kinect Camera.

The model conversion to IR and the RGBD input-to-inference pipeline are set up
in the same way as in earlier steps. However, the asynchronous callback mode, quan-
tization, and the prepostprocessing block of OpenVINO are used to run ESANET with
minimum latency. There was a notable improvement in performance with the use of
the optimization techniques mentioned above (from 2 FPS to 8 FPS). Asynchronous
inference is particularly beneficial here because when the OpenVINO Async API is busy
with the inference job, the application can perform other tasks in parallel—specifically,
gathering RGBD data from the RealSense camera, postprocessing the earlier returned
inference, converting RGBD images to point-cloud, and visualizing those. This speeds
up the loop computation time, as the application no longer needs to wait for the tasks to
complete sequentially. Quantization to FP16 also reduces the computation burden and
accelerates the inference by reducing the memory and power consumption (particularly
valuable for embedded systems, as in our case). Lastly, instead of using a separate pre-
processing function to normalize and scale the RGBD image, this step was incorporated
in the IR model itself using the OpenVINO prepostprocessing block.

To transform RGBD into a point cloud, the Open3D library is utilized. Specifically,
Open3D voxel sampling is employed to reduce the point-cloud size, and point-cloud
creation from RGBD images, along with visualization commands, are utilized within the
scope of this work. A visual representation of the algorithmic pipeline is shown in Fig.
4.21. Figure 4.22 displays a snapshot of the semantic segmentation. For the real-time
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Figure 4.21: Block Level Depiction of RGBD-based point cloud semantic segmentation

demonstration video, please refer to Section 4.4. In Fig. 4.22, each segmented scene
color is associated with a semantic label according to NYUv2’s metadata format [71].
For example, in the top right corner image of Fig. 4.22, the green (bottom left) represents
the floor, blue represents the wall, light green (upper portion of the image) represents
the ceiling, and orange represents other structures.

Now, let’s discuss the methodologies adopted for point-cloud segmentation. To imple-
ment the point-cloud segmentation methodology, Open3D-ML [72] is utilized. Open3D-
ML is an extension of Open3D designed to assist users with 3D machine learning tasks,
such as semantic cloud segmentation. In essence, it harnesses core Open3D functional-
ities for 3D data processing and offers various machine-learning frameworks and tools
on top of it. The compatibility of Open3D-ML with both PyTorch and TensorFlow
adds convenience to integrating Open3D-ML with existing machine-learning implemen-
tations. Furthermore, it provides pre-trained models and training pipelines for common
3D machine-learning tasks. Specifically, the implementations of well-known methods like
RandLA-Net [73] and KPConv [74] are already included in the Open3D-ML packages.

RandLA-Net and KPConv are two popular models for point cloud processing and
analysis. Alongside their benchmarked efficiency and notable performance on various
tasks, they exhibit high segmentation accuracies on S3DIS (Stanford 3D Indoor Spaces)
and KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute)
datasets. Additionally, their open-source availability, commercial licensing, widespread
academic and industrial adoption, efficient real-time inference, and cross-dataset com-
patibility indicate their robustness and generalizability. In most academic settings, both
methods are evaluated to find suitable candidates for the given cloud segmentation task
due to their underlying differences. Nevertheless, both of these methods represent state-
of-the-art approaches in point cloud segmentation, sharing many similarities such as the
use of point sampling, local feature aggregation, and computational efficiency.
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Figure 4.22: A snapshot from the ESANET demo

Figure 4.23: Local Feature Aggregation Module Representation [73]
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RandLA-Net directly deduces per-point semantics for large-scale point cloud data
and does not utilize any intricate point selection method. This approach significantly
enhances computation and memory efficiency, although it may unintentionally discard
crucial features. One of the key innovations of RandLA-Net addresses this challenge by
enabling real-time inference on large-scale point clouds with millions of points spanning
up to hundreds of meters. Prior to this method, there was a tradeoff in computational
expenses between heuristic or learning-based methods with good coverage versus random
sampling-based algorithms.

The RandLA-Net model introduced an innovative local feature aggregating module
that gradually expands the receptive field. Specifically, every 3D point is parallelly
passed through the local feature aggregation module, comprising Local Spatial Encoding
(LocSE), attentive pooling, and dilated residual block. First, LocSE introduces a local
context-aware mechanism that enhances the feature representation for each point and
generates attention weights based on the local geometric relationships of neighboring
points. Second, attentive pooling is used to fuse information from multiple scales with
Multi-Layer Perceptrons (MLPs) to generate attention weights for neighboring points
within a local region. Unlike earlier approaches that used max/mean pooling [75, 76],
this method employs an attention mechanism to capture both fine-grained details and
broader context simultaneously. Lastly, the dilated residual block expands the network’s
receptive field without adding complexity. It utilizes dilated convolutions to efficiently
capture broader context, aiding accurate semantic segmentation in complex scenes. A
detailed explanation of the local feature aggregating module is provided in Fig. 4.23,
taken from [73].

On the other hand, Kernel Point Convolution (KPConv) begins by representing each
point in the point cloud as a kernel point (rigid or deformable) and then utilizes these
kernel points to convolve and aggregate information from nearby points within a specific
user-defined radius. This approach enables the method to capture both local geometric
and contextual features in a computationally efficient manner, leading to accurate and
faster segmentation of the point cloud data [74].

In the study by [74], two kernel point architectures are introduced: KP-CNN, a five-
layered convolutional network designed for classification tasks, and KP-FCNN, a fully
convolutional network tailored for segmentation tasks. Both KP-CNN and KP-FCNN
involve successive transformations of features during the forward pass, represented by
different colors, while points are additionally incorporated to guide and support these
operations, as illustrated in Fig. 4.24. The KP-CNN architecture comprises multiple
layers, each consisting of two convolutional blocks. In these blocks, the first block is
stridden, except for the initial layer. These blocks are structured similarly to bottleneck
ResNet blocks [77], incorporating KPConv, batch normalization, and leaky ReLU activa-
tion. Following the final layer, features are aggregated using global average pooling, and
subsequent fully connected and softmax layers are applied, resembling the architecture of
typical image-based CNNs. The network of primary interest, KP-FCNN, employs an en-
coder similar to that of KP-CNN. To combine features between the encoder and decoder
layers, nearest upsampling and skip links are utilized. Concatenated features undergo
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Figure 4.24: The architecture of KP-CNN and KP-FCNN taken from [74]

processing through a unary convolution, similar to a shared MLP or 1x1 convolution.
Pre-trained RandLA-Net and KPConv models on KITTI [78] and S3DIS datasets [79]

were selected and utilized in this study due to their impressive publicly-listed evaluation
metrics. The KITTI dataset serves as a widely used benchmark for cloud segmentation
tasks. This dataset is constructed from real-world 3D point cloud data collected by
driving a LIDAR-mounted vehicle in urban environments. It can identify up to 19
classes, including roads, pedestrians, vehicles, and buildings. However, since this dataset
focuses on outdoor scenes, models trained on it may not perform optimally in indoor
environments. In contrast, the S3DIS dataset serves as a benchmarking dataset for
point cloud segmentation tasks, specifically designed to train and evaluate models for
indoor scene understanding. It comprises 3D point clouds collected from six indoor
areas, including various room types such as offices, classrooms, and conference halls.
The points are annotated with 40 different classes including, ceiling, floor, wall, column,
beam, and other objects. Unlike the KITTI dataset-trained models, which require only
geometric information of each point, models trained on S3DIS require three additional
parameters: the R, G, and B values of the point cloud data as input.

Unlike earlier image-based semantic segmentation, here, the dense point cloud is
directly captured from the RealSense Camera and then converted into an Open3D-
compatible 3D data processing pipeline. The preprocessing involved voxel downsampling
and the elimination of incorrect points from the point cloud data. The preprocessed
input consists of a three-element key-value pair dictionary (namely, points, feat, and
labels). Label values are set to none when passed for inference. Feat (or features) are
also set to none in the case of the KITTI dataset. The values of the "point" key are
dynamic on the 0th axis, i.e., (?, 3), depending upon the downsampling and density
of the point cloud. The "feat" key values would be non-empty and equivalent to the
size of the point cloud in case of S3DIS dataset. The output is a dictionary comprising
two key-value pairs ’predict_labels’ and ’predict_scores,’ corresponding to the input
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dimension. It is to be noted here that point cloud segmentation requires relatively more
computational resources due to several factors such as the large number of points in
the point cloud, neighborhood search, high-dimensional features, and a higher number
of deep neural network parameters. Therefore, optimizing the real-time performance of
the models was of even higher significance. The original speed on Nvidia 3060 GPU
was approximately 1 FPS, while after performing OpenVINO-based optimization, it was
increased to 3 FPS on iGPU. Utilizing OpenVINO for this purpose was a challenging task
as the original implementation of Open3D-ML is incompatible with OpenVINO in terms
of model conversion and third-party used packages. The issues related to input/output
handling, model tracing, etc., were reported to the authors of the Open3D-ML repository.
Nevertheless, self-code debugging and corrections were performed to ensure compatibility
within the time constraints of the task. In general, a significant amount of effort was
devoted to this activity.

Figure 4.25: Point Cloud semantic segmentation pipeline representation

Figure 4.25 illustrates the point cloud segmentation pipeline with RandLA-Net and
KPConv. Figure 4.26 shows a snapshot of the point cloud segmentation (video demon-
stration is provided in section 4.4). The scene in Fig. 4.26 is the same as in Fig. 4.22,
mainly consisting of a table, floor, wall, and ceiling. However, the point cloud data is
significantly downsampled to enable real-time processing. It is evident that RandLA-Net
has not satisfactorily segmented the scene; only a few blue segmented points are classi-
fied as ground. However, it is important to note that the test environment is challenging,
featuring reflective floor and ceiling tiles, wall paintings, and clutter.
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Figure 4.26: A snapshot of the RandLA-Net Demo

4.4 Results

The first objective was to validate the EI for the AMR toolkit. The toolkit was success-
fully tested; however, it uses Ubuntu 20.04 LTS (or newer), ROS 2 Foxy, and docker-in-
docker-based modular packages, which make it infeasible to use with Robotnik’s existing
software stack. Their software base comprises Ubuntu 18.04, ROS Melodic, and related
packages, which were incompatible with the EI for AMR. Likewise, the benefits offered
by EI for AMR were not promising enough to justify a complete shift or upgrade to
new software versions. However, the key takeaway was the potential applicability of
OpenVINO-based pipelines for their mobile robots. The OpenVINO-based methodology
was subsequently scaled to the second objective of detecting the docking station, fire,
smoke, and objects from the COCO dataset. The simplified pseudocode for object de-
tection ROS wrapper and inference can be referred from Appendices B.1.2 and B.1.2,
respectively. All the proposed object detection models were successfully developed and
deployed on mobile robots. Object, fire, and smoke detection are entirely new features
added to Robotnik’s mobile platform. Therefore, their performance is evaluated both
via evaluation metrics (visual plots) and empirical testing (demonstration videos). The
AI-based docking station detection methodology improves the existing ArUco marker-
based approach as it solves the limitations of the conventional image processing-based
approach. However, since some of Robotnik’s mobile platforms currently utilize the
ArUco marker-based approach, a direct real-time performance comparison cannot be
provided at this time due to confidentiality reasons. All the video demonstrations of
object detection are provided below.
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• Docking station detection demo video

• A demo video of object detection from the COCO dataset (Only human detection
class is enabled; refer to Section 4.2.2 for more detail)

• Fire detection demo video

The third objective was to filter point cloud data to facilitate indoor/outdoor mo-
bile robot navigation tasks. The initial approaches involved using RANSAC and road-
segmentation pre-trained models. These models were tested in real-time with mobile
robots at Robotnik Automation, as demonstrated in the first two videos in the following
paragraphs.

Upon close analysis of the road segmentation demo, it becomes apparent that real-
time results are unsatisfactory under specific conditions. The segmentation is effective
only when: 1) the robot moves slowly or remains stationary; its performance deteriorates
when the robot moves faster or rotates, 2) the robot is not in a wide open area where
neighboring walls are visible or close, and 3) there is a noticeable color difference between
the floor and the walls (or other objects on the surface).

As a result, the model’s robustness is questionable, making it unsuitable for adoption
on a commercial scale. In the second case, RANSAC was integrated and fine-tuned to
work in real-time with the target mobile robot. It is important to note that there is an
inherent lag between the RGB frame and the point cloud ROS topics of RealSense due
to the conversion of the RGBD stream to the point cloud stream.

Upon close analysis of RANSAC’s demo, it becomes evident that: 1) points near the
ground/floor are not accurately filtered, and 2) small objects on the floor are identified
and not filtered along with the floor. In other words, RANSAC can distinguish between
objects on the surface and the surface itself (provided the scene is not too close to the
robot). However, the results are not satisfactory or reliable enough for commercial-scale
use.

This leads us to the topic of semantic segmentation. However, the key consideration
in this case was to optimize the methodology sufficiently to run the module in real-
time with minimal latency. This objective was achieved through the implementation
of ESANet, RandLA-Net, and KPConv-based point cloud segmentation pipelines. The
mean Intersection over Union (mIoU) of the pre-trained ESANET was 50.30%, and the
original FPS on the CPU was 2, which was enhanced to 8 with OpenVINO. For direct
point cloud segmentation, the FPS was doubled, even without quantization and asyn-
chronous code operation. However, the optimized FPS and performance were insufficient
to achieve real-time satisfactory results on mobile robots. You can refer to the simplified
pseudocode of point cloud segmentation and RGBD Segmentation in Appendices B.2.3
and B.2.4, respectively. Video demonstrations of the segmentation tasks are provided
below.

• RANSAC-based dense point-cloud filtering in real-time at Robotnik (Indoor and
Warehouse)

https://drive.google.com/file/d/1VQfzPxH5-5TNhkiIGVlUwtQlWxVVuu-h/view?usp=sharing
https://drive.google.com/file/d/1uEB9F_hW52HvB4Smd0NpG2m4Zhzzx0iN/view?usp=sharing
https://drive.google.com/file/d/1lQLdPLsECVZU48Six7A7VIgkFMPY2IP8/view?usp=sharing
https://drive.google.com/file/d/1KFuY0t0KHGNsv8BjHDtcXh6cDtA_TsRD/view?usp=sharing
https://drive.google.com/file/d/1KFuY0t0KHGNsv8BjHDtcXh6cDtA_TsRD/view?usp=sharing
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• Road Segmentation model-based RGB Video segmentation at Robotnik (Indoor
and Warehouse)

• ESANet-based point cloud segmentation

• RandLA-Net point cloud segmentation: Before and After OpenVINO (without
quantization and async)

From demo videos of semantic segmentation, it is apparent that ESANET outperforms
the other three counterparts and is also compatible with OpenVINO. All the segmented
colors displayed in the provided demo videos represent specific semantic labels (as per
their original curated format; refer to Section 4.3.2 for more details on each method and
their corresponding citations). The scene shown in the RandLA-Net demo video is the
same as in ESANET, mainly comprising tables, walls, and floors. It is noticeable that
the results, including ESANET, are not ideal for commercial-scale adoption. Therefore,
it has been concluded that it is necessary to create Robotnik’s own RGBD Segmentation
Dataset for scene understanding or segmentation. Point cloud segmentation is an ongo-
ing project at Robotnik. In the future, ESANET models will be trained with custom
annotated RGBD images from the robot’s field of view to enhance accuracy.

https://drive.google.com/file/d/1L0Luw984ALH0JSWuTHepP2OLye8Ped8L/view?usp=sharing
https://drive.google.com/file/d/1L0Luw984ALH0JSWuTHepP2OLye8Ped8L/view?usp=sharing
https://drive.google.com/file/d/1MQouqq4Lu-XTIBpu5BHSe58bm_RTnxjm/view?usp=sharing
https://drive.google.com/file/d/16yqbi1ndiuxf6WhIe5rogj926KxXm2Tv/view?usp=sharing
https://drive.google.com/file/d/1qRnq68rxMdx9jyJTzqp99J3Q48JWcRF8/view?usp=sharing
https://drive.google.com/file/d/1qRnq68rxMdx9jyJTzqp99J3Q48JWcRF8/view?usp=sharing
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In this chapter, the conclusions of the work, as well as its future extensions, are
shown.

5.1 Conclusions

Working at Robotnik Automation has been an exceptional experience. The problems and
challenges encountered during the proposed activities were all real-world scenarios. This
opportunity provided me with significant confidence in my skills and insights into the
robotics industry’s practices, trends, and needs. The collaborative environment enabled
me to learn from skilled professionals in different areas of robotics within a limited
period. Robotnik Automation provided me with all the necessary resources, including
computing hardware, to facilitate my thesis work. However, there were also challenges
encountered during this time due to the lack of AI infrastructure at the beginning. In
a nutshell, the activities undertaken were the beginning of an era of AI for commercial
usage at Robotnik Automation. In addition to my AI-related activities at Robotnik
Automation, I also made significant software development contributions at Robotnik
Automation in the following areas:

• Migration of the Gazebo simulation of RB-Kairos in ROS Melodic to ROS Noetic
using docker container: This involved updating the simulation to work with the
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newer version of ROS and dockerizing it so that it could be easily deployed and
run on different platforms.

• Containerization of front-end of Open-RMF demos: This involved containerizing
the front-end of the Open-RMF demos so that they could be easily deployed and
run on different platforms

• Hardware/Software validation and testing of mobile robotic platforms at Robotnik
Automation: This involved testing the hardware and software of mobile robotic
platforms to ensure that they are working properly and meet the requirements of
the customers.

These activities contributed to my overall learning of robotics software engineering by
giving me the opportunity to work on a variety of different projects and to learn about
the different aspects of developing software for robots.

5.2 Future work
Robotnik Automation is constantly evolving its activities. As of now, the point cloud
segmentation methodology is being improved with custom data creation and training. A
custom segmentation dataset will be incorporated to enable the segmentation of elevation
and small vegetation in outdoor spaces. Work is also underway on broken-fence and open
window/door detection, for which a dataset is being created. Specifically, recent YOLO
versions and Detectron models will be explored. In short, Robotnik is eager to engage
in more and more research and development initiatives focused on robotics and artificial
intelligence and to scale them up for commercial use. These projects aim to bridge the
gap between different areas of expertise and enable small and medium-sized enterprises
(SMEs) to leverage this technology without requiring specialized personnel.
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ix A
Other considerations

This appendix addresses miscellaneous aspects that have not been included in the main
sections of the document.

A.1 Software Dependencies
Below are the developed ROS packages’ dependencies on other ROS Noetic Catkin
packages.

• Private packages (custom libraries of Robotnik Automation): rcomponent, robot-
nik_msgs, and yolov7_class

• Public packages: vision_msgs, std_msgs, cv_bridge, sensor_msgs, geometry_msgs,
roscpp, rospy

Below is the list of the object detection package dependencies at a level of Python
development environment.

• six==1.16.0

• absl-py==1.4.0

• actionlib==1.14.0

• addict==2.4.0

• angles==1.9.13

• argcomplete==1.8.1

• astor==0.8.1

• asttokens==2.2.1

• atomicwrites==1.1.5

• attrs==19.3.0

• autobahn==17.10.1

• Automat==0.8.0
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• autopep8==2.0.1

• awscli==1.27.77

• Babel==2.11.0

• backcall==0.2.0

• bcrypt==3.1.7

• beautifulsoup4==4.8.2

• blinker==1.4

• bloom==0.11.2

• bondpy==1.8.6

• botocore==1.29.77

• breezy==3.0.2

• build==0.10.0

• cachetools==5.3.0

• camera-calibration==1.17.0

• catkin==0.8.10

• catkin-pkg==0.5.2

• cbor==1.0.0

• certifi==2019.11.28

• chardet==3.0.4

• charset-normalizer==3.0.1

• Click==7.0

• colcon-argcomplete==0.3.3

• colcon-bash==0.4.2

• colcon-cd==0.1.1

• colcon-cmake==0.2.27

• colcon-common-extensions==0.3.0

• colcon-core==0.12.1

• colcon-defaults==0.2.8

• colcon-devtools==0.2.3

• colcon-library-path==0.2.1

• colcon-metadata==0.2.5

• colcon-notification==0.2.15

• colcon-output==0.2.13

• colcon-override-check==0.0.1

• colcon-package-selection==0.2.10

• colcon-parallel-executor==0.2.4

• colcon-pkg-config==0.1.0

• colcon-powershell==0.3.7

• colcon-python-setup-py==0.2.8

• colcon-recursive-crawl==0.2.1

• colcon-ros==0.3.23

• colcon-test-result==0.3.8

• colcon-zsh==0.4.0

• colorama==0.4.3

• coloredlogs==15.0.1

• comm==0.1.2

• configobj==5.0.6

• constantly==15.1.0

• contourpy==1.0.7

• controller-manager==0.19.6

• coremltools==6.2

• cov-core==1.15.0

• coverage==4.5.2

• cryptography==2.8
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• cv-bridge==1.16.2

• cycler==0.10.0

• Cython==0.29.14

• dbus-python==1.2.16

• debugpy==1.6.6

• decorator==5.1.1

• defusedxml==0.7.1

• Deprecated==1.2.7

• diagnostic-analysis==1.11.0

• distlib==0.3.0

• docutils==0.16

• dynamic-reconfigure==1.7.3

• empy==3.3.2

• executing==1.2.0

• fastjsonschema==2.16.3

• filelock==3.9.0

• flatbuffers==23.1.21

• fonttools==4.38.0

• funniest==0.1

• gazebo_plugins==2.9.2

• google-auth==2.16.1

• google-auth-oauthlib==0.4.6

• grpcio==1.51.3

• httplib2==0.14.0

• huggingface-hub==0.13.1

• humanfriendly==10.0

• idna==2.8

• image-geometry==1.16.2

• importlib-metadata==6.0.0

• importlib-resources==5.12.0

• ipykernel==6.21.3

• ipython==7.34.0

• ipython-genutils==0.2.0

• jedi==0.18.2

• Jinja2==3.1.2

• jmespath==1.0.1

• joblib==1.2.0

• joint-state-publisher==1.15.1

• jsonschema==4.17.3

• jstyleson==0.0.2

• jupyter_client==8.0.3

• jupyter_core==5.2.0

• keybert==0.7.0

• keyring==18.0.1

• kiwisolver==1.0.1

• launchpadlib==1.10.13

• lazr.restfulclient==0.14.2

• lazr.uri==1.0.3

• lockfile==0.12.2

• Markdown==3.4.1

• markdown-it-py==2.2.0

• MarkupSafe==2.1.2

• matplotlib==3.7.0

• matplotlib-inline==0.1.6
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• mdurl==0.1.2

• more-itertools==4.2.0

• mpmath==1.2.1

• nbformat==5.8.0

• nest-asyncio==1.5.6

• networkx==2.8.8

• nltk==3.8.1

• numpy==1.23.4

• oauthlib==3.1.0

• onnx==1.13.1

• onnxruntime==1.14.1

• onnxsim==0.4.17

• opencv-contrib-python==4.7.0.72

• opencv-python==4.7.0.72

• openvino==2022.3.0

• openvino-dev==2022.3.0

• openvino-telemetry==2022.3.0

• osrf-pycommon==2.0.2

• packaging>=20.3

• pandas==1.3.5

• parso==0.8.3

• pbr==5.4.5

• pexpect==4.6.0

• pickleshare==0.7.5

• Pillow==9.4.0

• pip-autoremove==0.10.0

• pkgutil_resolve_name==1.3.10

• platformdirs==3.1.1

• prettytable==3.6.0

• prompt-toolkit==3.0.37

• protobuf==3.20.3

• psutil==5.5.1

• psycopg2==2.9.5

• pure-eval==0.2.2

• py==1.8.1

• py-cpuinfo==9.0.0

• py-ubjson==0.14.0

• pyasn1==0.4.2

• pyasn1-modules==0.2.1

• pycairo==1.16.2

• Pygments==2.14.0

• PyHamcrest==1.9.0

• PyJWT==1.7.1

• pymacaroons==0.13.0

• pyparsing==3.0.9

• pypng==0.0.20

• PyQRCode==1.2.1

• PyQt5==5.14.1

• pyrealsense2==2.53.1.4623

• pyrsistent==0.19.3

• pytest==4.6.9

• python-dateutil==2.8.2

• python-qt-binding==0.4.4

• PyTrie==0.2
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• pytz==2022.7.1

• pyxdg==0.26

• PyYAML==5.4.1

• pyzmq==25.0.1

• qt-dotgraph==0.4.2

• qt-gui==0.4.2

• qt-gui-cpp==0.4.2

• qt-gui-py-common==0.4.2

• regex==2022.10.31

• reportlab==3.5.34

• requests==2.28.2

• requests-oauthlib==1.3.1

• requests-unixsocket==0.2.0

• resource_retriever==1.12.7

• rich==13.3.1

• roman==2.0.0

• rosbag==1.16.0

• rosboost-cfg==1.15.8

• rosclean==1.15.8

• roscreate==1.15.8

• rosdep==0.22.2

• rosdistro==0.9.0

• rosgraph==1.16.0

• rosinstall==0.7.8

• rosinstall-generator==0.1.23

• roslaunch==1.16.0

• roslib==1.15.8

• roslint==0.12.0

• roslz4==1.16.0

• rosmake==1.15.8

• rosmaster==1.16.0

• rosmsg==1.16.0

• rosnode==1.16.0

• rosparam==1.16.0

• rospkg==1.5.0

• rospy==1.16.0

• rosservice==1.16.0

• rostest==1.16.0

• rostopic==1.16.0

• rosunit==1.15.8

• roswtf==1.16.0

• rqt-image-view==0.4.17

• rqt-moveit==0.5.10

• rqt-reconfigure==0.5.5

• rqt-robot-dashboard==0.5.8

• rqt-robot-monitor==0.5.14

• rqt-rviz==0.7.0

• rqt_action==0.4.9

• rqt_bag==0.5.1

• rqt_bag_plugins==0.5.1

• rqt_console==0.4.11

• rqt_dep==0.4.12

• rqt_graph==0.4.14

• rqt_gui==0.5.3



68 Other considerations

• rqt_gui_py==0.5.3

• rqt_launch==0.4.9

• rqt_logger_level==0.4.11

• rqt_msg==0.4.10

• rqt_nav_view==0.5.7

• rqt_plot==0.4.13

• rqt_pose_view==0.5.11

• rqt_publisher==0.4.10

• rqt_py_common==0.5.3

• rqt_py_console==0.4.10

• rqt_robot_steering==0.5.12

• rqt_runtime_monitor==0.5.9

• rqt_service_caller==0.4.10

• rqt_shell==0.4.11

• rqt_srv==0.4.9

• rqt_tf_tree==0.6.3

• rqt_top==0.4.10

• rqt_topic==0.4.13

• rqt_web==0.4.10

• rsa==4.7.2

• rviz==1.14.20

• s3transfer==0.6.0

• scipy==1.10.1

• seaborn==0.12.2

• SecretStorage==2.3.1

• sensor-msgs==1.13.1

• sentence-transformers==2.2.2

• sentencepiece==0.1.97

• smach==2.5.1

• smach-ros==2.5.1

• smclib==1.8.6

• sympy==1.11.1

• termcolor==2.2.0

• testresources==2.0.1

• texttable==1.6.7

• tf==1.13.2

• tf-conversions==1.13.2

• tf2-geometry-msgs==0.7.6

• tf2-kdl==0.7.6

• tf2-py==0.7.6

• tf2-ros==0.7.6

• thop==0.1.1.post2209072238

• threadpoolctl==3.1.0

• tokenizers==0.13.2

• tomli==2.0.1

• topic-tools==1.16.0

• torch>=1.7.0,!=1.12.0

• torchvision>=0.8.1,!=0.13.0

• #torch==1.11.0+cu113

• #torchvision==0.12.0+cu113

• tornado==6.2

• tqdm==4.64.1

• traitlets==5.9.0

• transformers==4.26.1
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• typing_extensions==4.5.0

• urllib3==1.25.8

• vcstool==0.3.0

• vcstools==0.1.42

• wadllib==1.3.3

• wcwidth==0.1.8

• Werkzeug==2.2.3

• xacro==1.14.15

• zipp==3.14.0

• zope.interface==4.7.1

Below is the list of the scene segmentation package dependencies at a level of Python
development environment. It is to be noted here that many of the package dependen-
cies are conflictive between object detection and scene segmentation, while some are
overlapping. Therefore. a Conda virtual environment is used for development purposes.

• absl-py==0.8.1

• actionlib==1.14.0

• addict==2.4.0

• aiofiles==22.1.0

• aiosqlite==0.19.0

• angles==1.9.13

• anyio==3.7.1

• appdirs==1.4.4

• argon2-cffi==21.3.0

• argon2-cffi-bindings==21.2.0

• astor==0.8.0

• astroid==2.3.2

• asttokens==2.2.1

• attrs==19.3.0

• Babel==2.12.1

• backcall==0.2.0

• base-local-planner==1.17.3

• beautifulsoup4==4.12.2

• bleach==6.0.0

• bondpy==1.8.6

• camera-calibration==1.17.0

• catkin==0.8.10

• catkin-virtualenv==0.6.1

• certifi==2023.5.7

• cffi==1.13.1

• chardet==3.0.4

• charset-normalizer==3.2.0

• cityscapesScripts==1.5.0

• cloudpickle==1.2.2

• controller-manager==0.19.6

• controller-manager-msgs==0.19.6

• cv-bridge==1.16.2

• cycler==0.10.0

• Cython==0.29.36

• cytoolz==0.10.1

• dask==2.7.0

• debugpy==1.6.7

• decorator==4.4.1
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• defusedxml==0.7.1

• deprecation==2.1.0

• devtools==0.11.0

• diagnostic-analysis==1.11.0

• diagnostic-updater==1.11.0

• dill==0.3.1.1

• dynamic-reconfigure==1.7.3

• entrypoints==0.4

• exceptiongroup==1.1.2

• executing==1.2.0

• fastjsonschema==2.17.1

• future==0.18.2

• gast==0.2.2

• gazebo-plugins==2.9.2

• gazebo-ros==2.9.2

• gencpp==0.7.0

• geneus==3.0.0

• genlisp==0.4.18

• genmsg==0.6.0

• gennodejs==2.0.2

• genpy==0.6.15

• google-pasta==0.1.8

• grpcio==1.25.0

• h5py==2.9.0

• idna==2.8

• image-geometry==1.16.2

• imageio==2.6.1

• importlib-metadata==6.7.0

• importlib-resources==5.12.0

• interactive-markers==1.12.0

• ipykernel==6.16.2

• ipython==7.34.0

• ipython-genutils==0.2.0

• ipywidgets==8.0.7

• isort==4.3.21

• jedi==0.18.2

• Jinja2==3.1.2

• joblib==1.3.1

• joint-state-publisher==1.15.1

• json5==0.9.14

• jsonschema==4.17.3

• jstyleson==0.0.2

• jupyter-client==7.4.9

• jupyter-core==4.12.0

• jupyter-events==0.6.3

• jupyter-packaging==0.12.3

• jupyter-server==1.24.0

• jupyter-server-fileid==0.9.0

• jupyter-server-ydoc==0.8.0

• jupyter-ydoc==0.2.4

• jupyterlab==3.6.5

• jupyterlab-pygments==0.2.2

• jupyterlab-server==2.23.0

• jupyterlab-widgets==3.0.8
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• Keras-Applications==1.0.8

• Keras-Preprocessing==1.1.0

• kiwisolver==1.1.0

• laser-geometry==1.6.7

• lazy-object-proxy==1.4.2

• Markdown==3.1.1

• MarkupSafe==2.1.3

• matplotlib==3.1.1

• matplotlib-inline==0.1.6

• mccabe==0.6.1

• message-filters==1.16.0

• mistune==3.0.1

• mkl-fft==1.0.14

• mkl-random==1.1.0

• mkl-service==2.3.0

• mock==4.0.1

• moveit-commander==1.1.12

• moveit-core==1.1.12

• nbclassic==1.0.0

• nbclient==0.7.4

• nbconvert==7.6.0

• nbformat==5.8.0

• nest-asyncio==1.5.6

• netron==7.0.3

• networkx==2.4

• notebook==6.5.4

• notebook-shim==0.2.3

• numpy==1.21.6

• olefile==0.46

• onnx==1.6.0

• onnxruntime==1.0.0

• open3d==0.13.0

• opencv-python==4.8.0.74

• openvino==2022.3.1

• openvino-dev==2022.3.1

• openvino-telemetry==2023.0.0

• opt-einsum==3.1.0

• packaging==23.1

• pandas==1.3.5

• pandocfilters==1.5.0

• parso==0.8.3

• pexpect==4.8.0

• pickleshare==0.7.5

• Pillow==8.2.0

• pkgutil-resolve-name==1.3.10

• prometheus-client==0.17.1

• promise==2.3

• prompt-toolkit==3.0.39

• protobuf==3.10.0

• psutil==5.9.5

• ptyprocess==0.7.0

• pycparser==2.19

• Pygments==2.15.1

• pylint==2.4.3
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• pyparsing==2.4.2

• pyrealsense2==2.53.1.4623

• pyrsistent==0.19.3

• python-dateutil==2.8.0

• python-json-logger==2.0.7

• python-qt-binding==0.4.4

• pytorch-ignite==0.2.1

• pytz==2019.3

• PyWavelets==1.1.1

• PyYAML==6.0

• pyzmq==25.1.0

• qt-dotgraph==0.4.2

• qt-gui==0.4.2

• qt-gui-cpp==0.4.2

• qt-gui-py-common==0.4.2

• requests==2.31.0

• resource-retriever==1.12.7

• rfc3339-validator==0.1.4

• rfc3986-validator==0.1.1

• rosbag==1.16.0

• rosboost-cfg==1.15.8

• rosclean==1.15.8

• roscreate==1.15.8

• rosgraph==1.16.0

• roslaunch==1.16.0

• roslib==1.15.8

• roslint==0.12.0

• roslz4==1.16.0

• rosmake==1.15.8

• rosmaster==1.16.0

• rosmsg==1.16.0

• rosnode==1.16.0

• rosparam==1.16.0

• rospy==1.16.0

• rosservice==1.16.0

• rostest==1.16.0

• rostopic==1.16.0

• rosunit==1.15.8

• roswtf==1.16.0

• rqt-action==0.4.9

• rqt-bag==0.5.1

• rqt-bag-plugins==0.5.1

• rqt-console==0.4.11

• rqt-dep==0.4.12

• rqt-graph==0.4.14

• rqt-gui==0.5.3

• rqt-gui-py==0.5.3

• rqt-image-view==0.4.17

• rqt-launch==0.4.9

• rqt-logger-level==0.4.11

• rqt-moveit==0.5.10

• rqt-msg==0.4.10

• rqt-nav-view==0.5.7

• rqt-plot==0.4.13
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• rqt-pose-view==0.5.11

• rqt-publisher==0.4.10

• rqt-py-common==0.5.3

• rqt-py-console==0.4.10

• rqt-reconfigure==0.5.5

• rqt-robot-dashboard==0.5.8

• rqt-robot-monitor==0.5.14

• rqt-robot-steering==0.5.12

• rqt-runtime-monitor==0.5.9

• rqt-rviz==0.7.0

• rqt-service-caller==0.4.10

• rqt-shell==0.4.11

• rqt-srv==0.4.9

• rqt-tf-tree==0.6.3

• rqt-top==0.4.10

• rqt-topic==0.4.13

• rqt-web==0.4.10

• rviz==1.14.20

• scikit-image==0.14.2

• scikit-learn==1.0.2

• scipy==1.7.3

• Send2Trash==1.8.2

• sensor-msgs==1.13.1

• six==1.12.0

• smach==2.5.1

• smach-ros==2.5.1

• smclib==1.8.6

• sniffio==1.3.0

• soupsieve==2.4.1

• srdfdom==0.6.4

• tensorboard==1.15.0

• tensorboardX==1.9

• tensorflow-datasets==1.3.2

• tensorflow-estimator==1.15.1

• tensorflow-gpu==1.15.0

• tensorflow-metadata==0.21.0

• termcolor==1.1.0

• terminado==0.17.1

• texttable==1.6.7

• tf==1.13.2

• tf-conversions==1.13.2

• tf2-geometry-msgs==0.7.6

• tf2-kdl==0.7.6

• tf2-py==0.7.6

• tf2-ros==0.7.6

• tf2-sensor-msgs==0.7.6

• threadpoolctl==3.1.0

• tinycss2==1.2.1

• tomli==2.0.1

• tomlkit==0.11.8

• toolz==0.10.0

• topic-tools==1.16.0

• torch==1.3.1

• torchvision==0.4.2
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• tornado==6.2

• tqdm==4.65.0

• traitlets==5.9.0

• typing-extensions==4.7.1

• urdfdom-py==0.4.6

• urllib3==1.25.7

• wcwidth==0.2.6

• webencodings==0.5.1

• websocket-client==1.6.1

• Werkzeug==0.16.0

• widgetsnbextension==4.0.8

• wrapt==1.11.2

• xacro==1.14.16

• y-py==0.5.9

• ypy-websocket==0.8.4

• zipp==3.15.0
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Source code

Due to the confidential/Commercial nature of the work, the source code of the imple-
mented solutions can not be provided. However, for reference, a simplified pseudocode
is provided.

B.1 Object detection

Algorithm B.1.1 ROS wrapper class for YOLO-V7 inference

1. Initialize the ROS node and the YOLOv7 inference engine.

2. Subscribe to the input image topic.

3. In the image callback function,

4. Convert the ROS image message to a NumPy array.

5. Run the YOLOv7 inference engine on the image.

6. Get the bounding boxes, scores, and classes of the detected objects.

7. Create a ROS message for the bounding boxes.

8. Publish the bounding boxes message and the image message.

75
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Algorithm B.1.2 Yolo v7 inference class

1. Initialize the YOLOv7 inference class with the following parameters
img_size ▷ The size of the input image
conf_thres ▷ The confidence threshold for object detection
iou_thres ▷ The intersection-over-union threshold for object detection
device ▷ The device on which to run the inference
detection_type ▷ The type of object detection model to use
COI ▷ The list of classes of interest

2. Load the YOLOv7 weights and model files.

3. Create a dictionary of colors for each class of interest.

4. Convert the ROS image message to a NumPy array.

5. For each input image:

a) Convert the image to a NumPy array.
b) Perform letterboxing on the image to resize it to the desired input size.
c) Transpose of the image and expand its dimensions to make it compatible with

the YOLOv7 model.
d) Normalize the image to the range [0, 1].
e) Pass the image through the YOLOv7 model to obtain the detections.
f) For each detection, if the class of the detection is in the list of classes of

interest, then:
i. Calculate the bounding box coordinates of the detection.
ii. Draw the bounding box and the class label on the image.

6. Return the image with the bounding boxes drawn on it.

B.2 Semantic Segmentation
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Algorithm B.2.3 Point cloud Segmentation

1. Import necessary libraries and modules, including pyrealsense2, numpy,
numpy,and open3d.

2. Define a dictionary COLOR_MAP that maps class labels to their corresponding
RGB colors.

3. Create a dictionary of colors for each class of interest.

4. Define a s3dis_labels dictionary for labeling point cloud data.

5. Load ML configuration from a YAML file
▷ Configuration details of dataset, model, and pipeline

6. Initialize the RandLANet/KPConv model.

7. Load and Optimized the RandLANet/KPConv model via OpenVINO.

8. Initialize the Realsense context and query connected devices.

9. Create a Realsense pipeline and configure it for depth and color streams.

a) Wait for frames from the Realsense camera.
b) Get depth and color frames from the pipeline.
c) Create an Open3D RGBDImage from the color and depth frames.
d) Create a PointCloud from the RGBDImage using intrinsic parameters.

▷ This step is specific to Realsense as it is used to create pointcloud
e) Downsample and transform the PointCloud for processing.
f) Prepare the PointCloud for inference by removing NaNs and infinities.
g) Run inference on the prepared data using the RandLANet/KPConv model.
h) Color the PointCloud based on predicted labels using the COLOR_MAP .
i) Initialize a visualizer and add the colored PointCloud.
j) Update the visualizer and display the PointCloud.

10. Handle pipeline termination and window destruction.
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Algorithm B.2.4 RGBD-based Segmentation

1. Import necessary libraries and modules, including pyrealsense2, numpy, cv2, and
open3d.

2. Define global variables and functions for visualization and post-processing.

3. Set up the Realsense pipeline, configure the camera streams, and enable alignment
of depth to the color.

4. Initialize the OpenVINO core and load the compiled model for inference.

5. Define a custom preprocessing function for input samples.

6. Create an asynchronous inference queue with a callback function.

7. Enter a loop for real-time processing of frames from the camera.

a) Wait for color and depth frames from the Realsense camera.
b) Preprocess the frames by applying custom normalization and preparing input

tensors.
c) Start asynchronous inference using the compiled OpenVINO model.
d) Perform post-processing to obtain segmented images.
e) Convert the segmented image to a PointCloud using Open3D.
f) Visualize or publish the segmented image and PointCloud in a window.
g) Display the visualized images and PointCloud and handle user input.

8. Handle pipeline termination and window destruction.
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